1
|
Szabados M, Csákó Z, Kakucs R, Középesy S, Czégény Z, Ciglova K, Dvorakova D, Szigeti T. Phthalate and DINCH metabolites in the urine of Hungarian schoolchildren: Cumulative risk assessment and exposure determinants. ENVIRONMENTAL RESEARCH 2024; 262:119834. [PMID: 39182753 DOI: 10.1016/j.envres.2024.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
A human biomonitoring study was conducted to assess the exposure of Hungarian children aged 8-11 years to ten phthalate esters (PEs) and DINCH between 2017 and 2018. In addition to collecting urine samples from 262 participants, a questionnaire was completed by the parents or legal guardians to identify potential determinants of exposure. The highest geometric mean concentration was observed for MiBP, followed by MBP, cx- MEHP, OH-MEHP and MEP. Three out of the four DINCH metabolites were detected in more than 90% of the samples. The comparison of the urinary concentrations measured in this study with those observed in the DEMOCOPHES study revealed a significant decreasing trend in all PE metabolites investigated in both studies between 2011/2012 and 2017/2018. Different approaches were used to assess the health risks associated with the exposure to PEs and DINCH. Our results highlighted that the hazard index (HI) values were higher than 1 in 17.6% of the children when the human biomonitoring guidance values were applied. In contrast, less than 3% of the children had HI values exceeding 1 when other sources of reference values were used. By applying a safety factor of 10 for the risk assessment, 17.6-91.6% of the children were characterized by HI values higher than 0.1, indicating the need for risk reduction measures. Overall, DnBP, DiBP and DEHP were identified as the main drivers of the mixture risk. Although PEs and DINCH are ubiquitous contaminants, there are still inconsistencies and gaps in our understanding of the determinants of exposure. The results of the multivariate regression analysis showed significant associations between PE or DINCH metabolite concentrations and certain individual characteristics, use of personal care products, home and school environment and food and beverages consumption 24 h prior to sample collection.
Collapse
Affiliation(s)
- Máté Szabados
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Zsófia Csákó
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Réka Kakucs
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Szilvia Középesy
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Zsuzsanna Czégény
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary
| | - Kateřina Ciglova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Tamás Szigeti
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6., 1097, Budapest, Hungary.
| |
Collapse
|
2
|
Xu J, Bian J, Ge Y, Chen X, Lu B, Liao J, Xie Q, Zhang B, Sui Y, Yuan C, Lu S. Parabens and triclosan in red swamp crayfish (Procambarus clarkii) from China: Concentrations, tissue distribution and related human dietary intake risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173130. [PMID: 38734109 DOI: 10.1016/j.scitotenv.2024.173130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Parabens (PBs) and triclosan (TCS) are commonly found in pharmaceuticals and personal care products (PPCPs). As a result, they have been extensively found in the environment, particularly in aquaculture operations. Red swamp crayfish (Procambarus clarkii) consumption has significantly risen in China. Nevertheless, the levels of PBs and TCS in this species and the associated risk to human dietary intake remain undisclosed. This study assessed the amounts of five PBs, i.e., methyl-paraben (MeP), ethyl-paraben (EtP), propyl-paraben (PrP), butyl-paraben (BuP) and benzyl-paraben (BzP), as well as TCS in crayfish taken from five provinces of the middle-lower Yangtze River. MeP, PrP and TCS showed the highest detection rates (hepatopancreas: 46-86 %; muscle: 63-77 %) since they are commonly used in PPCPs. Significantly higher levels of ∑5PBs (median: 3.69 ng/g) and TCS (median: 7.27 ng/g) were significantly found in the hepatopancreas compared to the muscle (median: 0.39 ng/g for ∑5PBs and 0.16 ng/g for TCS) (p < 0.05), indicating bioaccumulation of these chemicals in the hepatopancreas. The estimated daily intake values of ∑5PBs and TCS calculated from the median concentrations of crayfish were 6.44-7.94 ng/kg bw/day and 11.4-14.0 ng/kg bw/day, respectively. Although no health risk was predicted from consuming crayfish (HQ <1), consumption of the hepatopancreas is not recommended.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Jianfang Liao
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Qingyuan Xie
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Beining Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Yaotong Sui
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Chenghan Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Porras SP, Heinälä M, Veijalainen H, Salo H, Suuronen K, Parshintsev E, Santonen T. Environmental and occupational exposure to bisphenol compounds in Finland. Toxicol Lett 2024; 398:19-27. [PMID: 38852895 DOI: 10.1016/j.toxlet.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The aim of the study was to assess non-occupational and occupational exposure to bisphenol compounds in Finland. The participants were 151 non-occupationally exposed volunteers and 15 potentially exposed employees of a sewage-pipe relining company and a floor-coating company. The following chemicals were measured in the urine samples: bisphenol A (BPA), bisphenol F (BPF), bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), and the metabolites of the latter two [bisphenol A (2,3-dihydroxypropyl) glycidyl ether (BADGE·H2O), bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE·2 H2O), bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE·HCl·H2O), bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether (BADGE·HCl), and bisphenol A bis(3-chloro-2-hydroxypropyl) ether (BADGE·2HCl) and bisphenol F bis(2,3-dihydroxypropyl) ether (BFDGE·2 H2O), and bisphenol F bis(3-chloro-2-hydroxypropyl) ether (BFDGE·2HCl)]. BADGE and BFDGE were also measured in breathing zone air samples and hand-wipe samples of the sewage-pipe relining and floor-coating workers. Non-occupational exposure to BPA has decreased in Finland. The BPF level of the non-occupationally exposed was higher than the respective levels reported in the recent literature. BPA and BPF concentrations in the workers' urine samples were in the same range as those in the corresponding concentrations of the non-occupationally exposed population. Higher concentrations of BADGE and BFDGE metabolites were found in some of the workers' urine samples. Elevated urine concentrations were also observed in the samples collected the next morning. Some of the urinary BADGE and BFDGE metabolite results correlated with the hand-wipe results. The results show that occupational exposure to BADGE and BFDGE may occur in sewage-pipe relining and floor-coating work. They also indicate that dermal contamination plays a role in total exposure. Although the measured urinary levels indicate that the absorption of these bisphenol compounds are unlikely to pose a systemic health risk, the risk of dermal sensitization remains.
Collapse
Affiliation(s)
- Simo P Porras
- Finnish Institute of Occupational Health, PO Box 40, Työterveyslaitos FI-00032, Finland.
| | - Milla Heinälä
- Finnish Institute of Occupational Health, PO Box 40, Työterveyslaitos FI-00032, Finland
| | - Henna Veijalainen
- Finnish Institute of Occupational Health, PO Box 40, Työterveyslaitos FI-00032, Finland
| | - Heidi Salo
- Finnish Institute of Occupational Health, PO Box 40, Työterveyslaitos FI-00032, Finland
| | - Katri Suuronen
- Finnish Institute of Occupational Health, PO Box 40, Työterveyslaitos FI-00032, Finland
| | - Evgeny Parshintsev
- Finnish Institute of Occupational Health, PO Box 40, Työterveyslaitos FI-00032, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, PO Box 40, Työterveyslaitos FI-00032, Finland
| |
Collapse
|
4
|
Yin S, den Ouden F, Cleys P, Klimowska A, Bombeke J, Poma G, Covaci A. Personal environmental exposure to plasticizers and organophosphate flame retardants using silicone wristbands and urine: Patterns, comparisons, and correlations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172187. [PMID: 38582107 DOI: 10.1016/j.scitotenv.2024.172187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Plasticizers (PLs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment due to their widespread use and potential for leaching from consumer products. Environmental exposure is a critical aspect of the human exposome, revealing complex interactions between environmental contaminants and potential health effects. Silicone wristbands (SWBs) have emerged as a novel and non-invasive sampling device for assessing personal external exposure. In this study, SWBs were used as a proxy to estimate personal dermal adsorption (EDdermal) to PLs and OPFRs in Belgian participants for one week; four morning urine samples were also collected and analyzed for estimated daily intake (EDI). The results of the SWBs samples showed that all the participants were exposed to these chemicals, and the exposure was found to be highest for the legacy and alternative plasticizers (LP and AP), followed by the legacy and emerging OPFRs (LOPFR and EOPFR). In urine samples, the highest levels were observed for metabolites of diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP) among LPs and di(2-ethylhexyl) terephthalate (DEHT) for APs. Outliers among the participants indicated that there were other sources of exposure that were not identified. Results showed a significant correlation between EDdermal and EDI for DiBP, tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPhP). These correlations indicated their suitability for predicting exposure via SWB monitoring for total chemical exposure. The results of this pilot study advance our understanding of SWB sampling and its relevance for predicting aggregate environmental chemical exposures, while highlighting the potential of SWBs as low-cost, non-invasive personal samplers for future research. This innovative approach has the potential to advance the assessment of environmental exposures and their impact on public health.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Fatima den Ouden
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Anna Klimowska
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
5
|
Huang S, Qi Z, Liu H, Long C, Fang L, Tan L, Yu Y. A large-scale survey of urinary parabens and triclocarban in the Chinese population as well as the influencing factors and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171799. [PMID: 38513850 DOI: 10.1016/j.scitotenv.2024.171799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Parabens and triclocarban are widely applied as antimicrobial preservatives in foodstuffs, pharmaceuticals, cosmetics, and personal care products. However, few studies have been conducted on large-scale biomonitoring of parabens and triclocarban in the Chinese general population. In the present study, there were 1157 urine samples collected from 26 Chinese provincial capitals for parabens and triclocarban measurement to evaluate the exposure levels, spatial distribution, and influencing factors, as well as associated health risks in the Chinese population. The median concentrations of Σparabens and triclocarban were 14.0 and 0.03 μg/L, respectively. Methyl paraben was the predominant compound. Subjects in western China were more exposed to parabens, possibly due to climate differences resulting in higher consumption of personal care products. Subjects who were female, aged 18-44 years, or had a higher education level were found to have higher paraben concentrations. The frequency of drinking bottled water was positively associated with paraben exposure. The assessment of health risk based on urinary paraben concentrations indicated that 0.8 % of the subjects had a hazard index exceeding one unit, while Monte Carlo analysis suggested that 3.6 % of the Chinese population exposure to parabens had a potential non-carcinogenic risk. This large-scale biomonitoring study will help to understand the exposure levels of parabens and triclocarban in the Chinese general population and provide supporting information for government decision-making.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou 510430, PR China
| | - Lei Fang
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou 510430, PR China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
8
|
Robin J, Albouy M, Jourdain B, Binson G, Sauvaget A, Pierre-Eugène P, Wu L, Migeot V, Dupuis A, Venisse N. Assessment of Endocrine Disruptor Exposure in Hospital Professionals Using Hair and Urine Analyses: An Awareness Campaign. Ther Drug Monit 2024; 46:102-110. [PMID: 37559216 DOI: 10.1097/ftd.0000000000001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND In 2021, French public authorities initiated the fourth National Environmental Health Plan to prevent environment-related health risks. This plan primarily focuses on the sensitization of health professionals and health care institutions. Endocrine disruptors (EDs) are environmental factors associated with several adverse health effects, such as reproductive disorders, obesity, and cancer. This study aimed to conduct an awareness campaign among professionals at a general hospital center on the risks related to EDs. METHODS Hospital professionals were directly involved in this study, and urine and hair samples were collected to determine bisphenol and paraben exposure levels. Analyses were performed using validated liquid chromatography-tandem mass spectrometry methods, enabling the simultaneous determination of bisphenols and parabens. A questionnaire on lifestyle habits was distributed to assess its relationship with the exposure profiles. Nineteen professionals were recruited for the study. RESULTS Bisphenol A was detected in 95% of the urine samples, and the chlorinated derivatives of bisphenol A were between 16% and 63%. parabens showed detection frequencies between 37% and 100%, and methylparaben was quantified at an average concentration of 0.45 ± 0.46 ng/mL. In hair samples, bisphenols A, F, and S were detected at 95%-100%, chlorinated derivatives of bisphenol A were detected at 37%-68%, and parabens were detected at 100%. CONCLUSIONS This awareness campaign may encourage health care institutions to adopt a policy of reducing endocrine disruptor exposure among their patients and professionals, who could be educated regarding the risks associated with EDs. Conducting a multicenter study to refine the results herein and establish a dynamic to prevent endocrine disruptor and environmental risks in health care systems would be valuable.
Collapse
Affiliation(s)
- Julien Robin
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
| | - Marion Albouy
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | | | - Guillaume Binson
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | - Alexis Sauvaget
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
| | - Pascale Pierre-Eugène
- INSERM, Clinical Investigation Center 1402
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | - Luyao Wu
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
| | - Virginie Migeot
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | - Antoine Dupuis
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
- School of Medicine and Pharmacy, University of Poitiers, Poitiers; and
| | - Nicolas Venisse
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers
- INSERM, Clinical Investigation Center 1402
- CNRS UMR 7267, Écologie et Biologie des Interactions, University of Poitiers
| |
Collapse
|
9
|
Li X, Wang X, Liu Y, Zhu H, Wang L. First evidence of occupational and residential exposure to bisphenols associated with an e-waste dismantling site: A case study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115206. [PMID: 37418938 DOI: 10.1016/j.ecoenv.2023.115206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Bisphenol A and its structural analogues (BPs) are widely used chemicals in electronics devices. To get insight into the occupational exposure to the full-time employees compared with the residents, urinary BPs in workers dismantling e-waste and in nearby residents were compared. Only 4 BPs among the tested 8 congeners, bisphenol AF (BPAF), bisphenol A, bisphenol S (BPS), and bisphenol F (BPF), were extensively detected with the detection frequencies of 100%, 99%, 98.7%, 51.3%. The median concentration of bisphenol A was 8.48 ng/mL, followed by BPAF (1.05 ng/mL), BPS (0.115 ng/mL), and BPF (0.110 ng/mL). The 4 detected BPs had a median concentration (Σ4BPs) ranging from 0.950 to 64.5 ng/mL in all volunteers, with a median value of 10.2 ng/mL. Result indicated the median concentration of ∑4BPs in worker's urine was significantly higher (14.2 ng/mL) than those in residents in nearby towns (4.52 ng/mL and 5.37 ng/mL) (p < 0.05), suggesting a BPs' occupational exposure risk related to e-waste dismantling. Besides, urinary ∑4BPs' median concentrations for the employees in family workshops (14.5 ng/mL) were significantly higher than those in plants with centralized management (9.36 ng/mL). Among volunteers, higher ∑4BPs were observed in groups of aged above 50 years, males, or body weight under average with no significant correlations. The estimated daily intake of bisphenol A did not exceed the reference dose (50 μg/kg bw/day) recommended by the U.S. Food and Drug Administration. In this research, excess levels of BPs were recorded for the full-time employees in e-waste dismantling sites. Strengthened standards could support public health initiatives for full-time worker protection and reduce take-home BPs to family members.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xintai Wang
- Information Science and Technology College, Dalian Maritime University, Dalian, China.
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Li JZ, Zhou SM, Yuan WB, Chen HQ, Zeng Y, Fan J, Zhang Z, Wang N, Cao J, Liu WB. RNA binding protein YTHDF1 mediates bisphenol S-induced Leydig cell damage by regulating the mitochondrial pathway of BCL2 and the expression of CDK2-CyclinE1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121144. [PMID: 36702435 DOI: 10.1016/j.envpol.2023.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol S (BPS) causes reproductive adverse effects on humans and animals. However, the detailed mechanism is still unclear. This research aimed to clarify the role of RNA binding protein YTHDF1 in Leydig cell damage induced by BPS. The mouse TM3 Leydig cells were exposed to BPS of 0, 20, 40, and 80 μmol/L for 72 h. Results showed that TM3 Leydig cells apoptosis rate markedly increased in BPS exposure group. Meanwhile, the apoptosis-related molecule BCL2 protein level decreased significantly, and Caspase9, Caspase3, and BAX increased significantly. Moreover, the cell cycle was blocked in the G1/S phase, CDK2 and CyclinE1 were considerably down-regulated in BPS exposure groups, and the protein level of RNA binding protein YTHDF1 decreased sharply. Furthermore, after overexpression of YTHDF1, the cell viability significantly increased, and the apoptosis rate significantly decreased in TM3 Leydig cells. In the meantime, BCL2, CDK2, and CyclinE1 were significantly up-regulated, and BAX, Caspase9, and Caspase3 were significantly down-regulated. Conversely, interference with YTHDF1 decreased cell proliferation and promoted apoptosis. Importantly, overexpression of YTHDF1 alleviated the cell viability decrease induced by BPS, and interference with YTHDF1 exacerbated the situation. RIP assays showed that the binding of YTHDF1 to CDK2, CyclinE1, and BCL2 significantly increased after overexpressing YTHDF1. Collectively, our study suggested that YTHDF1 plays an essential role in BPS-induced TM3 Leydig cell damage by regulating CDK2-CyclinE1 and BCL2 mitochondrial pathway at the translational level.
Collapse
Affiliation(s)
- Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Fan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhe Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|