1
|
Renu, Nidhi, Kaur P, Komal, Minakshi, Paulik C, Kaushik A, Singhal S. Rational design of Boerhavia diffusa derived CoFe 2O 4-Carbon dots@Boehmite platform for photocatalysis and ultra trace monitoring of hazardous pesticide and UO 22+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125111. [PMID: 39270366 DOI: 10.1016/j.saa.2024.125111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
In view of exploiting natural resources for designing of effectual materials in favor of detection and obliteration of water pollutants, a fluorescent nanomaterial (CDBHCF) based on biomass derived carbon dots (CDs) was constructed. The CDs and cobalt ferrite (CF) particles were anchored on boehmite (BH) which served as a support material for CDs. The CDBHCF nanocomposite was prepared via facile hydrothermal treatment for selective recognition of Methyl parathion (MP) pesticide and uranyl ions (UO22+). The corresponding structural, morphological and opto-electronic properties of the nanomaterials have been investigated by different physicochemical techniques. The fluorescent CDBHCF probe was employed to detect extremely low concentration of MP and UO22+ with detection limit of 22.4 nM and 4.4 nM, respectively. Ultimately, the proposed sensing platform was validated through real sample analysis. Besides, CDBHCF nanocomposite was utilized for photocatalytic abolition of Tetracycline (TC) in water samples. Initially, the impact of various operational parameters on the degradation efficiency, including catalyst dosage and initial pH were thoroughly examined. Under optimized conditions, the fabricated CDBHCF nanocomposite demonstrated excellent results for photocatalytic degradation of TC (92 % degradation in 120 min) under visible light illumination. Thus, the proposed strategy delivered an innovative insight for dual purpose of CDBHCF nanocomposite: as a fluorescent probe for real time monitoring and as a photocatalyst for removal of pollutants via simple photocatalytic degradation.
Collapse
Affiliation(s)
- Renu
- Energy Research Centre, Panjab University, Chandigarh 160014, India
| | - Nidhi
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Paramdeep Kaur
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Komal
- Department of Chemistry, School of Basic Sciences, Manipal University, Jaipur, India
| | - Minakshi
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Linz, Austria
| | - Anupama Kaushik
- Energy Research Centre, Panjab University, Chandigarh 160014, India; Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India.
| | - Sonal Singhal
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
2
|
Al-Wasidi AS, Abdelrahman EA, Shah RK, Abdelhakim NA, Saad FA. Facile synthesis of novel nanocomposite composed of Co 3O 4, MgO, and Mg 3B 2O 6 for malachite green dye decontamination from aqueous media. Sci Rep 2024; 14:30570. [PMID: 39702494 DOI: 10.1038/s41598-024-82321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Malachite green is a hazardous chemical that poses serious threats to aquatic ecosystems due to its toxicity and persistence in the environment. Additionally, it is harmful to human health, recognized as a carcinogenic and mutagenic agent that can cause long-term adverse effects. Hence, in this study, malachite green dye was efficiently removed from aqueous media using Co3O4/MgO/Mg3B2O6 novel nanocomposites, known as CBM600 and CBM800. The CBM600 and CBM800 nanocomposites were facilely fabricated through the Pechini sol-gel procedure at 600 and 800 °C, respectively. Besides, X-ray diffraction analysis showed their crystalline structures, including Co3O4 and MgO in cubic systems, and Mg3B2O6 in an orthorhombic system. For the CBM600 and CBM800 nanocomposites, the average crystal sizes are 40.76 nm and 57.43 nm, with BET surface areas of 74.25 m2/g and 57.59 m2/g, respectively. The highest uptake capacities for malachite green dye by the CBM600 and CBM800 nanocomposites are 492.61 mg/g and 440.53 mg/g, respectively. The pseudo-second-order model and Langmuir isotherm were the best fits for the adsorption data. Also, the uptake of malachite green dye by the CBM600 and CBM800 nanocomposites is spontaneous, physical, and exothermic. The nanocomposites were regenerated using 6 M HCl and repeatedly used to remove malachite green dye with very small loss in efficiency, demonstrating their robust reusability.
Collapse
Affiliation(s)
- Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| | - Reem K Shah
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Nermin A Abdelhakim
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Fawaz A Saad
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| |
Collapse
|
3
|
Zhang H, Yang X, Zhang X, Liu W, Fan M, Wang L. Functionalized Cyclodextrin/Carboxymethyl Cellulose Composite Hydrogel with Double Network Structure for Adsorption of Heavy Metal Ions in Wastewater. Molecules 2024; 29:5414. [PMID: 39598802 PMCID: PMC11597103 DOI: 10.3390/molecules29225414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Heavy metal ions in industrial wastewater pose significant environmental and ecological threats. In this work, a hydrogel featuring a double network structure was synthesized via radical polymerization and cross-linking of β-cyclodextrin (CD) and carboxymethylcellulose (CMC) with acrylic acid (AA). The hydrogel's functional groups and microstructure were characterized using Fourier transform infrared spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Mechanical properties were evaluated through rheological and compression tests. The study examined the impact of initial metal ion concentration, adsorbent-ion contact time, and solution pH on adsorption capacity. The maximum adsorption capacities of the functionalized CD/CMC-PAA-MBA hydrogel for Cu2+, Pb2+, and Cd2+ ions were 158.12, 393.56, and 290.12 mg/g, respectively. Notably, the hydrogel exhibited the highest selectivity for Pb2+ in mixed solutions. The adsorption kinetics of the metal ions were modeled using the pseudo-second-order rate equation and the Langmuir adsorption isotherm.
Collapse
Affiliation(s)
- Hong Zhang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (H.Z.); (X.Y.); (X.Z.)
| | - Xiaodong Yang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (H.Z.); (X.Y.); (X.Z.)
| | - Xin Zhang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (H.Z.); (X.Y.); (X.Z.)
| | - Wenbin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150009, China;
| | - Meiqing Fan
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (H.Z.); (X.Y.); (X.Z.)
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, China
| |
Collapse
|
4
|
Khnifira M, Boumya W, Atarki J, Sadiq M, Abdennouri M, Barka N. Density Functional Theory analysis and molecular dynamic simulation to understand the mechanism of hazardous dyes adsorption onto cellulose in aqueous solution. Int J Biol Macromol 2024; 281:136970. [PMID: 39490471 DOI: 10.1016/j.ijbiomac.2024.136970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/13/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
This work examines the use of cellulose in the elimination of anionic dye, indigo carmine and methyl red, from aqueous media. Theoretical analyses revealed that the examined compounds had several reactive sites that encouraged dyes to adhere to the cellulose surface, and molecular dynamics simulations demonstrated that this adsorption occurred flat-lying on the cellulose (200) surface. However, it has been discovered that the reactivity of individual molecules is limited in its ability to foretell the effectiveness and characteristics of compound adsorption on cellulose. The capacity to model dye adsorption on polymeric surfaces in the presence of a simulated aqueous solution is one of the key benefits of molecular dynamics modeling, and it can reveal valuable information regarding the selected molecules' adsorption configuration and its competitiveness. Both dyes exhibit high adsorption on the cellulose adsorbent, indicating that chemical bonds play a major role in the adsorption capacity of the dyes. The order of adsorption energy indicates a clear selective adsorption tendency. The radial distribution function analysis shows that both dyes are chemisorbed at the cellulose surface. Quantum and dynamic descriptors have validated the experimental results in the literature. This offers valuable insights into the adsorption mechanism of anionic dyes on cellulose.
Collapse
Affiliation(s)
- Malika Khnifira
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500 Khouribga, Morocco
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500 Khouribga, Morocco
| | - Jamal Atarki
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500 Khouribga, Morocco
| | - Mhamed Sadiq
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500 Khouribga, Morocco
| | - Mohamed Abdennouri
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500 Khouribga, Morocco
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500 Khouribga, Morocco.
| |
Collapse
|
5
|
Tran GT, Nguyen LM, Nguyen TTT, Nguyen DH, Tran TV. Recent developments in the bio-mediated synthesis of CoFe 2O 4 nanoparticles using plant extracts for environmental and biomedical applications. NANOSCALE ADVANCES 2024:d4na00604f. [PMID: 39364297 PMCID: PMC11446309 DOI: 10.1039/d4na00604f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024]
Abstract
Conventional methods for the synthesis of nanoparticles often involve toxic chemicals, exacerbating environmental issues in the context of climate change and water scarcity. Green synthesis using plant extracts offers a sustainable and viable alternative for CoFe2O4 nanoparticle production, but understanding the mechanisms and applications of this method is challenging. Here, we review the synthesis and applications of CoFe2O4 nanoparticles using plant extracts with emphasis on biomedical activity and water treatment. Plant extract-mediated CoFe2O4 nanoparticles exhibit high surface area, small particle size, unique morphology, sufficient band gap energy, and high saturation magnetization. These nanoparticles demonstrate strong antimicrobial and anticancer activities, highlighting their potential in biomedical treatments. Green CoFe2O4 are effective in removing organic dyes, heavy metals, and pharmaceuticals from water, promoting cleaner water resources. Challenges such as scalability and reproducibility still remain, but ongoing research aims to optimize synthesis protocols and explore new applications. This work underscores the importance of sustainable nanotechnology in addressing environmental challenges.
Collapse
Affiliation(s)
- Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam +84-28-39-404-759 +84-28-3941-1211
- Nong Lam University Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | | | - Dai Hai Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29, District 12 Ho Chi Minh City 700000 Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam +84-28-39-404-759 +84-28-3941-1211
| |
Collapse
|
6
|
Li J, Yin H, Liu S, Xu C, Cai Z. Significantly enhanced catalytic performance of Pd nanocatalyst on AlOOH featuring abundant solid surface frustrated Lewis pair for improved hydrogen activation. RSC Adv 2024; 14:12593-12599. [PMID: 38638811 PMCID: PMC11024899 DOI: 10.1039/d4ra01852d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The catalytic performance of a catalyst is significantly influenced by its ability to activate hydrogen. Constructing frustrated Lewis pairs (FLPs) with the capacity for hydrogen dissociation on non-reducible supports remains a formidable challenge. Herein, we employed a straightforward method to synthesize a layered AlOOH featuring abundant OH defects suitable for constructing solid surface frustrated Lewis pair (ssFLP). The results indicated that the AlOOH-80 (synthesized at 80 °C) possessed an appropriate crystalline structure conducive to generating numerous OH defects, which facilitated the formation of ssFLP. This was further evidenced by the minimal water adsorption in the AlOOH-80, inversely correlated with the quantity of defects in the catalyst. As expected, the Pd loaded onto AlOOH (Pd/AlOOH-80) exhibited excellent catalytic activity in hydrogenation reactions, attributed to abundant defects available for constructing ssFLP. Remarkably, the Pd/AlOOH-80 catalyst, with larger-sized Pd nanoparticles, displayed notably superior activity compared to commercial Pd/Al2O3 and Pd/C, both featuring smaller-sized Pd nanoparticles. Evidently, under the influence of ssFLP, the size effect of Pd nanoparticles did not dominate, highlighting the pivotal role of ssFLP in enhancing catalytic performance. This catalyst also exhibited exceptionally high stability, indicating its potential for industrial applications.
Collapse
Affiliation(s)
- Junwei Li
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
| | - Hongshuai Yin
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
| | - Sisi Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
| | - Chaofa Xu
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University Zhangzhou 363000 China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University Zhangzhou 363000 China
| |
Collapse
|
7
|
Qin WH, Li MX, Zhang YB, Li W, Jia R, Xiong YS, Lu HQ, Zhang SY. High capacity and selective adsorption of Congo red by cellulose-based aerogel with mesoporous structure: Adsorption properties and statistical data simulation. Int J Biol Macromol 2024; 259:129137. [PMID: 38171438 DOI: 10.1016/j.ijbiomac.2023.129137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Large quantities of organic dyes are discharged into the environment, causing serious damage to the ecosystem. Therefore, it is urgent to develop inexpensive adsorbents to remove organic dyes. A novel cellulose-based aerogel (MPPA) with 3D porous structure was prepared by using cassava residue (cellulose) as basic construction blocks, doping ferroferric oxide (Fe3O4) for magnetic separation, and applying polyethyleneimine (PEI) as functional material for highly efficient and selective capture of Congo red (CR). MPPA exhibited porous network structure, numerous active capture sites, nontoxicity, high hydrophilicity, and excellent thermal stability. MPPA showed superior adsorption property for CR, with an equilibrium adsorption capacity of 2018.14 mg/g, and still had an adsorption property of 1189.31 mg/g after five recycling procedures. In addition, MPPA has excellent selectivity for CR in four binary dye systems. The adsorption behavior of MPPA on CR was further explored using a multilayer adsorption model, EDR-IDR hybrid model and AOAS model. Electrostatic potential and independent gradient models were used to further verify the possible interaction between MPPA and CR molecules. In conclusion, MPPA is a promising adsorbent in the field of treating anionic dyes.
Collapse
Affiliation(s)
- Wen-Hao Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ming-Xing Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yi-Bing Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wen Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Ran Jia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan-Shu Xiong
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hai-Qin Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.
| | - Si-Yuan Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.
| |
Collapse
|
8
|
Kumaravel S, Avula B, Chandrasatheesh C, Niyitanga T, Saranya R, Hasan I, Abisheik T, Rai RS, Pandiyan V, Balu K. Rational construction of MOF derived α-Fe 2O 3/g-C 3N 4 composite for effective photocatalytic degradation of organic pollutants and electrocatalytic oxygen evolution reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123972. [PMID: 38306923 DOI: 10.1016/j.saa.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
In recent years, researchers have been actively investigating metal oxide-based materials with narrow bandgaps due to their potential applications toward wastewater treatment and oxygen evolution reactions (OER). In this study, we successfully synthesized g-C3N4 (GCN), Fe2O3, and Fe2O3/g-C3N4 (FGCN) using thermal polymerization and hydrothermal methods. We characterized the physicochemical and structural properties of these materials through various analytical techniques including XRD, FT-IR, UV-DRS, XPS, FE-SEM, and HR-TEM analyses, confirming the effective construction of the FGCN composite catalyst. We evaluated the photocatalytic activity of Fe2O3, GCN, and FGCN composite catalysts by assessing their ability to degrade rhodamine B (RhB) and crystal violet (CV) by exposing them to sunlight for 150 min. Among these catalysts, the FGCN composite demonstrated excellent photocatalytic performance, achieving 93 % and 95 % degradation of RhB and CV, respectively, under 150 min of sunlight exposure. The developed Fe2O3/g-C3N4@Nickel foam (FGCN@NF) composite catalyst exhibits remarkable OER performance, with a reduced Tafel slope of 64 mV/dec and a low overpotential of 290 mV at a current density of 10 mA/cm2 and shows excellent durable performance over a long time (15 h). Total Organic Carbon (TOC) analysis confirmed the mineralization of both dyes. The photocatalytic performance remained largely unchanged after five consecutive experiments, demonstrating excellent reusability and photostability. Trapping experiments revealed that O2●- is the main species responsible for the photocatalytic decomposition of various dyes by the FGCN composite catalyst. Therefore, the development of a versatile photo/electrocatalytic system that can efficiently promote energy conversion in environmental applications has attracted great attention.
Collapse
Affiliation(s)
- Sakthivel Kumaravel
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Balakrishna Avula
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, Andhra Pradesh 518501, India
| | | | - Theophile Niyitanga
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Rajasekar Saranya
- Department of Biotechnology, SRM Institute of Science and Technology, Ramapuram, Chennai 600089, Tamil Nadu, India
| | - Imran Hasan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - T Abisheik
- Department of Physics, Nehru Memorial College (Autonomous), Puthanampatti (Affiliated to Bharathidasan University), Tiruchirappalli 621007, Tamil Nadu, India
| | - Rajakumar S Rai
- Division of Mechanical Engineering, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - V Pandiyan
- Department of Physics, Nehru Memorial College (Autonomous), Puthanampatti (Affiliated to Bharathidasan University), Tiruchirappalli 621007, Tamil Nadu, India
| | - Krishnakumar Balu
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India; Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, E.T.S. de Ingenieros, Universidad de Sevilla, Avda. Camino de los Descubrimientos s/n., 41092 Sevilla, Spain.
| |
Collapse
|
9
|
Li B, Zhao Y. Facile synthesis and ultrastrong adsorption of a novel polyacrylamide-modified diatomite/cerium alginate hybrid aerogel for anionic dyes from aqueous environment. Int J Biol Macromol 2023; 253:127114. [PMID: 37778584 DOI: 10.1016/j.ijbiomac.2023.127114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
An eco-friendly cationic polyacrylamide (CPAM)-modified diatomite/Ce(III)-crosslinked sodium alginate hybrid aerogel (CPAM-Dia/Ce-SA) was synthesized successfully and characterized by SEM-EDS, XRD, FTIR, UV-Vis and XPS. Adsorption performance, interaction mechanism and reusability of CPAM-Dia/Ce-SA used for the removal of acid blue 113 (AB 113), acid blue 80 (AB 80), acid yellow 117 (AY 117), Congo red (CR) and Direct Green 6 (DG 6) anionic dyes from aqueous media were investigated in detail. The results demonstrate that CPAM-Dia/Ce-SA aerogel is macroscopic polymer hybrid spheres with a particle size of around 1.3 mm, unique undulating mountain-like surface and porous mesostructure, and exhibits outstanding adsorption capacity for anionic dyes and good reusability. The maximum adsorption amounts of AB 113, AB 80, AY 117, CR and DG 6 by CPAM-Dia/Ce-SA were 3008, 1208, 914, 1832 and 1232 mg/g at pH 2.0, 60 min contact time and 25 °C, and corresponding removal efficiency reached individually 97.5, 96.6, 99.7, 99.9 and 98.5 % respectively and were less affected by increasing pH up to 10.0. Dye adsorption behaviour and adsorption processes with spontaneous and exothermic nature were perfectly interpreted by the Langmuir and Pseudo-second-order rate models respectively. Physicochemical and multisite-H-bonding synergies promoted the ultrastrong biosorption of anionic dyes by CPAM-Dia/Ce-SA.
Collapse
Affiliation(s)
- Beigang Li
- Chemistry & Environment Science College, Inner Mongolia Normal University, China; Inner Mongolia Key Laboratory of Environmental Chemistry, Hohhot 010022, China.
| | - Yuting Zhao
- Chemistry & Environment Science College, Inner Mongolia Normal University, China; Inner Mongolia Key Laboratory of Environmental Chemistry, Hohhot 010022, China
| |
Collapse
|
10
|
Keshmiri-Naqab R, Taghavijeloudar M. Could organoclay be used as a promising natural adsorbent for efficient and cost-effective dye wastewater treatment? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118322. [PMID: 37311346 DOI: 10.1016/j.jenvman.2023.118322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
There is an urgent need for developing eco-friendly adsorbents for dye wastewater treatment with high efficiency and low cost. Meanwhile, organoclay has received an increasing attention as a natural adsorbent for dye removal. However, no comprehensive investigation has been conducted to evaluate the feasibility of this approach in terms of operation cost and removal efficiency. In this research, we intend to answer this question: could organoclay be used as an efficient and cost-effective approach for dye wastewater treatment? In line with that, after characterization of the Na-bentonite and modified clay by using SEM, EDX, FTIR and XRD, the performance of the organoclay was optimized in terms of AO7 dye removal efficiency and adsorption cost using response surface methods (RSM). Then, the organoclay performance was compared with other typical adsorbents activated carbon and chitosan. The characterization results proved that Na-bentonite was successfully modified by CTAB. According to RSM results, the maximum dye removal of 95% and the minimum adsorption cost of 0.009 $/g were achieved under optimum conditions of: pH: 5, AO7 concentration: 56 mg/L, contact time: 53 min and organoclay dosage: 0.8 g/L. While, in the case of other adsorbents of Na-bentonite, chitosan and activated carbon the maximum removal of 11%, 84% and 92% were achieved with 0.0136, 0.0324 and 0.1011 $/g, respectively. The adsorption kinetics and isotherms analyses revealed that the experimental data fitted well with the pseudo-second-order (R2 = 0.993) and Langmuir (R2 = 0.988). This study proved that organoclay can be used as a promising adsorbent for dye removal with low cost and high removal efficiency.
Collapse
Affiliation(s)
- Rasoul Keshmiri-Naqab
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran.
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
11
|
Li Z, Huang X, Du H, Deng X, Deng C, Wang S, Yue X, Su X. The selective and enhanced adsorptive behaviors of supramolecular recrystallized 1,3,5-benzenetricarboxylic acid assembled nano-bacterial cellulose. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
12
|
Sun Y, Pan Y, Zhang Z, Chen Z, Wang J, Wang B, Cheng Z, Ma W. Study on the role of AlOOH in fluorescence correction and depth purification of Cyclops water. CHEMOSPHERE 2023; 322:138190. [PMID: 36812996 DOI: 10.1016/j.chemosphere.2023.138190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Protein-like substances produced by biochemical reactions after disinfection of Zooplankton like Cyclops and humic substances in natural water are the main components of NOM (Natural organic matter). To eliminate early warning interference in the fluorescence detection of organic matter in natural water, a clustered flower-like AlOOH (aluminum oxide hydroxide) sorbent was prepared. HA (humic acid) and amino acids were selected as mimics of humic substances and protein-like substances in natural water. The results demonstrate that the adsorbent can selectively adsorb HA from the simulated mixed solution and restore the fluorescence properties of tryptophan and tyrosine. Based on these results, a stepwise fluorescence detection strategy was developed and used in natural water rich in zooplanktonic Cyclops. The results show that the established stepwise fluorescence strategy can well overcome the interference caused by fluorescence quenching. The sorbent was also used for water quality control to enhance coagulation treatment. Finally, trial runs of the water plant demonstrated its effectiveness and suggested a potential control method for early warning and monitoring of water quality.
Collapse
Affiliation(s)
- Yawen Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuzhen Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhe Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Chen
- School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Jiali Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Baodong Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Zihong Cheng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Wei Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
13
|
Al-Wasidi AS, Basha MT, Alghanmi RM, Al-Farraj ES, Abdelrahman EA. Facile Synthesis and Characterization of Sodium Magnesium Silicate Hydrate/Sodium Magnesium Silicate Hydroxide as Novel Nanostructures for the Efficient Removal of Methylene Blue Dye from Aqueous Media. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|