1
|
Lin PID, Cardenas A, Rokoff LB, Rifas-Shiman SL, Zhang M, Botelho J, Calafat AM, Gold DR, Zota AR, James-Todd T, Hauser R, Webster TF, Oken E, Fleisch AF. Associations of PFAS concentrations during pregnancy and midlife with bone health in midlife: Cross-sectional and prospective findings from Project Viva. ENVIRONMENT INTERNATIONAL 2024; 194:109177. [PMID: 39667063 DOI: 10.1016/j.envint.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND PFAS may impair bone health, but effects of PFAS exposure assessed during pregnancy and the perimenopause-life stages marked by rapidly changing bone metabolism-on later life bone health are unknown. METHODS We studied 531 women in the Boston-area Project Viva cohort. We used multivariable linear, generalized additive, and mixture models to examine associations of plasma PFAS concentrations during early pregnancy [median (IQR) maternal age 32.9 (6.2) years] and midlife [age 51.2 (6.3)] with lumbar spine, total hip, and femoral neck areal bone mineral density (aBMD) and bone turnover biomarkersassessed in midlife. We examined effect modification by diet and physical activity measured at the time of PFAS exposure assessment and by menopausal status in midlife. RESULTS Participants had higher PFAS concentrations during pregnancy [1999-2000; e.g., PFOA median (IQR) 5.4 (3.8) ng/mL] than in midlife [2017-2021; e.g. , PFOA 1.5 (1.2) ng/mL]. Women with higher PFOA, PFOS and PFNA during pregnancy had higher midlife aBMD, especially of the spine [e.g., 0.28 (95% CI: 0.07, 0.48) higher spine aBMD T-score, per doubling of PFOA], with stronger associations observed among those with higher diet quality. In contrast, higher concentrations of all PFAS measured in midlife were associated with lower concurrent aBMD at all sites [e.g., -0.21 (-0.35, -0.07) lower spine aBMD T-score, per doubling of PFOA]; associations were stronger among those who were postmenopausal. The associations of several PFAS with bone resorption (loss) were also stronger among postmenopausal versus premenopausal women. DISCUSSION Plasma PFAS measured during pregnancy versus in midlife had different associations with midlife aBMD. We found an adverse association of PFAS measured in midlife with midlife aBMD, particularly among postmenopausal women. Future studies with longer follow-up are needed to elucidate the effect of PFAS on bone health during the peri- and postmenopausal years.
Collapse
Affiliation(s)
- Pi-I Debby Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lisa B Rokoff
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Westbrook, ME, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Mingyu Zhang
- Division of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julianne Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ami R Zota
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Abby F Fleisch
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Westbrook, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA.
| |
Collapse
|
2
|
Rokoff LB, Rifas-Shiman SL, Aris IM, Lin PID, Rosen CJ, Calafat AM, Gordon CM, Oken E, Fleisch AF. Mid-Childhood Plasma Concentrations of Per- and Polyfluoroalkyl Substances, Modifiable Lifestyle Factors, and Bone Mineral Density Through Late Adolescence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19970-19980. [PMID: 39485370 PMCID: PMC11562948 DOI: 10.1021/acs.est.4c08480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
There is limited research on associations of per- and polyfluoroalkyl substances (PFAS) with areal bone mineral density (aBMD) through adolescence and whether bone-strengthening factors ameliorate effects. In the Project Viva cohort (N = 484; 50% female), we used sex-stratified linear regression and quantile g-computation mixture models to examine associations of mid-childhood (median: 7.8 years; 2007-2010) plasma PFAS concentrations with a dual-energy X-ray absorptiometry total-body aBMD Z-score in early and late adolescence (median: 12.9 and 17.6 years, respectively). We explored stratum-specific estimates by parent/self-reported physical activity and dairy intake. Using linear mixed models, we evaluated associations with aBMD accrual from mid-childhood through late adolescence. Females with higher perfluorooctanoate (PFOA) and perfluorodecanoate (PFDA) had lower early adolescent aBMD Z-score [e.g., β(95%CI)] per doubling PFOA: -0.19(-0.41, 0.03)]. Youth with higher PFOA and PFDA had lower late adolescent aBMD Z-score, but CIs were wide [e.g., PFOA: females, -0.12(-0.40, 0.16); males, -0.10(-0.42, 0.21)]. Mixture models generally corroborated single PFAS results, and in linear mixed models, females with higher PFAS concentrations, and males with higher PFOA, had slower aBMD accrual. Less active males with higher PFOA, PFDA, and the PFAS mixture had lower late adolescent aBMD Z-score. Some PFAS appeared more negatively associated with the aBMD Z-score among those who consumed less dairy, but there was not consistent evidence of effect modification. Exposure to select PFAS may affect bone accrual through adolescence, with possible resilience conferred by greater physical activity and dairy intake.
Collapse
Affiliation(s)
- Lisa B. Rokoff
- Center for
Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Westbrook, Maine 04092, United States
| | - Sheryl L. Rifas-Shiman
- Department
of Population Medicine, Harvard Medical
School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts 02215, United States
| | - Izzuddin M. Aris
- Department
of Population Medicine, Harvard Medical
School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts 02215, United States
| | - Pi-I D. Lin
- Department
of Population Medicine, Harvard Medical
School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts 02215, United States
| | - Clifford J. Rosen
- Center
for
Clinical and Translational Science, MaineHealth
Institute for Research, Scarborough, Maine 04074, United States
| | - Antonia M. Calafat
- National
Center for Environmental Health, Centers
for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Catherine M. Gordon
- Eunice
Kennedy
Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Emily Oken
- Department
of Population Medicine, Harvard Medical
School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts 02215, United States
| | - Abby F. Fleisch
- Center for
Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Westbrook, Maine 04092, United States
- Pediatric
Endocrinology and Diabetes, Maine Medical Center, Portland, Maine 04102, United States
| |
Collapse
|
3
|
Vasil TM, Fleury ES, Walker ED, Kuiper JR, Buckley JP, Cecil KM, Chen A, Kalkwarf HJ, Lanphear BP, Yolton K, Braun JM. Associations of pre- and postnatal per- and polyfluoroalkyl substance exposure with adolescents' eating behaviors. Environ Epidemiol 2024; 8:e343. [PMID: 39555184 PMCID: PMC11567689 DOI: 10.1097/ee9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 11/19/2024] Open
Abstract
Background Per- and polyfluoroalkyl substances (PFAS), persistent environmental chemicals, may act as obesogens by interacting with neuroendocrine pathways regulating energy homeostasis and satiety signals influencing adolescent eating behaviors. Methods In 211 HOME Study adolescents (Cincinnati, OH; recruited 2003-2006), we measured PFAS concentrations in serum collected during pregnancy, at delivery, and at ages 3, 8, and 12 years. Caregivers completed the Child Eating Behavior Questionnaire (CEBQ) at age 12, and we calculated food approach and food avoidance scores. Using quantile-based g-computation, we estimated covariate-adjusted associations between a mixture of four gestational PFAS and CEBQ scores. We identified high (n = 76, 36%) and low (n = 135, 64%) longitudinal PFAS mixture exposure profiles between delivery and age 12 years using latent profile analysis and related these to CEBQ scores. We examined whether child sex or physical activity modified these associations. Results We observed no association of gestational PFAS mixture with food approach or food avoidance scores. Children in the higher longitudinal PFAS mixture profile had slightly higher food approach scores (β: 0.47, 95% CI: -0.27, 1.23) and similar food avoidance scores (β: -0.15, 95% CI: -0.75, 0.46) compared with children in the lower profile. We found some evidence that higher physical activity favorably modified the association between longitudinal PFAS mixture profiles and emotional overeating (interaction P value = 0.13). Child sex did not consistently modify any associations. Conclusions Serum PFAS concentrations were not consistently linked to adolescent eating behaviors in this study, suggesting alternative pathways, such as metabolic rate, may underlie previously observed associations between PFAS exposure and childhood obesity.
Collapse
Affiliation(s)
| | - Elvira S. Fleury
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Erica D. Walker
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Jordan R. Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, District of Columbia
| | - Jessie P. Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| |
Collapse
|
4
|
Zong S, Wang L, Wang S, Wang Y, Jiang Y, Sun L, Zong Y, Li X. Exposure to per- and polyfluoroalkyl substances is associated with impaired cardiovascular health: a cross-sectional study. Front Public Health 2024; 12:1418134. [PMID: 39267634 PMCID: PMC11390656 DOI: 10.3389/fpubh.2024.1418134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Background Per- and polyfluoroalkyl substance (PFAS) exposure and cardiovascular disease are controversial. We aimed to assess the association between serum PFAS exposure and cardiovascular health (CVH) in U.S. adults. Methods We analyzed serum PFAS concentration data of U.S. adults reported in the National Health and Nutrition Examination Survey (NHANES) study (2005-2018). We employed two weighted logistic regression models and a restricted cubic spline (RCS) to examine the association between each PFAS and impaired CVH (defined as moderate and low CVH). Quantile g-computation (Qgcomp) and weighted quantile sum (WQS) analysis were used to estimate the effects of mixed exposures to PFASs on impaired CVH. Results PFAS were associated with an increased risk of impaired CVH (ORPFNA: 1.40, 95% CI: 1.09, 1.80; ORPFOA: 1.44, 95% CI: 1.10, 1.88; ORPFOS: 1.62, 95% CI: 1.25, 2.11). PFOA and PFOS exhibited nonlinear relationships with impaired CVH. Significant interactions were observed for impaired CVH between race/ethnicity and PFHxS (p = 0.02), marital status and PFOA (p = 0.03), and both marital status and race/ethnicity with PFOS (p = 0.01 and p = 0.02, respectively). Analysis via WQS and Qgcomp revealed that the mixture of PFAS was positively associated with an increased risk of impaired CVH. Conclusion PFNA, PFOA, and PFOS exposure are associated with an increased risk of impaired CVH in U.S. adults. Race/ethnicity and marital status may influence CVH. Reducing PFAS exposure could alleviate the burden of disease associated with impaired CVH.
Collapse
Affiliation(s)
- Shuli Zong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sutong Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Yuehua Jiang
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Liping Sun
- Department of Endocrine Tumor Intervention, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Zong
- Department of Business Administration, Shandong Yingcai University, Jinan, China
| | - Xiao Li
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
5
|
Chung SM, Kim KH, Moon JS, Won KC. Association between mixed exposure to per- and polyfluoroalkyl substances and metabolic syndrome in Korean adults: Data from the Korean National environmental health survey cycle 4. Int J Hyg Environ Health 2024; 261:114427. [PMID: 39032326 DOI: 10.1016/j.ijheh.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIM To explore the effect of mixed exposure to per- and polyfluoroalkyl substances (PFAS) on metabolic syndrome (MetS). METHODS This cross-sectional study used data from the Korean National Environmental Health Survey Cycle 4 (2018-2020). The serum concentrations of five PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorohexanesulfonic acid, perfluorononanoic acid [PFNA], and perfluorodecanoic acid [PFDeA]) were measured, and the relative potency factor approach was employed for the mixture of PFAS (Cmix) assessment. MetS was diagnosed if the patient satisfied three of five criteria: central obesity, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure (BP), and elevated glycated hemoglobin (HbA1c). Age, sex, smoking, drinking, and exercise status were considered as covariates. The risk of MetS for single and mixed exposure to PFAS was analyzed using binomial regression and Bayesian kernel machine regression (BKMR). RESULTS A total of 2984 (male:female = 1:1.3; age range, 19-80 years) adults were enrolled. The prevalence of MetS was 45.6%. Each PFAS and Cmix levels were higher in participants with MetS than in those without MetS. Cmix increased the risk of elevated BP and HbA1c, and eventually MetS (odds ratio [OR] = 2.00, 95% confidence interval [CI] 1.11-3.60 per log10Cmix; OR = 1.57, 95% CI 1.07-2.31 in the highest quartile of Cmix [Q4] vs. the lowest [Q1]). Sex-specific analyses revealed that the impact of Cmix was valid in females but not in males (Cmix Q4 vs. Q1: OR = 1.01, 95% CI 0.57-1.8 in males; OR = 2.30, 95% CI 1.38-3.84 in females). In the BKMR analysis, mixed exposure to PFAS dose-dependently increased the risk of MetS, particularly in females. Among single exposures, PFNA contributed significantly to the cumulative effect. CONCLUSION Mixed exposure to PFAS was associated with a higher risk of MetS in females. Further studies on potential health concerns associated with PFAS mixtures are warranted.
Collapse
Affiliation(s)
- Seung Min Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| | - Kyun Hoo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jun Sung Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyu Chang Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| |
Collapse
|
6
|
Al-Ozairi A, Irshad M, Alsaraf H, AlKandari J, Al-Ozairi E, Gray SR. Association of Physical Activity and Sleep Metrics with Depression in People with Type 1 Diabetes. Psychol Res Behav Manag 2024; 17:2717-2725. [PMID: 39051018 PMCID: PMC11268746 DOI: 10.2147/prbm.s459097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/11/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This study aimed to investigate the association of physical activity and sleep metrics, measured via wrist-worn accelerometers, with depression in people with type 1 diabetes. Patients and Methods People with type 1 diabetes were recruited from the Dasman Diabetes Institute in Kuwait and were invited to wear a wrist-worn accelerometer device for 7 days. Mean physical activity (overall acceleration), inactivity, light activity, moderate activity, vigorous activity, the distribution of physical activity intensity (intensity gradient), sleep duration and sleep efficiency were quantified from the accelerometer data. The associations of these metrics with depression were investigated using multiple linear regression. Results A total of 551 people with type 1 diabetes (age 33.1 (9.5) years) were included. Overall physical activity (B = -0.09, CI = -0.14 to -0.04), moderate intensity activity (B = -0.02, CI = -0.02 to -0.01), vigorous intensity activity (B = -0.16, CI = -0.27 to -0.05), and the intensity gradient (B = -2.11, CI = -3.51 to -0.72) were negatively associated with depression score (p < 0.01) and these associations remain significant even after adjustment for age, sex, diabetes duration, and BMI. However, sleep duration and efficiency were not associated with depression. After mutual adjustment overall physical activity (B = -0.07, CI = -0.12 to -0.01), but not the intensity gradient (B = -0.90, CI = -2.47 to 0.68), remained associated with depression. Conclusion Overall, moderate and vigorous physical activity, and the intensity gradient were associated with lower symptoms of depression. Overall physical activity, rather than the distribution of activity intensity, appears more important in depression. This information can help guide physical activity interventions to improve depression in people with type 1 diabetes.
Collapse
Affiliation(s)
- Abdullah Al-Ozairi
- Department of Psychiatry, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Amiri Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Mohammad Irshad
- DAFNE/Clinical Care Research & Trials Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Husain Alsaraf
- Amiri Hospital, Ministry of Health, Kuwait City, Kuwait
- DAFNE/Clinical Care Research & Trials Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jumana AlKandari
- Amiri Hospital, Ministry of Health, Kuwait City, Kuwait
- DAFNE/Clinical Care Research & Trials Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- DAFNE/Clinical Care Research & Trials Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Stuart R Gray
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Buckley JP, Zhou J, Marquess KM, Lanphear BP, Cecil KM, Chen A, Sears CG, Xu Y, Yolton K, Kalkwarf HJ, Braun JM, Kuiper JR. Per- and polyfluoroalkyl substances and bone mineral content in early adolescence: Modification by diet and physical activity. ENVIRONMENTAL RESEARCH 2024; 252:118872. [PMID: 38580001 PMCID: PMC11156547 DOI: 10.1016/j.envres.2024.118872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substance (PFAS) exposures may negatively impact bone mineral accrual, but little is known about potential mitigators of this relation. We assessed whether associations of PFAS and their mixture with bone mineral content (BMC) in adolescence were modified by diet and physical activity. METHODS We included 197 adolescents enrolled in a prospective pregnancy and birth cohort in Cincinnati, Ohio (2003-2006). At age 12 years, we collected serum for PFAS measurements and used dual-energy x-ray absorptiometry to measure BMC. We calculated dietary calcium intake and Health Eating Index (HEI) scores from repeated 24-h dietary recalls, physical activity scores using the Physical Activity Questionnaire for Older Children (PAQ-C), and average moderate to vigorous physical activity (MVPA) based on accelerometry. We estimated covariate-adjusted differences in BMC z-scores per interquartile range (IQR) increase of individual PFAS concentrations using linear regression and per simultaneous IQR increase in all four PFAS using g-computation. We evaluated effect measure modification (EMM) using interaction terms between each modifier and PFAS. RESULTS Higher serum perfluorooctanoic acid, perfluorooctanesulfonic acid, and perfluorononanoic acid concentrations and the PFAS mixture were associated with lower BMC z-scores. An IQR increase in all PFAS was associated with a 0.27 (-0.54, 0.01) lower distal radius BMC z-score. Associations with lower BMC were generally stronger among adolescents classified as < median for calcium intake, HEI scores, or MVPA compared to those ≥ median. The difference in distal radius BMC z-score per IQR increase in all PFAS was -0.38 (-0.72, -0.04) for those with CONCLUSION Healthy, calcium-rich diets and higher intensity physical activity may mitigate the adverse impact of PFAS on adolescent bone health.
Collapse
Affiliation(s)
- Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Junyi Zhou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Katherine M Marquess
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Clara G Sears
- Christina Lee Brown Envirome Institute, Department of Medicine, Division of Environmental Medicine, University of Louisville, KY, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, USA
| | - Jordan R Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, D.C., USA
| |
Collapse
|
8
|
Qian T, Zhang J, Liu J, Wu J, Ruan Z, Shi W, Fan Y, Ye D, Fang X. Associations of phthalates with accelerated aging and the mitigating role of physical activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116438. [PMID: 38744065 DOI: 10.1016/j.ecoenv.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Phthalates are positioned as potential risk factors for health-related diseases. However, the effects of exposure to phthalates on accelerated aging and the potential modifications of physical activity remain unclear. A total of 2317 participants containing complete study-related information from the National Health and Nutrition Examination Survey 2007-2010 were included in the current study. We used two indicators, the Klemera-Doubal method biological age acceleration (BioAgeAccel) and phenotypic age acceleration (PhenoAgeAccel), to assess the accelerated aging status of the subjects. Multiple linear regression (single pollutant models), weighted quantile sum (WQS) regression, Quantile g-computation, and Bayesian kernel machine regression (BKMR) models were utilized to explore the associations between urinary phthalate metabolites and accelerated aging. Three groups of physical activity with different intensities were used to evaluate the modifying effects on the above associations. Results indicated that most phthalate metabolites were significantly associated with BioAgeAccel and PhenoAgeAccel, with effect values (β) ranging from 0.16 to 0.21 and 0.16-0.37, respectively. The WQS indices were positively associated with BioAgeAccel (0.33, 95% CI: 0.11, 0.54) and PhenoAgeAccel (0.50, 95% CI: 0.19, 0.82). Quantile g-computation indicated that phthalate mixtures were associated with accelerated aging, with effect values of 0.15 (95% CI: 0.02, 0.28) for BioAgeAccel and 0.39 (95% CI: 0.12, 0.67) for PhenoAgeAccel respectively. The BKMR models indicated a significant positive association between the concentrations of urinary phthalate mixtures with the two indicators. In addition, we found that most phthalate metabolites showed the strongest effects on accelerated aging in the no physical activity group and that the effects decreased gradually with increasing levels of physical activity (P < 0.05 for trend). Similar results were also observed in the mixed exposure models (WQS and Quantile g-computation). This study indicates that phthalates exposure is associated with accelerated aging, while physical activity may be a crucial barrier against phthalates exposure-related aging.
Collapse
Affiliation(s)
- Tingting Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jie Zhang
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Joint Research Center of Occupational Medicine and Health, Institute of Grand Health, Hefei Comprehensive National Science Center, Anhui University of Science and Technology, Hefei, Anhui 231131, China
| | - Jintao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jingwei Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Zhaohui Ruan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Wenru Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; School of Public Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Joint Research Center of Occupational Medicine and Health, Institute of Grand Health, Hefei Comprehensive National Science Center, Anhui University of Science and Technology, Hefei, Anhui 231131, China.
| | - Xinyu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
9
|
Du B, Wang Q, Xu Z, Wang H, Li Z, Wu Y, Niu Y, Zhang Q, Zhang X, Sun K, Wang J. Exploring the impact of prenatal perfluoroalkyl and polyfluoroalkyl substances exposure on blood pressure in early childhood: A longitudinal analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116220. [PMID: 38513531 DOI: 10.1016/j.ecoenv.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Previous research investigating the correlation between prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and subsequent blood pressure (BP) in offspring has yielded limited and contradictory findings. This study was conducted to investigate the potential relationship between maternal PFAS levels during pregnancy and subsequent BP in early childhood. A total of 129 expectant mothers from the Shanghai Birth Cohort were included in the study. Using high-performance liquid chromatography/tandem mass spectrometry, we measured ten PFAS compounds in maternal plasma throughout the pregnancy. When the children reached the age of 4, we examined their systolic BP (SBP) and diastolic BP (DBP), along with mean arterial pressure (MAP) and pulse pressure (PP). Data interpretation employed multiple linear and logistic regression models, complemented by Bayesian kernel machine regression (BKMR).We found that the majority of PFAS concentrations remained stable during pregnancy. The linear and BKMR models indicated a positive relationship between the PFAS mixture in maternal plasma and offspring's DBP and MAP, with perfluorohexanesulphonic acid (PFHxS) having the most significant influence (PFHxS and DBP [first trimester:β=3.03, 95%CI: (1.01,5.05); second trimester: β=2.35, 95%CI: (0.94,3.75); third trimester: β=2.57, 95%CI:(0.80,4.34)]; MAP [first trimester:β=2.55, 95%CI: (0.64,4.45); second trimester: β=2.28, 95%CI: (0.95,3.61); third trimester: β=2.35, 95%CI:(0.68,4.01)]). Logistic regression highlighted an increased risk of prehypertension and hypertension in offspring with higher maternal PFHxS concentrations during all three trimesters [first trimester: OR=2.53, 95%CI:(1.11,5.79), second trimester: OR=2.05, 95%CI:(1.11,3.78), third trimester: OR=3.08, 95%CI:(1.40,6.79)]. A positive correlation was identified between the half-lives of PFAS and the odds ratio (OR) of prehypertension and hypertension in childhood (β=0.139, P=0.010). In conclusion, this research found maternal plasma PFAS concentrations to be positively associated with BP in offspring, with PFHxS showing the most significant influence. This correlation remained consistent throughout pregnancy, and this effect was proportional to the half-lives of PFAS.
Collapse
Affiliation(s)
- Bowen Du
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China
| | - Qianchuo Wang
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China
| | - Zhikang Xu
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China; Institute For Development And Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hualin Wang
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China
| | - Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China; Institute For Development And Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujian Wu
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China
| | - Yiwei Niu
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China; Institute For Development And Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai 200092,China; Institute For Development And Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Liu SH, Chen Y, Feuerstahler L, Chen A, Starling A, Dabelea D, Wang X, Cecil K, Lanphear B, Yolton K, Braun JM, Buckley JP. The U.S. PFAS exposure burden calculator for 2017-2018: Application to the HOME Study, with comparison of epidemiological findings from NHANES. Neurotoxicol Teratol 2024; 102:107321. [PMID: 38224844 PMCID: PMC11249202 DOI: 10.1016/j.ntt.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND The 2017-2018 U.S. PFAS exposure burden calculator was designed to provide a summary exposure score for per- and polyfluoroalkyl substances (PFAS) mixtures using targeted PFAS analyte data. Its aim was to place PFAS burden score estimates onto a common scale based on nationally representative U.S. reference ranges from 2017 to 2018, enabling comparisons of overall PFAS burden scores across studies even if they did not measure the same set of PFAS analytes. OBJECTIVE To use the U.S. PFAS exposure burden calculator for comparing the same mixture of PFAS compounds in similarly aged adolescents and their associations with cardiometabolic outcomes in the HOME Study and NHANES between 2015 and 2018. METHODS We applied the PFAS burden calculator to 8 PFAS analytes measured in the serum of adolescents from the HOME Study (Cincinnati, Ohio; age range 11-14 years; years: 2016-2019; n = 207) and NHANES (US; age range 12-14 years; years 2015-2018; n = 245). We used the non-parametric Mann-Whitney U test and chi-squared test to compare the two study samples. In both studies, we examined associations of PFAS burden scores with the same cardiometabolic outcomes, adjusted for the same core set of covariates using regression analyses. We conducted sensitivity analyses to verify robustness of exposure-outcome associations, by accounting for measurement error of PFAS burden scores. RESULTS PFAS burden scores were significantly different (p = 0.004) between the HOME Study (median: 0.00, interquartile range - 0.37, 0.34) and the NHANES samples (median: 0.04, IQR -0.11, 0.54), while no significant difference was found for PFAS summed concentrations (p = 0.661). In the HOME Study, an interquartile (IQR) increase in PFAS burden score was associated with higher total cholesterol [7.0 mg/dL, 95% CI: 0.6, 13.4]; HDL [2.8 mg/dL, 95% CI: 0.4, 5.2]; LDL [5.9 mg/dL, 95% CI: 0.5, 11.3], insulin [0.1 log(mIU/L), 95% CI: 0.01, 0.2], and HOMA-IR [0.1, 95% CI: 0.01, 0.2]. In NHANES, an IQR increase in PFAS burden score was associated with higher diastolic blood pressure [2.4 mmHg, 95% CI: 0.4, 4.4] but not with other outcomes. Sensitivity analyses in the HOME Study and NHANES were consistent with the main findings. CONCLUSIONS Performance of the U.S. PFAS exposure burden calculator was similar in a local versus national sample of adolescents, and may be a useful tool for the assessment of PFAS mixtures across studies.
Collapse
Affiliation(s)
- Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai.
| | - Yitong Chen
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai
| | | | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | - Anne Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus
| | - Xiaobin Wang
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health
| | - Kim Cecil
- Department of Radiology, University of Cincinnati
| | | | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health
| |
Collapse
|
11
|
Frangione B, Birk S, Benzouak T, Rodriguez-Villamizar LA, Karim F, Dugandzic R, Villeneuve PJ. Exposure to perfluoroalkyl and polyfluoroalkyl substances and pediatric obesity: a systematic review and meta-analysis. Int J Obes (Lond) 2024; 48:131-146. [PMID: 37907715 PMCID: PMC10824662 DOI: 10.1038/s41366-023-01401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are potentially obesogenic for children. We undertook a systematic review to synthesize this literature and explore sources of heterogeneity in previously published epidemiological studies. METHODS Studies that collected individual-level PFAS and anthropometric data from children up to 12 years of age were identified by searching six databases. We excluded studies that only evaluated obesity measures at the time of birth. A full-text review and quality assessment of the studies was performed using the Office of Health Assessment and Translation (OHAT) criteria. Forest plots were created to summarize measures of association and assess heterogeneity across studies by chemical type and exposure timing. Funnel plots were used to assess small-study effects. RESULTS We identified 24 studies, of which 19 used a cohort design. There were 13 studies included in the meta-analysis examining various chemicals and outcomes. Overall prenatal exposures to four different types of PFAS were not statistically associated with changes in body mass index (BMI) or waist circumference. In contrast, for three chemicals, postnatal exposures were inversely related to changes in BMI (i.e., per log10 increase in PFOS: BMI z-score of -0.16 (95% CI: -0.22, -0.10)). There was no substantial heterogeneity in the reported measures of association within prenatal and postnatal subgroups. We observed modest small-study effects, but correction for these effects using the Trim and Fill method did not change our summary estimate(s). CONCLUSION Our review found no evidence of a positive association between prenatal PFAS exposure and pediatric obesity, whereas an inverse association was found for postnatal exposure. These findings should be interpreted cautiously due to the small number of studies. Future research that can inform on the effects of exposure mixtures, the timing of the exposure, outcome measures, and the shape of the exposure-response curve is needed.
Collapse
Affiliation(s)
- Brianna Frangione
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | - Sapriya Birk
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | - Tarek Benzouak
- Faculty of Medicine, McGill University, H3A 0G4, Montreal, Canada
| | - Laura A Rodriguez-Villamizar
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
- Faculty of Health, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Fatima Karim
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | | | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada.
- CHAIM Research Centre, Carleton University, K1S 5B6, Ottawa, Canada.
| |
Collapse
|
12
|
Fleury ES, Kuiper JR, Buckley JP, Papandonatos GD, Cecil KM, Chen A, Eaton CB, Kalkwarf HJ, Lanphear BP, Yolton K, Braun JM. Evaluating the association between longitudinal exposure to a PFAS mixture and adolescent cardiometabolic risk in the HOME Study. Environ Epidemiol 2024; 8:e289. [PMID: 38343730 PMCID: PMC10852393 DOI: 10.1097/ee9.0000000000000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
Background Exposure to per- and polyfluoroalkyl substances (PFAS) throughout gestation and childhood may impact cardiometabolic risk. Methods In 179 HOME Study participants (Cincinnati, OH; recruited 2003-2006), we used latent profile analysis to identify two distinct patterns of PFAS exposure from serum concentrations of four PFAS measured at birth and ages 3, 8, and 12 years. We assessed the homeostatic model of insulin resistance, triglycerides-to-high-density lipoprotein cholesterol ratio, leptin-to-adiponectin ratio, systolic blood pressure, visceral fat, and hemoglobin A1c levels at age 12 years. We used multivariable linear regression to assess the association of membership in the longitudinal PFAS mixture exposure group with a summary measure of overall cardiometabolic risk and individual components. Results One PFAS exposure profile (n = 66, 39%) had higher geometric means of all PFAS across all visits than the other. Although adjusted associations were null in the full sample, child sex modified the association of longitudinal PFAS mixture exposure group with overall cardiometabolic risk, leptin-to-adiponectin ratio, systolic blood pressure, and visceral fat (interaction term P values: 0.02-0.08). Females in the higher exposure group had higher cardiometabolic risk scores (ß = 0.43; 95% CI = -0.08, 0.94), systolic blood pressures (ß = 0.6; 95% CI = 0.1, 1.1), and visceral fat (ß = 0.44; 95% CI = -0.13, 1.01); males had lower cardiometabolic risk scores (ß = -0.52; 95% CI = -1.06, -0.06), leptin-to-adiponectin ratios (ß = -0.7; 95% CI = -1.29, -0.1), systolic blood pressures (ß = -0.14; 95% CI = -0.7, 0.41), and visceral fat (ß = -0.52; 95% CI = -0.84, -0.19). Conclusions Exposure to this PFAS mixture throughout childhood may have sex-specific effects on adolescent cardiometabolic risk.
Collapse
Affiliation(s)
| | - Jordan R. Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, D.C
| | - Jessie P. Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | | | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Charles B. Eaton
- Department of Family Medicine, Warren Alpert Medical School of Brown University, Providence, RI
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI
| |
Collapse
|
13
|
Serrano QA, Le Garf S, Martin V, Colson SS, Chevalier N. Is Physical Activity an Efficient Strategy to Control the Adverse Effects of Persistent Organic Pollutants in the Context of Obesity? A Narrative Review. Int J Mol Sci 2024; 25:883. [PMID: 38255955 PMCID: PMC10815489 DOI: 10.3390/ijms25020883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity affects nearly 660 million adults worldwide and is known for its many comorbidities. Although the phenomenon of obesity is not fully understood, science regularly reveals new determinants of this pathology. Among them, persistent organic pollutants (POPs) have been recently highlighted. Mainly lipophilic, POPs are normally stored in adipose tissue and can lead to adverse metabolic effects when released into the bloodstream. The main objective of this narrative review is to discuss the different pathways by which physical activity may counteract POPs' adverse effects. The research that we carried out seems to indicate that physical activity could positively influence several pathways negatively influenced by POPs, such as insulin resistance, inflammation, lipid accumulation, adipogenesis, and gut microbiota dysbiosis, that are associated with the development of obesity. This review also indicates how, through the controlled mobilization of POPs, physical activity could be a valuable approach to reduce the concentration of POPs in the bloodstream. These findings suggest that physical activity should be used to counteract the adverse effects of POPs. However, future studies should accurately assess its impact in specific situations such as bariatric surgery, where weight loss promotes POPs' blood release.
Collapse
Affiliation(s)
| | | | - Vincent Martin
- Université Clermont Auvergne, AME2P, F-63000 Clermont-Ferrand, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | | | | |
Collapse
|
14
|
Buckley JP, Braun JM. Invited Perspective: Long-Term Effects of Gestational PFAS Exposures on Adiposity-Time for Solutions. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:121301. [PMID: 38054702 PMCID: PMC10699166 DOI: 10.1289/ehp13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Jessie P. Buckley
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
15
|
Liu Y, Wosu AC, Fleisch AF, Dunlop AL, Starling AP, Ferrara A, Dabelea D, Oken E, Buckley JP, Chatzi L, Karagas MR, Romano ME, Schantz S, O’Connor TG, Woodruff TJ, Zhu Y, Hamra GB, Braun JM. Associations of Gestational Perfluoroalkyl Substances Exposure with Early Childhood BMI z-Scores and Risk of Overweight/Obesity: Results from the ECHO Cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67001. [PMID: 37283528 PMCID: PMC10246497 DOI: 10.1289/ehp11545] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Gestational per- and polyfluoroalkyl substances (PFAS) exposure may be associated with adiposity and increased risk of obesity among children and adolescents. However, results from epidemiological studies evaluating these associations are inconsistent. OBJECTIVES We estimated the associations of pregnancy PFAS concentrations with child body mass index (BMI) z -scores and risk of overweight/obesity in eight U.S. cohorts. METHODS We used data from 1,391 mother-child pairs who enrolled in eight Environmental influences on Child Health Outcomes (ECHO) cohorts (enrolled: 1999-2019). We quantified concentrations of seven PFAS in maternal plasma or serum in pregnancy. We measured child weight and height between the ages of 2 and 5 y and calculated age- and sex-specific BMI z -scores; 19.6% children had more than one BMI measurement. We estimated covariate-adjusted associations of individual PFAS and their mixture with child BMI z -scores and risk of overweight/obesity using linear mixed models, modified Poisson regression models, and Bayesian approaches for mixtures. We explored whether child sex modified these associations. RESULTS We observed a pattern of subtle positive associations of PFAS concentrations in pregnancy with BMI z -scores and risk of overweight/obesity. For instance, each doubling in perfluorohexane sulfonic acid concentrations was associated with higher BMI z -scores (β = 0.07 ; 95% CI: 0.01, 0.12). Each doubling in perfluroundecanoic acid [relative risk ( RR ) = 1.10 ; 95% CI: 1.04, 1.16] and N -methyl perfluorooctane sulfonamido acetic acid (RR = 1.06 ; 95% CI: 1.00, 1.12) was associated with increased risk of overweight/obesity, with some evidence of a monotonic dose-response relation. We observed weaker and more imprecise associations of the PFAS mixture with BMI or risk of overweight/obesity. Associations did not differ by child sex. DISCUSSION In eight U.S.-based prospective cohorts, gestational exposure to higher levels of PFAS were associated with slightly higher childhood BMI z -score and risk of overweight or obesity. Future studies should examine associations of gestational exposure to PFAS with adiposity and related cardiometabolic consequences in older children. https://doi.org/10.1289/EHP11545.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Adaeze C. Wosu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abby F. Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Jessie P. Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas G. O’Connor
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Yeyi Zhu
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - and the program collaborators for Environmental influences on Child Health Outcomes
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Pediatric Endocrinology and Diabetes, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
16
|
Hall AM, Braun JM. Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. Am J Lifestyle Med 2023. [DOI: 10.1177/15598276231162802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic, ubiquitous, anthropogenic chemicals known to bioaccumulate in humans. Substantial concern exists regarding the human health effects of PFAS, particularly metabolic syndrome (MetS), a precursor to cardiovascular disease, the leading cause of mortality worldwide. This narrative review provides an overview of the PFAS literature on 4 specific components of MetS: insulin resistance/glucose dysregulation, central adiposity, dyslipidemia, and blood pressure. We focus on prospective cohort studies as these provide the best body of evidence compared to other study designs. Available evidence suggests potential associations between some PFAS and type-2 diabetes in adults, dyslipidemia in children and adults, and blood pressure in adults. Additionally, some studies found that sex and physical activity may modify these relationships. Future studies should consider modification by sex and lifestyle factors (e.g., diet and physical activity), as well quantifying the impact of PFAS mixtures on MetS features and related clinical disease. Finally, clinicians can follow recently developed clinical guidance to screen for PFAS exposure in patients, measure PFAS levels, conduct additional clinical care based on PFAS levels, and advise on PFAS exposure reduction.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|