1
|
Safdar A, Munir R, Zil-E-Hasnain, Noreen S. Batch and column studies for the removal of basic red-46 dye and textile by using magnesium oxide (MgO), strontium titanium trioxide (SrTiO 3), cobalt- and iron-doped lanthanum chromium trioxide (Co.Fe.LaCrO 3), and cadmium sulfide (CdS)-doped graphene oxide nanocomposites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34815-4. [PMID: 39331299 DOI: 10.1007/s11356-024-34815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Despite efforts to reduce the risk of toxic chemicals, colors, and dyes being released into the environment from urban and industrial areas, there is still cause for concern. Colored water must be filtered and sterilized before it can be used for irrigation. The utilization of metal oxide and nanocomposite materials in wastewater treatment procedures appears to be a viable option for the future. Therefore, different compounds were doped with graphene oxide to identify the best material for dye removal by the adsorption process. According to recent studies, the ideal conditions for graphene oxide-doped magnesium oxide (GO/MgO) are as follows: pH 10 showed the highest adsorption capacity (qe) at 49.4 mg/g; an adsorbent dosage of 0.01 g/50 mL showed 48.3 mg/g qe; a shaking time of 30 min resulted in 44.2 mg/g qe; an initial dye concentration of 100 mg/L yielded 53.6 mg/g qe; and a temperature of 35 °C gave 49.5 mg/g qe. For graphene oxide-doped strontium titanate (GO/SrTiO3), the optimum conditions were as follows: pH 10 with 45.8 mg/g qe; an adsorbent dose of 0.01 g/50 mL with 40.5 mg/g qe; a shaking time of 30 min with 75 mg/g qe; and a temperature of 35 °C with 44.7 mg/g qe. Graphene oxide-doped cobalt and iron-doped lanthanum chromium titanate (GO/Co.Fe.LaCrO3) showed optimum conditions of pH 9 with 34.2 mg/g qe; an adsorbent dose of 0.01 g/50 mL with 27.5 mg/g qe; a shaking time of 45 min with 33.2 mg/g qe; an initial dye concentration of 100 mg/L with 37.6 mg/g qe; and a temperature of 35 °C with 42.5 mg/g qe. Graphene oxide-doped cadmium sulfide (GO/CdS) showed the following optimum conditions: pH 8 with 23.1 mg/g qe; an adsorbent dose of 0.01 g/50 mL with 25.5 mg/g qe; an initial dye concentration of 75 mg/L with 28.3 mg/g qe; and a temperature of 35 °C with 33.5 mg/g qe. The pseudo-first-order model was the best fit only for graphene oxide-doped magnesium oxide (GO/MgO) with an R2 value of 0.966, while the pseudo-second-order adsorption isotherm was the best fit for all four products, with R2 values ranging from 0.991 to 0.998. Additionally, the Langmuir adsorption isotherms provided good results for all four products, with R2 values ranging from 0.957 to 0.985. The Freundlich adsorption kinetics showed satisfactory fit only for graphene oxide-doped magnesium oxide (GO/MgO) and graphene oxide-doped cadmium sulfide (GO/CdS), with R2 values of 0.951 and 0.982, respectively. To examine the characteristics and practicality of the adsorption process, certain thermodynamic variables were calculated. The adsorption capability of the most efficient nanocomposites for the degradation of basic red-46 was significantly affected by various concentrations of heavy metal ions and electrolytes. In dye solutions containing surfactants/detergents, the adsorption efficiency of several effective photocatalysts for basic dyes was significantly reduced. A 0.5 M HCl solution was found to be the most effective for desorption. In column investigations, the optimal bed height, flow velocity, and dye intake levels were determined to be 3 cm, 1.8 mL/min, and 70 mg/L, respectively, for maximal adsorption of basic red-46. The adsorption investigation of genuine textile waste products has also been carried out to facilitate the practical deployment of this approach. The methods used in this study were cost-effective, easy to handle, and eco-friendly and involved no hazardous materials in the synthesis, making the resulting materials non-hazardous. All these methods were part of green chemistry.
Collapse
Affiliation(s)
- Aiman Safdar
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zil-E-Hasnain
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Kumar V, Verma P. Microbial valorization of kraft black liquor for production of platform chemicals, biofuels, and value-added products: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121631. [PMID: 38986370 DOI: 10.1016/j.jenvman.2024.121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The proper treatment and utilization of kraft black liquor, generated from the pulp and paper industry through the kraft pulping method, is required to reduce environmental impacts prior to the final disposal. It also improves the economic performance through the utilization of waste. Microbial valorization appears to demonstrates the dual benefits of waste management and resource recovery by providing an innovative solution to convert kraft black liquor into resource for reuse. A comprehensive review on the microbial valorization of kraft black liquor, describing the role in valorization and management, is still lacking in the literature, forming the rationale of this article. Thus, the present study reviews and systematically discusses the potential of utilizing microorganisms to valorize kraft black liquor as a sustainable feedstock to develop a numerous portfolio of platform chemicals, bioenergy, and other value-added products. This work contributes to sustainability and resource efficiency within the pulp and paper industry. The recent developments in utilization of synthetic biology tools and molecular techniques, including omics approaches for engineering novel microbial strains, for enhancing kraft black liquor valorization has been presented. This review explores how the better utilization of kraft black liquor in the pulp and paper industry contributes to achieving UN Sustainable Development Goals (SDGs), particularly clean water and sanitation (SDG 6) as well as the affordable and clean energy goal (SDG 7). The current review also addresses challenges related to toxicity, impurities, low productivity, and downstream processing that serve as obstacles to the progress of developing highly efficient bioproducts. The new directions for future research efforts to fill the critical knowledge gaps are proposed. This study concludes that by implementing microbial valorization techniques, the pulp and paper industry can transition from a linear to a circular bioeconomy and eco-friendly manage the kraft black liuor. This approach showed to be effective towards resource recovery, while simultaneously minimizing the environmental burden.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
3
|
Du J, You J, Cai Z, Wang H, Chen D, Zhu S, Liu D. Simultaneous removal of ammonia and sulfur odorants in biotrickling filters and N 2O production. BIORESOURCE TECHNOLOGY 2024; 403:130870. [PMID: 38777234 DOI: 10.1016/j.biortech.2024.130870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Research on the stability evaluation of biotrickling filters (BTFs) under harsh conditions and the bacterial adaptation process still needs to be improved. Herein, BTFs with polypropylene plastic (PP) and ceramic raschig rings (CRR) were investigated for a better understanding of the biodegradation of ammonia (NH3), hydrogen sulfide (H2S), and dimethyl sulfide (DMS). The results showed an excellent performance in removal efficiency (RE) for NH3 (91.6 %-99.9 %), H2S (RE: 55.3 %-99.5 %), and DMS (RE: 10.6 %-99.9 %). It was found that a more apparent positive correlation between N2O emission and pressure drop in CRR BTF (R2 = 0.92) than in PP BTF (R2 = 0.79) (P < 0.01). Low temperature promotes an increase in the abundance ofComamonasandBacillus. The polysaccharides in PP and CRR reactors decreased by 78.6 % and 68.1 % when temperature reduced from 25℃ to 8℃. This work provides a novel insight into understanding bacterial survival under harsh BTF environments.
Collapse
Affiliation(s)
- Jianghui Du
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Juping You
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhen Cai
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Haiqiang Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Songming Zhu
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Dezhao Liu
- Institute of Agri-biological Environment Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
4
|
Abioye KJ, Harun NY, Sufian S, Yusuf M, Jagaba AH, Waqas S, Ayodele BV, Kamyab H, Alam M, Gupta M, Gill HS, Rezania S, Chelliapan S, Kang K. Optimization of syngas production from co-gasification of palm oil decanter cake and alum sludge: An RSM approach with char characterization. ENVIRONMENTAL RESEARCH 2024; 246:118027. [PMID: 38159670 DOI: 10.1016/j.envres.2023.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.
Collapse
Affiliation(s)
- Kunmi Joshua Abioye
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia; Centre of Urbanization and Resource Sustainability, Universiti Teknologi PETRONAS, Malaysia.
| | - Noorfidza Yub Harun
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia; Centre of Urbanization and Resource Sustainability, Universiti Teknologi PETRONAS, Malaysia.
| | - Suriati Sufian
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, 3737 Wascana Parkway, S4S 0A2, Canada; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Ahmad Hussaini Jagaba
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Sharjeel Waqas
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Bamidele Victor Ayodele
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre, Department of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manish Gupta
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Harjot Singh Gill
- University Centre for Research & Development, Mechanical Department, Chandigarh University, Punjab, India
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Kang Kang
- Biorefinery Research Institute and Department of Chemical Engineering, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| |
Collapse
|
5
|
Tienaho J, Fidelis M, Brännström H, Hellström J, Rudolfsson M, Kumar Das A, Liimatainen J, Kumar A, Kurkilahti M, Kilpeläinen P. Valorizing Assorted Logging Residues: Response Surface Methodology in the Extraction Optimization of a Green Norway Spruce Needle-Rich Fraction To Obtain Valuable Bioactive Compounds. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:237-249. [PMID: 38414817 PMCID: PMC10895920 DOI: 10.1021/acssusresmgt.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
During stemwood harvesting, substantial volumes of logging residues are produced as a side stream. Nevertheless, industrially feasible processing methods supporting their use for other than energy generation purposes are scarce. Thus, the present study focuses on biorefinery processing, employing response surface methodology to optimize the pressurized extraction of industrially assorted needle-rich spruce logging residues with four solvents. Eighteen experimental points, including eight center point replicates, were used to optimize the extraction temperature (40-135 °C) and time (10-70 min). The extraction optimization for water, water with Na2CO3 + NaHSO3 addition, and aqueous ethanol was performed using yield, total dissolved solids (TDS), antioxidant activity (FRAP, ORAC), antibacterial properties (E. coli, S. aureus), total phenolic content (TPC), condensed tannin content, and degree of polymerization. For limonene, evaluated responses were yield, TDS, antioxidant activity (CUPRAC, DPPH), and TPC. Desirability surfaces were created using the responses showing a coefficient of determination (R2) > 0.7, statistical significance (p ≤ 0.05), precision > 4, and statistically insignificant lack-of-fit (p > 0.1). The optimal extraction conditions were 125 °C and 68 min for aqueous ethanol, 120 °C and 10 min for water, 111 °C and 49 min for water with Na2CO3 + NaHSO3 addition, and 134 °C and 41 min for limonene. The outcomes contribute insights to industrial logging residue utilization for value-added purposes.
Collapse
Affiliation(s)
- Jenni Tienaho
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Marina Fidelis
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Hanna Brännström
- Production Systems, Natural Resources Institute Finland (Luke), Teknologiakatu 7, FI-67100 Kokkola, Finland
| | - Jarkko Hellström
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland
| | - Magnus Rudolfsson
- Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Atanu Kumar Das
- Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jaana Liimatainen
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Anuj Kumar
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Mika Kurkilahti
- Natural Resources, Natural Resources Institute Finland (Luke), Itäinen Pitkäkatu 4 A, FI-20520 Turku, Finland
| | - Petri Kilpeläinen
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
6
|
Jain S, Tembhurkar AR. Optimizing nutrients from fly ash-amended soil through microbial-assisted phytoremediation using response surface methodology. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:145. [PMID: 38214830 DOI: 10.1007/s10661-023-12273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Nutrients are vital ingredients to boost plant health. The availability of nutrients is limited in fly ash (FA) waste to properly implement phytoremediation. The research explored the integration of microbes and treated wastewater irrigation in phytoremediation to provide the necessary nutrients for plant growth in fly ash-amended soils. The Box-Behnken method was used to design the experimental layout for the pot study. Response surface methodology (RSM) was applied as the optimization approach to model predictions for nutrient accumulation. The implemented pot study attained the highest morphological indicators with a plastochron index of 33.40, an absolute growth rate of 2.63 cm/day, and a leaf area of 2681.68 cm2 and attained maximum biomass of 24.91 g for the treatments that included a mid-range of the variables. The combination of FA 14.98%, microbial dose 4.07 mL, and treated wastewater as the irrigation source was found to be the optimized combination for nitrogen and phosphorus accumulation of 212.4 and 8.867 mg/L.
Collapse
Affiliation(s)
- Sandeep Jain
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| | - Ajay R Tembhurkar
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| |
Collapse
|
7
|
Hsu CY, Ali E, Al-Saedi HFS, Mohammed AQ, Mustafa NK, Talib MB, Radi UK, Ramadan MF, Ami AA, Al-Shuwaili SJ, Alawadi A, Alsalamy A, Baharinikoo L. A chemometric approach based on response surface methodology for optimization of antibiotic and organic dyes removal from water samples. BMC Chem 2024; 18:5. [PMID: 38172983 PMCID: PMC10765863 DOI: 10.1186/s13065-023-01107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, the Fe3O4/rGO/Ag magnetic nanocomposite was synthesized and employed as an adsorbent for the removal of tetracycline (TC), crystal violet (CV), and methylene blue (MB) from water samples. The influential parameters in the removal process were identified and optimized using response surface methodology (RSM). Characterization of the product was performed through field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), vibrating-sample magnetometer (VSM), and X-ray diffraction (XRD) analysis. XRD and SEM analysis revealed the successful synthesis of the Fe3O4/rGO/Ag nanocomposite. EDX analysis elucidated the accuracy and clarity of the chemical composition of the magnetic nanocomposite structure. Additionally, the separation of the nano-adsorbent from the solution can be achieved using a magnetic field. Maximum removal of analytes was obtained at pH of 6, amount of nanocomposite 0.014 g, ultrasonic time of 8 min and concentration of 21 mg L-1. Under optimal conditions, the removal efficiencies for TC, CV, and MB were 91.33, 95.82, and 98.19%, respectively. Also, it was observed that after each adsorption-desorption cycle, Fe3O4/rGO/Ag magnetic nanocomposite had good stability to remove TC, CV, and MB. Achieving nearly 98% removal efficiency in optimal conditions showed that Fe3O4/rGO/Ag magnetic nanocomposite is an effective adsorbent for removing TC, CV, and MB from wastewater samples.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | | | | | | | - Maysm Barzan Talib
- Department of Medical Laboratories Technology, Mazaya University College, Samawah, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Saeb Jasim Al-Shuwaili
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University of Najaf, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Samawah, Al-Muthanna, 66002, Iraq
| | - Leila Baharinikoo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
8
|
Li M, Liu H, Liu C, Ding Y, Fang C, Wan R, Zhu H, Yang Y. Pd sub-nanolayer on Au core for enhanced catalytic hydrogenation reduction of oxyanions pollutants: Synergistic effect of Pd and Au. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122067. [PMID: 37352958 DOI: 10.1016/j.envpol.2023.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Oxyanion pollutants in industrial wasterwater, such as (Cr(VI)), BrO3- (Br(V)) and SeO32- (Se(IV)) have detrimental or toxic effects on individual health when their concentrations accumulated to a certain level. The conversion of these oxyanions into harmless/industrial-valuable products or removal from wastewater is of significance. Herein, we designed Pd sub-nanolayer on Au core catalysts supported on Al2O3 (sub-Pd-Au/Al2O3) for highly effective catalytic hydrogenation reduction of oxyanions under ambient conditions. The sub-Pd(0.049)-Au(0.927)/Al2O3 catalyst exhibited the highest catalytic activity and TOF value for Cr(VI), Br(V) and Se(IV) reduction, respectively, by optimizing the Pd loading amount. The synergistic effect between Pd sub-nanolayer and Au core enhanced catalytic activity by regulating the Pd dispersion and site property, according to thorough characterizations that included high-angle annular dark-field transmission electron microscopy (HAADF-TEM) image, in-situ CO-IR adsorption, CO chemisorption, and X-ray photoelectron spectroscopy (XPS). This work might provide some new lights on design of highly efficient catalysts for the elimination of oxyanion pollutants.
Collapse
Affiliation(s)
- Minghui Li
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Hang Liu
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Chang Liu
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Yan Ding
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Caixia Fang
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Rui Wan
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Yaning Yang
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China; Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui, 243000, PR China.
| |
Collapse
|
9
|
Abioye KJ, Harun NY, Sufian S, Yusuf M, Kamyab H, Hassan MA, Jagaba AH, Sikiru S, Ubaidullah M, Pandit B, Dhaliwal N. Regulation of ash slagging behavior of palm oil decanter cake by alum sludge addition. CHEMOSPHERE 2023; 330:138452. [PMID: 36965529 DOI: 10.1016/j.chemosphere.2023.138452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
Combustion of palm oil decanter cake (PODC) is a propitious alternative waste to energy means. However, the mono-combustion of PODC prompt severe ash slagging behavior which give rise to reduction in heat transfer and also shorten the lifespan of combustion reactors. In this study, alum sludge (AS) was introduced at different proportion of 30%, 50% and 70% to revamp the slagging characteristics of PODC during combustion. The addition of AS improved ash fusion temperature of PODC during co-combustion as ash fusion temperature increased significantly under high AS dosage. Slagging and fouling indices showed that at 50% AS addition, slagging tendency of the co-combustion ashes can be ignored. The predictive model for PODC-AS combustion showed good correlation coefficient with 0.89. Overall, co-combustion of PODC and AS is an ideal ash related problem-solving route. The proposed PODC slagging preventive method by AS was based on: (1) limited amount of aluminum content in PODC-AS system resulted in development of refractory ash (2) reduction in proportion of basic oxide which act as ash bonding glue played important role in the regulation of slagging (3) reduction of cohesive bond by formation of spongy and porous structure which prevented ash slagging.
Collapse
Affiliation(s)
- Kunmi Joshua Abioye
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Noorfidza Yub Harun
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| | - Suriati Sufian
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India; Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Muzamil Abdalla Hassan
- HICoE-Centre of Biofuel and Biochemical Research, Institute for Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Ahmad Hussaini Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Surajudeen Sikiru
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Navdeep Dhaliwal
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
10
|
Wu J, Bian J, Sun X. Comparative assessment on ammonia nitrogen adsorption onto a saline soil-groundwater environment: distribution, multi-factor interaction, and optimization using response surface methodology and artificial neural network. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3743-3758. [PMID: 36508045 DOI: 10.1007/s10653-022-01446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
The adsorption of soil can reduce the leaching of NH4+-N from the external environment into groundwater. The adsorption of NH4+-N is affected by many factors. It is critical to use statistical model to quantitatively describe the effects of interaction between two or more factors on the system response. In this study, HJ-Biplot was used to analyze the correlation characteristics of soil water, salt, and nitrogen, and the response surface methodology and artificial neural network were used to statistically visualize the interaction between factors, including concentration, total dissolved solids (TDS), temperature, and pH. The results showed that the study soil was a typical saline soil, with maximum soil NH4+-N content of 85.45 mg/kg. For the adsorption experiments of NH4+-N on saline soils, the effects of factors on the adsorption capacity were assessed using the RSM model. The RSM model was coupled with an ANN to predict the adsorption of NH4+-N by saline soils. The NH4+-N concentration and water pH were both significant at a linear level (p < 0.0001). The interaction between NH4+-N concentration and pH was also more significant (p < 0.01). Under optimal conditions (concentration: 800 mg/L; temperature: 24 °C; TDS: 637 mg/L; pH: 7.83), the NH4+-N adsorption capacity was 1650.2 ug/g, which was in general agreement with the calculated values from the Box-Behnken and RSM model. In addition, a statistical error criterion for the model showed that the RSM-ANN model had greater predictive ability than RSM model.
Collapse
Affiliation(s)
- Juanjuan Wu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China
| | - Jianmin Bian
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China.
| | - Xiaoqing Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
11
|
Muloiwa M, Dinka M, Nyende‐Byakika S. Application of Artificial Neural Network for predicting biomass growth during domestic wastewater treatment through a biological process. Eng Life Sci 2023; 23:e2200058. [PMID: 37153027 PMCID: PMC10158627 DOI: 10.1002/elsc.202200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 05/09/2023] Open
Abstract
The biological treatment process is responsible for removing organic and inorganic matter in wastewater. This process relies heavily on microorganisms to successfully remove organic and inorganic matter. The aim of the study was to model biomass growth in the biological treatment process. Multilayer perceptron (MLP) Artificial Neural Network (ANN) algorithm was used to model biomass growth. Three metrics: coefficient of determination (R 2), root mean squared error (RMSE), and mean squared error (MSE) were used to evaluate the performance of the model. Sensitivity analysis was applied to confirm variables that have a strong influence on biomass growth. The results of the study showed that MLP ANN algorithm was able to model biomass growth successfully. R 2 values were 0.844, 0.853, and 0.823 during training, validation, and testing phases, respectively. RMSE values were 0.7476, 1.1641, and 0.7798 during training, validation, and testing phases respectively. MSE values were 0.5589, 1.3551, and 0.6081 during training, validation, and testing phases, respectively. Sensitivity analysis results showed that temperature (47.2%) and dissolved oxygen (DO) concentration (40.2%) were the biggest drivers of biomass growth. Aeration period (4.3%), chemical oxygen demand (COD) concentration (3.2%), and oxygen uptake rate (OUR) (5.1%) contributed minimally. The biomass growth model can be applied at different wastewater treatment plants by different plant managers/operators in order to achieve optimum biomass growth. The optimum biomass growth will improve the removal of organic and inorganic matter in the biological treatment process.
Collapse
Affiliation(s)
- Mpho Muloiwa
- Department of Civil EngineeringTshwane University of TechnologyPretoriaSouth Africa
| | - Megersa Dinka
- Department of Civil Engineering ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | | |
Collapse
|
12
|
Noor A, Mohamed Kutty SR, Baloo L, Affam AC, Jagaba AH, Saeed Ghaleb AA, Yahya Almahbashi NM, Ahmad T, Nawab MS, Birniwa AH. Parametric optimization of additive manufactured biocarrier submerged in sequencing batch reactor for domestic wastewater treatment. Heliyon 2023; 9:e14840. [PMID: 37025813 PMCID: PMC10070916 DOI: 10.1016/j.heliyon.2023.e14840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The high nutrient concentration in domestic wastewater effluent can endanger the aquatic life via eutrophication. Thus, research have been carried out to prevent harm to aquatic life. In regard biofilm reactors have been successful by far with few limitations. Bio-carrier fabrication of desired shape is one of the limitations. Recently, the invention of additive manufacturing (AM) of object made it feasible to fabricate the desired shape. In this study additive manufactured bio‒carrier (AMB) was printed using AM technique, with high surface area to volume ratio as well as density higher than water. The submerged attach growth sequencing batch biofilm reactor (SAGSBBR) for organic and nutrient removal from domestic wastewater (DWW) was conducted to determine the optimum bio‒carrier filling ratio (FR) and cycle time (CT) by using response surface methodology (RSM) with CT ranging between 12 h and 24 h and FR ranging between 0 and 20%. The maximum chemical oxygen demand (COD), ammonia-nitrogen (NH4 +‒N), and total phosphorus (TP) removal was 96.8 mg/L, 93.32 mg/L, and 88.89 mg/L respectively, which was achieved in submerged attached growth sequential biofilm batch reactor with 10% FR (SAGSBBR‒10). The optimization study determined the optimal solution of CT and FR to be 17.07 h and 12.38% respectively, with desirability of 0.987. The predicted mean of responses for the optimal solution were 96.64%, 94.40% and 89.94% for COD removal, NH4 +‒N removal and TP removal, respectively. The rate of biomass attachment at the first stage in SAGSBBR‒10 and SAGSBBR‒20 was about 11.39 mg/carrier.d and 8.64 mg/carrier.d, whereas the highest accumulation achieved was 98.27 mg/carrier and 80.15 mg/carrier respectively. Thus, this study can assist us to achieve sustainable development goal (SDG) 6.
Collapse
Affiliation(s)
- Azmatullah Noor
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Corresponding author.
| | - Shamsul Rahman Mohamed Kutty
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Lavania Baloo
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Augustine Chioma Affam
- Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, No. 1, Jalan University, 96000, Sibu, Malaysia
| | - Ahmad Hussaini Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Aiban Abdulhakim Saeed Ghaleb
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Najib Mohammed Yahya Almahbashi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Tarique Ahmad
- Department of Civil Engineering, College of Engineering, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Mohammad Sadique Nawab
- Department of Civil Engineering, College of Engineering, Shaqra University, Dawadmi, Kingdom of Saudi Arabia
| | | |
Collapse
|
13
|
Dong C, Zhou N, Zhang J, Lai W, Xu J, Chen J, Yu R, Che Y. Optimized preparation of gangue waste-based geopolymer adsorbent based on improved response surface methodology for Cd(II) removal from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115246. [PMID: 36657595 DOI: 10.1016/j.envres.2023.115246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Resource utilization of gangue solid waste has become an essential research direction for green development. This study prepared a novel gangue based geopolymer adsorbent (GPA) for the removal of Cd(II) from wastewater using pretreatment gangue (PG) as the main raw material. The ANOVA indicated that the obtained quadratic model of fitness function (R2 > 0.99, P-value <0.0001) was significant and adequate, and the contribution of the three preparation conditions to the removal of Cd(II) was: calcination temperature > Na2CO3:PG ratio > water-glass solid content. The hybrid response surface method and gray wolf optimization (RSM-GWO) algorithm were adopted to acquire the optimum conditions: Na2CO3:PG ratio = 1.05, calcination temperature of 701 °C, solid content of water glass of 22.42%, and the removal efficiency of Cd(II) by GPA obtained under the optimized conditions (GPAC) was 97.84%. Adsorption kinetics, adsorption isotherms and characterization by XRD, FTIR, Zeta potential, FSEM-EDS and BET were utilized to investigate the adsorption mechanism of GPAC on Cd(II). The results showed that the adsorption of Cd(II) from GPAC was consistent with the pseudo-second-order model (R2 = 0.9936) and the Langmuir model (R2 = 0.9988), the adsorption was a monolayer adsorption process and the computed maximum Cd(II) adsorption (50.76 mg g-1) was approximate to experimental results (51.47 mg g-1). Moreover, the surface morphology of GPAC was rough and porous with a specific surface area (SSA) of 18.54 m2 g-1, which provided abundant active sites, and the internal kaolinite was destroyed to produce a zeolite-like structure where surface complexation and ion exchange with Cd(II) through hydroxyl (-OH) and oxygen-containing groups (-SiOH and -AlOH) were the main adsorption mechanisms. Thus, GPAC is a lucrative adsorbent material for effective Cd(II) wastewater treatment, complying with the "high value-added" usage of solid wastes and "waste to cure poison" green sustainable development direction.
Collapse
Affiliation(s)
- Chaowei Dong
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China; Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Nan Zhou
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jixiong Zhang
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Wanan Lai
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jianfei Xu
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Junlin Chen
- Arizona College of Technology, Hebei University of Technology, Tianjin, 300401, China.
| | - Runhua Yu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China.
| | - Yepeng Che
- China Coal Energy Xinjiang Tianshan Coal Power Co., Ltd, Xinjiang, 831200, China.
| |
Collapse
|
14
|
Lignin removal from synthetic wastewater via Fenton-like reaction over Cu supported on MCM-41 derived from bagasse: Optimization and reaction intermediates. Heliyon 2023; 9:e13157. [PMID: 36798774 PMCID: PMC9925854 DOI: 10.1016/j.heliyon.2023.e13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
Lignin degradation was performed using a Fenton-like oxidation reaction with Cu supported on MCM-41, derived from bagasse (Cu-BG-MCM-41), as the catalyst. The optimal degradation conditions required to remove a predetermined amount of lignin (95%) from an effluent were determined. Based on the literature review and preliminary tests, the critical parameters determining the operating conditions include temperature, catalyst loading, pH, H2O2 concentration, and reaction time. The experimental design and working conditions were based on Box-Behnken design. The reaction products were analyzed via UV-vis and gas chromatography-mass spectrometry. Response surface methodology (RSM) was used to predict the optimum operating conditions for the Fenton-like reaction for 95% lignin degradation, which were a temperature of 80 °C, initial pH of 9, H2O2 concentration of 1 mL/L, catalyst loading of 1.0 g/L, and reaction time of 30 min. These conditions were validated three times and the achieved percentage of lignin degradation was 95 ± 2%. This is close to the value of 95% used in the RSM to determine the optimum operating conditions, thus verifying the model. The catalyst was stable and functioned well under the optimum design conditions. Moreover, the reaction could be used to obtain high-value intermediate products if stopped after 5 min. Finally, lignin was degraded into vanillin, a higher-value product. As expected, the proposed Fenton-like approach expanded the pH working range from less than 4 to 5-9.
Collapse
|
15
|
Synthesis of Gum Arabic Magnetic Nanoparticles for Adsorptive Removal of Ciprofloxacin: Equilibrium, Kinetic, Thermodynamics Studies, and Optimization by Response Surface Methodology. SEPARATIONS 2022. [DOI: 10.3390/separations9100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Given the increasing risks that antibiotic abuse poses to microecology and human health, it is imperative to develop incredibly powerful adsorbents. This study investigated the use of environmentally sustainable polymeric nanocomposite based on gum arabic (GA) and magnetic nanoparticles (MNPs) synthesized via co-precipitation method to form gum arabic magnetitic nanoparticles (GA-MNPs) as an efficient adsorbent for ciprofloxacin (CIP) removal from aqueous solution. The physicochemical properties and morphology of the synthesized GA-MNPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX). The experiment was designed by response surface methodology (RSM) and the Central Composite Design (CCD) was utilized to optimize the operating variables: contact time (0–120 min), pH (3–10), adsorbent dosage (0.10–0.40 g/L), and concentration of adsorbate (5–100 mg/L). Results showed that 96.30% was the maximum percentage of CIP removed. The adsorption effect of the CIP molecule on the surface of the GA-MNPs was investigated using regression analysis and analysis of variance. Furthermore, Freundlich Isotherm and Pseudo Second order kinetic equations have the highest consistency with experimental investigations suggesting double-layer adsorption. This implies that chemisorption was the mechanism involved. In addition, the calculated thermodynamic parameters were postulating an exothermic and spontaneous method in nature. Owing to its adsorption selectivity and recyclability, GA-MNPs could be classified as an environmentally friendly, less expensive, and highly efficient promising adsorbent for remediation of CIP from aqueous solution.
Collapse
|