1
|
Feng Y, Darma AI, Yang J, Wang X, Shakouri M. Protaetia brevitarsis larvae produce frass that can be used as an additive to immobilize Cd and improve fertility in alkaline soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134379. [PMID: 38733779 DOI: 10.1016/j.jhazmat.2024.134379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Bioconversion of agricultural waste by Protaetia brevitarsis larvae (PBL) holds significant promise for producing high-quality frass organic amendments. However, the effects and mechanisms of PBL frass on Cd immobilization in an alkaline environment remain poorly understood. In this study, three types of frass, namely maize straw frass (MF), rice straw frass (RF), and sawdust frass (SF), were produced by feeding PBL. The Cd immobilization efficiencies of three frass in alkaline solutions and soils were investigated through batch sorption and incubation experiments, and spectroscopic techniques were employed to elucidate the sorption mechanisms of Cd onto different frass at the molecular level. The results showed that MF proved to be an efficient sorbent for Cd in alkaline solutions (176.67-227.27 mg g-1). X-ray absorption near-edge structure (XANES) spectroscopy indicated that Cd immobilization in frass is primarily attributed to the association with organic matter (OM-Cd, 78-90%). And MF had more oxygen-containing functional groups than the other frass. In weakly alkaline soils, MF application (0.5-1.5%) significantly decreased Cd bioavailability (5.65-18.48%) and concurrently improved soil nutrients (2.21-56.79%). Redundancy analysis (RDA) unveiled that pH, CEC, and available P were important factors controlling Cd fractions. Path analysis demonstrated that MF application affected Cd bioavailability directly and indirectly by influencing soil chemical properties and nutrients. In summary, MF, the product of PBL-mediated conversion maize straw, demonstrated promise as an effective organic amendment for Cd immobilization and fertility improvement in alkaline soils.
Collapse
Affiliation(s)
- Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aminu Inuwa Darma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China)
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China).
| | - Xudong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon S7N 2V3, Canada
| |
Collapse
|
2
|
Huda N, Rana MR, Huq MA, Al-Mamun A, Rahman ST, Alam MK, Rahman MM. Understanding vermicompost and organic manure interactions: impact on toxic elements, nitrification activity, comammox Nitrospira inopinata, and archaea/bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:355. [PMID: 38466496 DOI: 10.1007/s10661-024-12491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Vermicompost is a substantial source of nutrients, promotes soil fertility, and maintains or increases soil organic matter levels. Potentially toxic elements (PTEs) in vermicompost impact on nitrification activity. However, it is yet unknown how vermicompost affects nitrifying bacteria and archaea, comammox Nitrospira inopinata (complete ammonia oxidizers), net nitrification rates (NNRs), and PTEs. The effects of vermicompost application on NNRs, potential nitrification rates (NPs), PTEs, and the abundances of comammox N. inopinata bacteria, nitrite-oxidizing bacteria (NOB), and ammonia-oxidizing bacteria (AOB)/archaea (AOA) were studied. NNRs and NPs were significantly higher (p < 0.05) in fresh cow-dung vermicompost (stored for 40 days) as compared with other organic manure. The level of PTEs (Cu2+, Fe2+, Pb2+, Cd2+, and Zn2+) was significantly lower (p < 0.05) in vermicompost as compared with compost of waste material with Trichoderma and cow dung. Comammox N. inopinata, NOB, AOB, and AOA were significantly higher (p < 0.05) in stored cow-dung vermicompost (more than 1 year) as compared with other organic manure. The results of the scatterplot matrix analysis suggested that Fe2+, total nitrogen (TN), soil organic carbon (SOC), and total carbon (TC) were linearly correlated (p < 0.001) with NNRs and NPs in vermicompost and organic manure. Similarly, comammox N. inopinata bacteria, NOB, AOB, and AOA were linearly correlated (p < 0.001) with NNR and NP. These results indicated that vermicompost promoted nitrification activity by increasing microbial diversity and abundance, supplying nutrients and organic matter for microbial growth, and facilitating complex microbial interactions. It may be concluded that the influence of vermicompost, which played a great role in PTE concentration reduction, increased chemical, and biological properties, increased the growth rate of nitrifying bacteria/archaea and the nitrogen cycle.
Collapse
Affiliation(s)
- Nazmul Huda
- Agricultral and Environmental Lab, Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Rasel Rana
- Agricultral and Environmental Lab, Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Abdullah Al-Mamun
- Agricultral and Environmental Lab, Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Shabiha Tasbir Rahman
- Agricultral and Environmental Lab, Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Khasrul Alam
- Agricultral and Environmental Lab, Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Agricultral and Environmental Lab, Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| |
Collapse
|
3
|
Yang Y. Improvement of rural soil properties and states by biomass carbon under the concept of sustainability: A research progress. Front Chem 2022; 10:1078170. [DOI: 10.3389/fchem.2022.1078170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Biomass carbon is a highly aromatic carbonaceous solid obtained by thermochemical reaction of biomass raw materials. It is frequently used in the research and application of soil properties and states improvement. Biomass carbon has abundant porous structure, high specific surface area and surface functional groups. After being applied to the soil, it has a significant impact on manipulating the physichemical properties of the soil, enhancing the microbial environment and remediating soil pollutants, which is conducive to the resource utilization of agricultural wastes and the long-term preservation of the environment. Based on 328 moderately to highly relevant literatures on biomass carbon and rural soil property improvement since 2010, this paper reviewed the contemporary research progress of biomass carbon application in soil property improvements utilizing the concept of sustainable development. In order to provide beneficial illumination for the complete implementation of biomass carbon in improving rural soil properties, this paper primarily evaluated the principle as well as mechanism of promoting sustainable soil properties. It tends to prospect the application and development aspirations of biomass carbon in soil ecological restoration, crop growth, development.
Collapse
|