1
|
Murtaza G, Hassan NE, Usman M, Deng G, Ahmed Z, Iqbal J, Elshikh MS, Rizwana H, Ali B, Iqbal R, Lackner M. Synergistic effects of allantoin and Achyranthes japonica-biochar profoundly alleviate lead toxicity during barley growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117784. [PMID: 39862697 DOI: 10.1016/j.ecoenv.2025.117784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil. An experiment was performed with 7 treatments: Control, Pb2+ (10 mg kg-1) only, biochar (4 %) only, allantoin (4 g kg-1) only, biochar combined with Pb2+, allantoin combined with biochar, as well as a combination of allantoin and biochar with Pb2+. Lead toxicity alone markedly diminished plant growth metrics, including root and shoot length, biomass (wet and dry), chlorophyll concentration, and grain production. The application of biochar, allantoin, or their joint administration markedly enhanced the length of shoots (by 50.3 %, 29 %, and 70 %), length of roots (by 69 %, 50 %, and 69 %), and fresh biomass of shoots (by 5 %, 29 %, and 5 %), respectively. This enhancement is ascribed to improved soil characteristics and more efficient absorption of nutrients. The application of biochar, allantoin and their combination improved the tolerance against Pb2+ by increasing the total chlorophyll level by 12 %, 16 %, and 17 %, respectively, vs. the control. Likewise, these amendments significantly (p < 0.05) improved the activity of antioxidant enzymes, including SOD, POD, and CAT by 49 %, 29 %, and 49 %, respectively. The resistance towards Pb2+ was enhanced by biochar, allantoin, and their combined application, with lower Pb2+ concentrations in shoots (59.9 %, 40.1 %, and 49.8 %), roots (48.2 %, 24.1 %, and 58.3 %), and grains (60.2 %, 29.7 %, and 40.1 %) compared to solely Pb-stress, respectively. In summary, converting the weed Achyranthes japonica into biochar and integrating it with allantoin provides an eco-friendly approach to control its proliferation while efficiently alleviating Pb-induced toxicity in plants.
Collapse
Affiliation(s)
- Ghulam Murtaza
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China; School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650500, China.
| | | | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China.
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China; Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang 848300, China; College of Life Science, Shenyang Normal University, Shenyang 110034, China.
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa 24420, Pakistan.
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Punjab 64200, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna 1200, Austria.
| |
Collapse
|
2
|
Zhu B, Deng Y, Hou R, Wang R, Liu C, Jia Z. Mechanisms of heavy metal-induced rhizosphere changes and crop metabolic evolution: The role of carbon materials. ENVIRONMENTAL RESEARCH 2024; 263:120196. [PMID: 39427949 DOI: 10.1016/j.envres.2024.120196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
To investigate the effects of modified carbon-based materials on soil environmental remediation and crop physiological regulation, this research relied on rice pots with lead (Pb) and cadmium (Cd) composite contamination. Dolomite, montmorillonite, attapulgite and sepiolite modified biochar with different doses have been developed to explore the mechanisms on heavy metal passivation, nutrient improvement, microbial activation, and crop growth. The results indicated that the modified materials effectively reduced heavy metal bioavailability and accumulation in plant tissues through adsorption complexation. Specifically, under montmorillonite and sepiolite modified treatments, the Grains-Pb content significantly decreased by 29.23-30.31% and 27.49-30.58%, compared to the control group (CK). Meantime, carbon-based materials increased available nutrient levels, providing a biological substrate for soil microorganisms metabolism. The content of ammonium nitrogen (NH4+-N) and available phosphorus (AP) in different proportions of montmorillonite modified biochar increased by 10.99-13.98% and 55.76-77.86%, respectively, compared to CK. Furthermore, sepiolite modified biochar enhanced bacterial community diversity, significantly improving the tolerance and resistance of bacterial communities such as Proteobacteria and Acidobacteria to heavy metals. Meanwhile, carbon-based materials enhanced community stability and network complexity, improving microbial stress resistance to adverse environments. In summary, montmorillonite and sepiolite modified biochar regulated microbial community interaction mechanisms by mitigating the physiological toxicity of heavy metals. This process enhanced soil available nutrients and ecological function stability, which had significant implications for improving crop growth and quality.
Collapse
Affiliation(s)
- Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yanling Deng
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Rui Wang
- Heilongjiang province Five Building construction Engineering Co LTD, Harbin, Heilongjiang, 150090, China
| | - Chao Liu
- Heilongjiang Province River and Lake chief System Security center, Harbin, Heilongjiang, 150000, China
| | - Zilin Jia
- Heilongjiang province Five Building construction Engineering Co LTD, Harbin, Heilongjiang, 150090, China
| |
Collapse
|
3
|
Muthu-Pandian Chanthini K, Pavithra GS, Murugan P, Malarvizhi P, Deva-Andrews A, Ramasubramanian R, Thulasi-Raman N, Rajagopal R, Senthil-Nathan S, Malafaia G. Enhancement of root abscisic acid mediated osmotic regulation by macroalgal compounds promotes adaptability of rice (Oryza sativa L.) in response to progressive metal ion mediated environmental stress. ENVIRONMENTAL RESEARCH 2024; 259:119485. [PMID: 38917933 DOI: 10.1016/j.envres.2024.119485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Soil deterioration is a major cause of poor agricultural productivity, necessitating sufficient nutrient inputs like fertilizers and amendments for sustainable use. As one such strategy, the current study evaluates the potential of Sargassum wightii, a brown seaweed extract, as an osmopriming agent to improve seed germination, early establishment, and competent seedling performances in acidic soil. The elemental makeup of seaweed extract (BS) showed that it included major plant macro (Potassium, Nitrogen and Phosphorous), as well as micronutrients (Magnesium and Iron) and trace elements (Zinc, Copper, and Molybdenum). While seed germination was impacted by H+ ion toxicity, seeds primed with BS emerged earlier and showed a higher germination percentage (98.2%) and energy (92.4%). BS treatments enhanced seedling growth by 63% and had a positive effect on root growth (68.2%) as well as increases in root surface area (10%) and volume (67.01%). Stressed seedlings had 76.39% and 63.2% less carotenoid and chlorophyll, respectively. In seedlings treated with BS, an increase in protein and Total Soluble Sugars content of 14.56 and 7.19%, respectively, was seen. Fourier Transform-Infra Red analysis of postharvest soil indicated improved soil health with absorbance corresponding to enhanced soil water holding capacity and organic matter. Increased abscisic acid synthesis rate and associated antioxidant enzyme system (Malondialdehyde, Glutathione peroxidases and ascorbate peroxidase) activation, along with enhanced H+ adenosine triphosphate-ase and glutathione activities, help ameliorate and deport H+ ions from cells, scavenge Reactive Oxygen Species, thus protecting cells from injury. Seaweed extract successfully reduced H+-induced ion toxicities in rice by promoting their germination, physiological, metabolically, and growth parameters that could ultimately increase their productivity and yield in a sustainable and environmentally friendly manner.
Collapse
Affiliation(s)
- Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Ganesh-Subbaraja Pavithra
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Ponnusamy Murugan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Pauldurai Malarvizhi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Arulsoosairaj Deva-Andrews
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Narayanan Thulasi-Raman
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Rajakrishnan Rajagopal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| | - Guilherme Malafaia
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210, Sarajevo, Bosnia and Herzegovina; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
4
|
Li Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167774. [PMID: 37848152 DOI: 10.1016/j.scitotenv.2023.167774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Biofilm formation represents a pivotal and adaptable trait among microorganisms within natural environments. This attribute plays a multifaceted role across diverse contexts, including environmental, aquatic, industrial, and medical systems. While previous research has primarily focused on the adverse impacts of biofilms, harnessing their potential effectively could confer substantial advantages to humanity. In the face of escalating environmental pressures (e.g., drought, salinity, extreme temperatures, and heavy metal pollution), which jeopardize global crop yields, enhancing crop stress tolerance becomes a paramount endeavor for restoring sufficient food production. Recently, biofilm-forming plant growth-promoting bacteria (PGPB) have emerged as promising candidates for agricultural application. These biofilms are evidence of microorganism colonization on plant roots. Their remarkable stress resilience empowers crops to thrive and yield even in harsh conditions. This is accomplished through increased root colonization, improved soil properties, and the synthesis of valuable secondary metabolites (e.g., ACC deaminase, acetin, 2,3-butanediol, proline, etc.). This article elucidates the mechanisms underpinning the role of biofilm-forming PGPB in bolstering plant growth amidst environmental challenges. Furthermore, it explores the tangible applications of these biofilms in agriculture and delves into strategies for manipulating biofilm formation to extract maximal benefits in practical crop production scenarios.
Collapse
Affiliation(s)
- Yujia Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
5
|
Kumar S, Chandra R, Behera L, Sudhir I, Meena M, Singh S, Keswani C. Microbial consortium mediated acceleration of the defense response in potato against Alternaria solani through prodigious inflation in phenylpropanoid derivatives and redox homeostasis. Heliyon 2023; 9:e22148. [PMID: 38045140 PMCID: PMC10692827 DOI: 10.1016/j.heliyon.2023.e22148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
The present study was carried out in a pot experiment to examine the bioefficacy of three biocontrol agents, viz., Trichoderma viride, Bacillus subtilis, and Pseudomonas fluorescens, either alone or in consortium, on plant growth promotion and activation of defense responses in potato against the early blight pathogen Alternaria solani. The results demonstrate significant enhancement in growth parameters in plants bioprimed with the triple-microbe consortium compared to other treatments. In potato, the disease incidence percentage was significantly reduced in plants treated with the triple-microbe consortium compared to untreated control plants challenged with A. solani. Potato tubers treated with the consortium and challenged with pathogen showed significant activation of defense-related enzymes such as peroxidase (PO) at 96 h after pathogen inoculation (hapi) while, both polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) at 72 hapi, compared to the individual and dual microbial consortia-treated plants. The expression of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) and the accumulation of pathogenesis-related proteins such as chitinase and β-1,3-glucanase were observed to be highest at 72 hapi in the triple microbe consortium as compared to other treatments. HPLC analysis revealed significant induction in polyphenolic compounds in triple-consortium bioprimed plants compared to the control at 72 hapi. Histochemical analysis of hydrogen peroxide (H2O2) clearly showed maximum accumulation of H2O2 in pathogen-inoculated control plants, while the lowest was observed in triple-microbe consortium at 72 hapi. The findings of this study suggest that biopriming with a microbial consortium improved plant growth and triggered defense responses against A. solani through the induction of systemic resistance via modulation of the phenylpropanoid pathway and antioxidative network.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, 474002, India
| | - Ram Chandra
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Lopamudra Behera
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ichini Sudhir
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, University Collage of Science, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Shailendra Singh
- Department of Biotechnology, Invertis University, Bareilly, 243123, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
6
|
Yao S, Zhou B, Duan M, Cao T, Wen Z, Chen X, Wang H, Wang M, Cheng W, Zhu H, Yang Q, Li Y. Combination of Biochar and Trichoderma harzianum Can Improve the Phytoremediation Efficiency of Brassica juncea and the Rhizosphere Micro-Ecology in Cadmium and Arsenic Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:2939. [PMID: 37631151 PMCID: PMC10458205 DOI: 10.3390/plants12162939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Phytoremediation is an environment-friendly method for toxic elements remediation. The aim of this study was to improve the phytoremediation efficiency of Brassica juncea and the rhizosphere soil micro-ecology in cadmium (Cd) and arsenic (As) contaminated soil. A field experiment was conducted with six treatments, including a control treatment (CK), two treatments with two contents of Trichoderma harzianum (T1: 4.5 g m-2; T2: 9 g m-2), one biochar treatment (B: 750 g m-2), and two combined treatments of T1B and T2B. The results showed Trichoderma harzianum promoted the total chlorophyll and translocation factor of Brassica juncea, while biochar promoted plant biomass compared to CK. T2B treatment showed the best results, which significantly increased Cd accumulation by 187.49-308.92%, and As accumulation by 125.74-221.43%. As a result, the soil's total Cd content was reduced by 19.04% to 49.64% and total As contents by 38.76% to 53.77%. The combined amendment increased the contents of soil available potassium, phosphorus, nitrogen, and organic matter. Meanwhile, both the activity of glutathione and peroxidase enzymes in plants, together with urease and sucrase enzymes in soil, were increased. Firmicutes (dominant bacterial phylum) and Ascomycota (dominant fungal phylum) showed positive and close correlation with soil nutrients and plant potentially toxic elements contents. This study demonstrated that phytoremediation assisted by biochar and Trichoderma harzianum is an effective method of soil remediation and provides a new strategy for enhancing plant remediation efficiency.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Manli Duan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Tao Cao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Zhaoquan Wen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Xiaopeng Chen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hongyan Zhu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Qiang Yang
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| | - Yujin Li
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| |
Collapse
|
7
|
Dong F, Zhu Y, Zhu X, Zhang C, Tao Y, Shao T, Wang Y, Luo X. Fungal community remediate quartz tailings soil under plant combined with urban sludge treatments. Front Microbiol 2023; 14:1160960. [PMID: 37152723 PMCID: PMC10157048 DOI: 10.3389/fmicb.2023.1160960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tailings can cause extensive damage to soil structure and microbial community. Phytoremediation is an effective strategy for remedied tailings soil due to its environmentally friendly and low-cost advantage. Fungi play a crucial role in nutrient cycling, stress resistance, stabilizing soil structure, and promoting plant growth. However, the fungal community variation in phytoremediation remains largely unexplored. Methods We analyzed soil fungal community based on high-throughput sequencing during three plant species combined with urban sludge to remediate quartz tailings soil. Results The results indicated that the fungal diversity was significantly increased with plant diversity, and the highest fungal diversity was in the three plant species combination treatments. Moreover, the fungal diversity was significantly decreased with the addition of urban sludge compared with plant treatments, while the abundance of potential beneficial fungi such as Cutaneotrichosporon, Apiotrichum, and Alternaria were increased. Notably, the fungal community composition in different plant species combination treatments were significant difference at the genus level. The addition of urban sludge increased pH, available phosphorus (AP), and available nitrogen (AN) content that were the main drivers for fungal community composition. Furthermore, the fungal networks of the plant treatments had more nodes and edges, higher connectedness, and lower modularity than plant combined with urban sludge treatments. Conclusion Our results showed that three plant species combined with urban sludge treatments improved fungal community and soil properties. Our results provide insights for quartz tailings soil remediation using plant-fungi- urban sludge.
Collapse
Affiliation(s)
- Fabao Dong
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Yujia Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xunmei Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Chengzhi Zhang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yingying Tao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Taotao Shao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yue Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Xia Luo
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| |
Collapse
|
8
|
Adedayo AA, Babalola OO. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J Fungi (Basel) 2023; 9:239. [PMID: 36836352 PMCID: PMC9966197 DOI: 10.3390/jof9020239] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The fungi species dwelling in the rhizosphere of crop plants, revealing functions that endeavor sustainability of the plants, are commonly referred to as 'plant-growth-promoting fungi' (PGPF). They are biotic inducers that provide benefits and carry out important functions in agricultural sustainability. The problem encountered in the agricultural system nowadays is how to meet population demand based on crop yield and protection without putting the environment and human and animal health at risk based on crop production. PGPF including Trichoderma spp., Gliocladium virens, Penicillium digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, Arbuscular mycorrhizal fungi, etc., have proven their ecofriendly nature to ameliorate the production of crops by improving the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the abundant production of crops. PGPF's potential mode of action is as follows: the mineralization of the major and minor elements required to support plants' growth and productivity. In addition, PGPF produce phytohormones, induced resistance, and defense-related enzymes to inhibit or eradicate the invasion of pathogenic microbes, in other words, to help the plants while encountering stress. This review portrays the potential of PGPF as an effective bioagent to facilitate and promote crop production, plant growth, resistance to disease invasion, and various abiotic stresses.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|