1
|
Khoj MA. Fabrication of silica/calcium alginate nanocomposite based on rice husk ash for efficient adsorption of phenol from water. RSC Adv 2024; 14:24322-24334. [PMID: 39104561 PMCID: PMC11298972 DOI: 10.1039/d4ra04070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
The current work discusses the synthesis of three different solid adsorbents: silica nanoparticles derived from rice husk (RS), calcium alginate beads (AG), and silica/alginate nanocomposite (RSG). The fabricated solid adsorbents were characterized by using different physicochemical techniques such as TGA, XRD, nitrogen adsorption/desorption analysis, ATR-FTIR, pHPZC, SEM, and TEM. The adsorption efficiencies of the prepared solid adsorbents were considered for the removal of phenol as a selected hazardous pollutant. Because of its improved adsorption capacity and environmentally friendly character, a composite made of biosilica nanoparticles and naturally occurring alginate biopolymer by click chemistry is significant in environmental treatment. Adding silica nanoparticles to the alginate biopolymer hydrogel has many advantages, including increased surface area, easier recovery of the solid adsorbent, and additional surface chemical functional groups. The silica/alginate nanocomposite showed surface heterogeneity with many chemical functional groups present, whereas silica nanoparticles had the highest surface area (893.1 m2 g-1). It has been found that the average TEM particle size of RS, AG, and RSG was between 18 and 82 nm. RSG displayed the maximum adsorption capacity of phenol (100.55 mg g-1) at pH 7 and 120 min as equilibrium adsorption time. Adsorption of phenol onto the solid adsorbents fit well with a nonlinear Langmuir isotherm with favorable adsorption. Kinetic and thermodynamic studies prove that the adsorption process follows a pseudo-second-order kinetic model, endothermic process, physical, and spontaneous adsorption. Sodium hydroxide is effective in desorbing 94% of the loaded phenols, according to desorption investigations. Solid reusability tests showed that, after seven cycles of phenol adsorption/desorption, RSG lost only 8.8% of its adsorption activity.
Collapse
Affiliation(s)
- Manal A Khoj
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah Saudi Arabia +966563266152
| |
Collapse
|
2
|
Shi Z, Huang X, Zhao Y, Li J, Tian YQ, Zhang PP, Zhu M, Zhao M. Construction of a novel ursolic acid-based supramolecular gel for efficient removal of iodine from solution. ENVIRONMENTAL RESEARCH 2023; 235:116617. [PMID: 37437868 DOI: 10.1016/j.envres.2023.116617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Pentacyclic triterpenes is a natural amphipathic product which possess a rigid backbone and several polar functional groups such as hydroxyl, carbonyl and carboxyl groups. The amphipathic character makes it easy to realize self-assemble into complex nano structure and therefore attract extensive attention due to the simple synthetic processes and renewable raw materials. Hence, a novel Ursolic acid-based hydrogel was prepared successfully via a simple self-assembly of triterpenoid derivative in methanol by capture water molecule in air. The resulting hydrogel show a porous morphology and good elasticity including strong heat resistance. Based on the characteristic above, the hydrogel showed a good iodine adsorption capacity and can removal 75.0% of the iodine from cyclohexane solution and 66.3% from aqueous solution within 36 h. Data analysis indicate that all the iodine adsorption process are dominated by chemisorption and belongs to the multi-site adsorption on heterogenous surfaces. In addition, the obtained hydrogel also possesses a good recyclability which can maintain more than 82% of its capacity after 5 cycles. The simple preparation method and easily available raw materials endow it a great potential in future pollutant treatment.
Collapse
Affiliation(s)
- Zhichun Shi
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China.
| | - Xiuqi Huang
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Yingnan Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Yan Qing Tian
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Piao Piao Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| |
Collapse
|
3
|
Yang Y, Feng G, Wang J, Zhang R, Zhong S, Wang J, Cui X. Injectable chitosan-based self-healing supramolecular hydrogels with temperature and pH dual-responsivenesses. Int J Biol Macromol 2023; 227:1038-1047. [PMID: 36460241 DOI: 10.1016/j.ijbiomac.2022.11.279] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
In this study, a supramolecular hydrogel was fabricated with orotic acid (OA) modified chitosan (OACS) and 2,6-diaminopurine (DAP). The obtained OACS-DAP supramolecular hydrogels have dual responsiveness to temperature and pH. Phase transition experiments indicate this is a temperature-dependent thermoreversible supramolecular hydrogel. Rheological experiments proved the formation of the supramolecular hydrogel and its thixotropic properties. FTIR spectra confirmed that hydrogen bonds and π-π interactions are the main driving forces for OACS and DAP to form hydrogels through intermolecular self-assembly. XRD pattern confirmed the amorphous morphology of OACS-DAP hydrogels. The hydrogel has excellent electrical conductivity with a conductivity of 9.48 μ S·cm-1. And can achieve the precise release of gastrointestinal drugs. OACS-DAP hydrogel is expected to have better applications in the field of gastrointestinal drug release.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Gangying Feng
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Jia Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
4
|
Chakraborty A, Pal A, Saha BB. A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8818. [PMID: 36556624 PMCID: PMC9788631 DOI: 10.3390/ma15248818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Radionuclide-contaminated water is carcinogenic and poses numerous severe health risks and environmental dangers. The activated carbon (AC)-based adsorption technique has great potential for treating radionuclide-contaminated water due to its simple design, high efficiency, wide pH range, quickness, low cost and environmental friendliness. This critical review first provides a brief overview of the concerned radionuclides with their associated health hazards as well as different removal techniques and their efficacy of removing them. Following this overview, this study summarizes the surface characteristics and adsorption capabilities of AC derived from different biomass precursors. It compares the adsorption performance of AC to other adsorbents, such as zeolite, graphene, carbon nano-tubes and metal-organic frameworks. Furthermore, this study highlights the different factors that influence the physical characteristics of AC and adsorption capacity, including contact time, solution pH, initial concentration of radionuclides, the initial dosage of the adsorbent, and adsorption temperature. The theoretical models of adsorption isotherm and kinetics, along with their fitting parameter values for AC/radionuclide pairs, are also reviewed. Finally, the modification procedures of pristine AC, factors determining AC characteristics and the impact of modifying agents on the adsorption ability of AC are elucidated in this study; therefore, further research and development can be promoted for designing a highly efficient and practical adsorption-based radionuclide removal system.
Collapse
Affiliation(s)
- Anik Chakraborty
- Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Animesh Pal
- Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Bidyut Baran Saha
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Zhou X, Yan Z, Zhou X, Wang C, Liu H, Zhou H. RETRACTED: An assessment of volatile organic compounds pollutant emissions from wood materials: A review. CHEMOSPHERE 2022; 308:136460. [PMID: 36116618 DOI: 10.1016/j.chemosphere.2022.136460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xihe Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhisong Yan
- Zhejiang Shiyou Timber Co., Ltd., 1111 Shiyuan West Road, Huzhou, Zhejiang, 313009, China
| | - Xiang Zhou
- Sinomaple Furnishing (Jiangsu) Co., Ltd., 99 Fen'an Dong Lu, Wujiang District, Suzhou, Jiangsu, 215200, China
| | - Chengming Wang
- Holtrop & Jansma (Qingdao) Environmental Protection Equipment Co., Ltd., 8 Tongshun Road, High-tech District, Qingdao, Shandong, 266114, China
| | - Hailiang Liu
- Jiangsu Shenmao Plastic Products Co., Ltd., Wood Industrial District, Siyang, Jiangsu, 223798, China
| | - Handong Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|