1
|
Zhao Y, Korving L, Grönfors O, Prot T, Suopajärvi T, Luukkonen T, Liimatainen H. Acid leaching of vivianite separated from sewage sludge for recovering phosphorus and iron. WATER RESEARCH 2024; 266:122361. [PMID: 39244864 DOI: 10.1016/j.watres.2024.122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
This paper examines the acid leaching efficiencies of Fe and P from vivianite slurry (VS, Fe3(PO4)2·8H2O), which is magnetically separated from anaerobic digested sludge, and elaborates on Fe and P reuse routes. The characteristics and dissolution behavior of raw VS in hydrochloric, sulfuric, phosphoric, oxalic, and citric acids are investigated. Results reveal that the primary impurities in VS are organic matter, other phosphate compounds, and Mg present in the vivianite crystal structure. Hydrochloric and sulfuric acids could effectively extract P (90%) from VS at an optimal hydrogen-to-phosphorus (H⁺/P) ratio of 2.5, compared with sewage sludge ash (SSA) that normally needs an H⁺/P ratio greater than 3. Hence, VS can be employed as an alternative P resource following a similar recovery route used with SSA. However, in comparison to SSA, VS use can decrease acid consumption in P extraction and the requirement for the extensive purification of cationic impurities. Furthermore, oxalic acid effectively facilitates the separation of P and Fe in VS by precipitating Fe as insoluble ferrous oxalate in acidic conditions, leading to a high Fe recovery rate of 95%. The recovery and reuse of Fe through the oxalic acid route further improves the feasibility of VS as an alternate resource.
Collapse
Affiliation(s)
- Yudong Zhao
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Leon Korving
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, Netherlands
| | - Outi Grönfors
- Kemira Oyj, Industry & Water, EMEA, Luoteisrinne 2, 02270 Espoo, Finland
| | - Thomas Prot
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, Netherlands
| | - Terhi Suopajärvi
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Tero Luukkonen
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Henrikki Liimatainen
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland.
| |
Collapse
|
2
|
Guo P, Yan Y, Ngo KN, Peot C, Bollmeyer M, Yi S, Baldwin M, Reid M, Goldfarb JL, Lancaster K, De Clippeleir H, Gu AZ. Improving nutrients ratio in class A biosolids through vivianite recovery: Insights from a wastewater resource recovery facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173560. [PMID: 38823710 DOI: 10.1016/j.scitotenv.2024.173560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Class A biosolids from water resource recovery facilities (WRRFs) are increasingly used as sustainable alternatives to synthetic fertilizers. However, the high phosphorus to nitrogen ratio in biosolids leads to a potential accumulation of phosphorus after repeated land applications. Extracting vivianite, an FeP mineral, prior to the final dewatering step in the biosolids treatment can reduce the P content in the resulting class A biosolids and achieve a P:N ratio closer to the 1:2 of synthetic fertilizers. Using ICP-MS, IC, UV-Vis colorimetric methods, Mössbauer spectroscopy, and SEM-EDX, a full-scale characterization of vivianite at the Blue Plains Advanced Wastewater Treatment Plant (AWTTP) was surveyed throughout the biosolids treatment train. Results showed that the vivianite-bound phosphorus in primary sludge thickening, before pre-dewatering, after thermal hydrolysis, and after anaerobic digestion corresponded to 8 %, 52 %, 40 %, and 49 % of the total phosphorus in the treatment influent. Similarly, the vivianite-bound iron concentration also corresponded to 8 %, 52 %, 40 %, and 49 % of the total iron present (from FeCl3 dosing), because the molar ratio between total iron and total incoming phosphorus was 1.5:1, which is the same stoichiometry of vivianite. Based on current P:N levels in the Class A biosolids at Blue Plains, a vivianite recovery target of 40 % to ideally 70 % is required in locations with high vivianite content to reach a P:N ratio in the resulting class A biosolid that matches synthetic fertilizers of 1:1.3 to 1:2, respectively. A financial analysis on recycling iron from the recovered vivianite had estimated that 14-25 % of Blue Plain's annual FeCl3 demand can potentially be met. Additionally, model simulations with Visual Minteq were used to evaluate the pre-treatment options that maximize vivianite recovery at different solids treatment train locations.
Collapse
Affiliation(s)
- Peibo Guo
- School of Civil and Environmental Engineering, Cornell University, NY, USA; District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Khoa Nam Ngo
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Chris Peot
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Melissa Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| | - Sang Yi
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Mathew Baldwin
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Matthew Reid
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Jillian L Goldfarb
- Smith School of Chemical and Biomolecular Engineering, Cornell University, NY, USA.
| | - Kyle Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| | - Haydée De Clippeleir
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| |
Collapse
|
3
|
Metz R, Kumar N, Schenkeveld WDC, Obst M, Voegelin A, Mangold S, Kraemer SM. Effect of Oxidation on Vivianite Dissolution Rates and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39151023 PMCID: PMC11360369 DOI: 10.1021/acs.est.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024]
Abstract
The interest in the mineral vivianite (Fe3(PO4)2·8H2O) as a more sustainable P resource has grown significantly in recent years owing to its efficient recovery from wastewater and its potential use as a P fertilizer. Vivianite is metastable in oxic environments and readily oxidizes. As dissolution and oxidation occur concurrently, the impact of oxidation on the dissolution rate and mechanism is not fully understood. In this study, we disentangled the oxidation and dissolution of vivianite to develop a quantitative and mechanistic understanding of dissolution rates and mechanisms under oxic conditions. Controlled batch and flow-through experiments with pristine and preoxidized vivianite were conducted to systematically investigate the effect of oxidation on vivianite dissolution at various pH-values and temperatures. Using X-ray absorption spectroscopy and scanning transmission X-ray microscopy techniques, we demonstrated that oxidation of vivianite generated a core-shell structure with a passivating oxidized amorphous Fe(III)-PO4 surface layer and a pristine vivianite core, leading to diffusion-controlled oxidation kinetics. Initial (<1 h) dissolution rates and concomitant P and Fe release (∼48 h) decreased strongly with increasing degree of oxidation (0-≤ 100%). Both increasing temperature (5-75 °C) and pH (5-9) accelerated oxidation, and, consequently, slowed down dissolution kinetics.
Collapse
Affiliation(s)
- Rouven Metz
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Soil
Chemistry, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Walter D. C. Schenkeveld
- Soil
Chemistry, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Martin Obst
- Experimental
Biogeochemistry, BayCEER, University of
Bayreuth, Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| | - Andreas Voegelin
- Swiss
Federal Institute of Aquatic Science and Technology, Department of
Water Resources and Drinking Water, Eawag, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
| | - Stefan Mangold
- Karlsruhe
Institute of Technology, Institute for Photon
Science and Synchrotron Radiation, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stephan M. Kraemer
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
4
|
Fan Y, Wang L, Putnis CV, Zhang W. Direct Nanoscale Imaging Reveals the Mechanism by Which Organic Acids Dissolve Vivianite through Proton and Ligand Effects. Inorg Chem 2024; 63:6909-6921. [PMID: 38564449 DOI: 10.1021/acs.inorgchem.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The coprecipitation of iron (Fe) and phosphorus (P) in natural environments limits their bioavailability. Plant root-secreted organic acids can dissolve Fe-P precipitates, but the molecular mechanism underlying mobilizing biogenic elements from highly insoluble inorganic minerals remains poorly understood. Here, we investigated vivianite (Fe3(PO4)2·8H2O) dissolution by organic acids (oxalic acid (OA), citric acid (CA), and 2'-dehydroxymugineic acid (DMA)) at three different pH values (4.0, 6.0, and 8.0). With increasing pH, the vivianite dissolution efficiency by OA and CA was decreased while that by DMA was increased, indicating various dissolution mechanisms of different organic acids. Under acidic conditions, weak ligand OA (HC2O4- > C2O42- at pH 4.0 and C2O42- at pH 6.0) dissolved vivianite through the H+ effect to form irregular pits, but under alkaline condition (pH 8.0), the completely deprotonated OA was insufficient to dissolve vivianite. At pH 4.0, CA (H2Cit- > HCit2- > H3Cit) dissolved vivianite to form irregular pits through a proton-promoted mechanism, while at pH 6.0 (HCit2- > Cit3-) and pH 8.0 (Cit3-), CA dissolved vivianite to form near-rhombohedral pits through a ligand-promoted mechanism. At three pH values ((H0)DMA3- > (H1)DMA2- at pH 4.0, (H0)DMA3- at pH 6.0, and (H0)DMA3- and one deprotonated imino at pH 8.0), strong ligand DMA dissolved vivianite to form near-rhombohedral pits via ligand-promoted mechanisms. Raman spectroscopy showed that the deprotonated carboxyl groups (COO-) and imino groups were bound to Fe on the vivianite (010) face. The surface free energy of vivianite coated with OA decreased from 29.32 mJ m-2 to 24.23 mJ m-2 and then to 13.47 mJ m-2 with increasing pH, and that coated with CA resulted in a similar pH-dependent vivianite surface free-energy decrease while that coated with DMA increased the vivianite surface free energy from 31.92 mJ m-2 to 39.26 mJ m-2 and then to 49.93 mJ m-2. Density functional theory (DFT)-based calculations confirmed these findings. Our findings provide insight into the mechanism by which organic acids dissolved vivianite through proton and ligand effects.
Collapse
Affiliation(s)
- Yuke Fan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, 48149 Münster, Germany
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Yang Y, Cheng X, Rene ER, Qiu B, Hu Q. Effect of iron sources on methane production and phosphorous transformation in an anaerobic digestion system of waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 395:130315. [PMID: 38215887 DOI: 10.1016/j.biortech.2024.130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The iron materials are commonly employed to enhance resource recovery from waste activated sludge through anaerobic digestion (AD). The influence of different iron sources, such as Fe2O3, Fe3O4, and FeCl3 on methane production and phosphorus transformation in AD systems with thermal hydrolyzed sludge as the substrate was assessed in this study. The results indicated that iron oxides effectively promote methane yield and methane production rate in AD systems, resulting in a maximum increase in methane production by 1.6 times. Soluble FeCl3 facilitated the removal of 92.3% of phosphorus from the supernatant through the formation of recoverable precipitates in the sludge. The introduction of iron led to an increase in the abundance of bacteria responsible for hydrolysis and hydrogenotrophic methanogenesis. However, the enrichment of microbial communities varied depending on the specific irons used. This study provides support for AD systems that recover phosphorus and produce methane efficiently from waste sludge.
Collapse
Affiliation(s)
- Yunfei Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China.
| | - Qian Hu
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Bornø ML, Zervas A, Bak F, Merl T, Koren K, Nicolaisen MH, Jensen LS, Müller-Stöver DS. Differential impacts of sewage sludge and biochar on phosphorus-related processes: An imaging study of the rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166888. [PMID: 37730064 DOI: 10.1016/j.scitotenv.2023.166888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Recycling of phosphorus (P) from waste streams in agriculture is essential to reduce the negative environmental effects of surplus P and the unsustainable mining of geological P resources. Sewage sludge (SS) is an important P source; however, several issues are associated with the handling and application of SS in agriculture. Thus, post-treatments such as pyrolysis of SS into biochar (BC) could address some of these issues. Here we elucidate how patches of SS in soil interact with the living roots of wheat and affect important P-related rhizosphere processes compared to their BC counterparts. Wheat plants were grown in rhizoboxes with sandy loam soil, and 1 cm Ø patches with either SS or BC placed 10 cm below the seed. A negative control (CK) was included. Planar optode pH sensors were used to visualize spatiotemporal pH changes during 40 days of plant growth, diffusive gradients in thin films (DGT) were applied to map labile P, and zymography was used to visualize the spatial distribution of acid (ACP) and alkaline (ALP) phosphatase activity. In addition, bulk soil measurements of available P, pH, and ACP activity were conducted. Finally, the relative abundance of bacterial P-cycling genes (phoD, phoX, phnK) was determined in the patch area rhizosphere. Labile P was only observed in the area of the SS patches, and SS further triggered root proliferation and increased the activity of ACP and ALP in interaction with the roots. In contrast, BC seemed to be inert, had no visible effect on root growth, and even reduced ACP and ALP activity in the patch area. Furthermore, there was a lower relative abundance of phoD and phnK genes in the BC rhizosphere compared to the CK. Hence, optimization of BC properties is needed to increase the short-term efficiency of BC from SS as a P fertilizer.
Collapse
Affiliation(s)
- Marie Louise Bornø
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark.
| | - Athanasios Zervas
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Frederik Bak
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark; Austrian Institute of Technology, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Theresa Merl
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Mette H Nicolaisen
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| | - Lars S Jensen
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| | - Dorette S Müller-Stöver
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| |
Collapse
|