1
|
Xu M, Chen HQ, Gao P, Shen XX. Fulvic acid impact on constructed wetland-microbial electrolysis cell system performance: Metagenomic insights. BIORESOURCE TECHNOLOGY 2024; 413:131504. [PMID: 39303948 DOI: 10.1016/j.biortech.2024.131504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
This study explores the roles of fulvic acid (FA) in both a conventionally constructed wetland (CCW) and a newly constructed wetland-microbial electrolysis cell (ECW). The results showed that FA increased the average removal efficiency of chemical oxygen demand, total phosphorus, total nitrogen, and ammonia nitrogen in ECW by 8.6, 46.2, 33.0, and 27.9 %, respectively, compared to CCW, and reduced the global warming potential by > 60 %. FA promoted the proliferation of electroactive bacteria (e.g., Chlorobaculum and Candidatus Tenderia) and FA-degrading bacteria (e.g., Anaerolineaceae and Gammaproteobacteria) and reduced methanogens (e.g., Methanothrix) via type-changing. The study's findings suggest that FA influences pollutant removal and microbiome dynamics by altering dissolved oxygen levels and redox potential. In summary, FA and ECW enhanced the efficiency of constructed wetlands by facilitating electron transfer and consumption, and supporting microbial growth and metabolism.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao-Xiao Shen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Abdolmaleki A, Mohamadi Z, Bazyar Z. A simple, efficient, and rapid method for dye removal from wastewater using an IDA-GO@Fe 3O 4 magnetic nanocomposite. RSC Adv 2024; 14:27843-27851. [PMID: 39224654 PMCID: PMC11367389 DOI: 10.1039/d4ra04555f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
With the rapid advancement of the dye and textile industry, there has been increasing concern regarding the contamination of wastewater with dyes and its potential influence on human health. Therefore, the removal of dye pollutants from wastewater has become a matter of significant importance. In this study, a magnetically responsive iminodiacetic acid-functionalized graphene oxide (IDA-GO@Fe3O4) nanocomposite was utilized for the adsorption of both cationic and anionic dyes. The IDA-GO@Fe3O4 nanocomposite was synthesized and thoroughly characterized using several analytical techniques such as XRD, SEM, FT-IR, TGA and BET analysis. The prepared magnetic nanocomposite had a much higher thermal stability than pure graphene oxide. The negatively charged surface of the IDA-GO@Fe3O4 magnetic nanocomposite made it an excellent candidate for removing cationic dyes. The effects of various factors, including pH, initial concentration (isotherms), amount of adsorbent, and contact time (kinetics), on adsorption efficiency were investigated. The optimal conditions for the removal of methylene blue were determined to be 0.005 g of adsorbent, a pH of 10, and a contact time of 160 minutes. In contrast, the optimal conditions for the removal of methylene orange were found to be 0.005 g of adsorbent, a pH of 2, and a contact time of 120 minutes. Experimental data shows that the adsorption capacity for MB is reported as 437.10 mg g-1 at pH 10, while for MO it is 165.65 mg g-1 at pH 2. Furthermore, the adsorption process followed a pseudo-second-order kinetic model and Langmuir isotherm model. The proposed adsorption mechanism of MB and MO dyes onto the IDA-GO@Fe3O4 nanocomposite involve various interactions, such as electrostatic interactions, H-bonding, n-π, and π-π interactions. Importantly, the IDA-GO@Fe3O4 nanocomposite exhibited outstanding recyclability, retaining its effectiveness even after five successive cycles for MB. This suggests a straightforward method for developing high-performance IDA-GO@Fe3O4 magnetic nanocomposites for efficient wastewater purification and environmental remediation applications.
Collapse
Affiliation(s)
- Amir Abdolmaleki
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71467-13565 Iran +98-71-3613-7310 +98-71-3613-7187
| | - Zahra Mohamadi
- Department of Chemistry, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Zahra Bazyar
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology Behbahan 63616-63973 Iran
| |
Collapse
|
3
|
Liang ZH, Sun H, Li Y, Hu A, Tang Q, Yu HQ. Enforcing energy consumption promotes microbial extracellular respiration for xenobiotic bioconversion. Environ Microbiol 2023; 25:2943-2957. [PMID: 37602917 DOI: 10.1111/1462-2920.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Extracellular electron transfer (EET) empowers electrogens to catalyse the bioconversion of a wide range of xenobiotics in the environment. Synthetic bioengineering has proven effective in promoting EET output. However, conventional strategies mainly focus on modifications of EET-related genes or pathways, which leads to a bottleneck due to the intricate nature of electrogenic metabolic properties and intricate pathway regulation that remain unelucidated. Herein, we propose a novel EET pathway-independent approach, from an energy manipulation perspective, to enhance microbial EET output. The Controlled Hydrolyzation of ATP to Enhance Extracellular Respiration (CHEER) strategy promotes energy utilization and persistently reduces the intracellular ATP level in Shewanella oneidensis, a representative electrogenic microbe. This approach leads to the accelerated consumption of carbon substrate, increased biomass accumulation and an expanded intracellular NADH pool. Both microbial electrolysis cell and microbial fuel cell tests exhibit that the CHEER strain substantially enhances EET capability. Analysis of transcriptome profiles reveals that the CHEER strain considerably bolsters biomass synthesis and metabolic activity. When applied to the bioconversion of model xenobiotics including methyl orange, Cr(VI) and U(VI), the CHEER strain consistently exhibits enhanced removal efficiencies. This work provides a new perspective and a feasible strategy to enhance microbial EET for efficient xenobiotic conversion.
Collapse
Affiliation(s)
- Zi-Han Liang
- Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, China
| | - Hong Sun
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yang Li
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qiang Tang
- Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, China
| | - Han-Qing Yu
- Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Wang P, Shao Y, Geng Y, Mushtaq R, Yang W, Li M, Sun X, Wang H, Chen G. Advanced treatment of secondary effluent from wastewater treatment plant by a newly isolated microalga Desmodesmus sp. SNN1. Front Microbiol 2023; 14:1111468. [PMID: 36778876 PMCID: PMC9909749 DOI: 10.3389/fmicb.2023.1111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Secondary effluents contain considerable amounts of nitrogen and phosphorous, which if dumped untreated can cause eutrophication of the receiving water bodies. Microalgae can remove these nutrients and other pollutants from the wastewater effluents and play an effective role in the secondary effluent treatment. In this study, six microalgae strains (SNN1, SNN2, SNN3, SNN4, SNS1, and SNS2) were isolated and screened from the water and mud of Yingxue Lake of Shandong Jianzhu University, and their efficiencies for the removal of COD, NH4 +-N, TN, and TP in the secondary effluent were assessed. By comparing the growth performances and nutrient removal ability of algal strains in domestic sewage, we found that SNN1 (identified and named as Desmodesmus sp. SNN1) has the highest efficiency for biomass accumulation and sewage purification. Hence, the algal strain SNN1 was selected for further screening and optimization experiments. The strain showed higher biomass yield and better nutrient removal rate when the pH of secondary effluent was 9.0 and the initial inoculum concentration (optical density at 680 nm) of algal strain was 0.4. After 12 days of treatment, the concentrations of COD, NH4 +-N, TN, and TP in the secondary effluent were 31.79, 0.008, 8.631, and 0.069 mg/L, respectively. Therefore, SNN1 with the removal rates of 52.69% (COD), 99.99% (NH4 +-N), 89.09% (TN), and 94.64% (TP) displayed its high potential in nutrient removal. In addition, it also yielded 5.30 mg/L of chlorophyll a and 168.33 mg/L of lipids. These results demonstrated that this strain exhibited an effective treatment capacity for secondary effluent and microalgal oil production. This study is helpful to provide a strategy for the resource utilization of secondary effluent and the conservation of freshwater resources required by microalgae culture.
Collapse
Affiliation(s)
- Pengchong Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China,School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yahui Shao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Yun Geng
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Rubina Mushtaq
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China,Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Wenlong Yang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Mei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xiuqin Sun
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China,Hongbo Wang,
| | - Gao Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China,*Correspondence: Gao Chen,
| |
Collapse
|