1
|
Xu Z, Li R, KuoK Ho Tang D, Zhang X, Zhang X, Liu H, Quan F. Enhancing nitrogen transformation and humification in cow manure composting through psychrophilic and thermophilic nitrifying bacterial consortium inoculation. BIORESOURCE TECHNOLOGY 2024; 413:131507. [PMID: 39303947 DOI: 10.1016/j.biortech.2024.131507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Excessive nitrogen release during composting poses significant challenges to both the environment and compost quality. Biological enhancement of humification and nitrogen conservation is an environmentally friendly and cost-effective approach to composting. The aim of this study was to develop a psychrophilic and thermophilic nitrifying bacterial consortium (CNB) and investigate its role in nitrogen transformation and humification during cow manure composting. Analysis revealed that CNB inoculation promoted microbial proliferation and metabolism, significantly increased the number of nitrifying bacteria (p < 0.05), and elevated the activity of nitrite oxidoreductase and nxrA gene abundance. Compared to the control, CNB inoculation promoted the formation of NO3--N (77.87-82.35 %), while reducing NH3 (48.89 %) and N2O (20.05 %) emissions, and increased humus content (16.22 %). Mantel analysis showed that the higher abundance of nitrifying bacteria and nxrA facilitated the nitrification of NH4+-N. The improvement in nitrite oxidoreductase activity promoted NO3--N formation, leading to increased humus content and enhanced compost safety.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Ronghua Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China
| | - Daniel KuoK Ho Tang
- School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ 85721, USA
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Hong Liu
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Zhai T, Zhao T, Zhong Y, Chen P, Li G, Teng L, Zhang L, Liu H. Research on the application of heterotrophic nitrification-aerobic denitrification bacteria in membrane bioreactor (MBR). Biotechnol Lett 2024; 46:1013-1025. [PMID: 39261356 DOI: 10.1007/s10529-024-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Inoculating heterotrophic nitrification-aerobic denitrification bacteria (HN-AD) to enhance membrane bioreactor (MBR) efficiency may result in the loss of functional bacteria. Therefore, this study compares the application results of enhancing MBR with a self-designed biological amplifier coupled with HN-AD against the performance of conventional MBR. After enhancement, the MBR achieved a removal efficiency of 96.7% for NH4+-N (100 mg/L) and 96.4% for COD (400 mg/L) in synthetic wastewater. There was a 33% increase in TN (100 mg/L) removal efficiency. The dominant bacteria in the MBR were Alcaligenes (48.4%) and Thauera (15.2%). Additionally, the abundance of denitrification genes (nirK, norB, nosZ) increased in the enhanced MBR, contributing to improved TN removal efficiency. The use of a biological amplifier effectively solved the problem of HN-AD loss in sewage treatment.
Collapse
Affiliation(s)
- Tianrui Zhai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yuhao Zhong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Peipei Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Guojian Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Liang Teng
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hao Liu
- Chongqing Lixiang Ecological Restoration Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
3
|
Fang J, Liao S, Gu T, Lu W, Lu X, Yu M, Li B, Ye J. Efficient nitrogen removal by heterotrophic nitrification-aerobic denitrification yeast Candida boidinii L21: Performance, pathway and application. BIORESOURCE TECHNOLOGY 2024; 414:131621. [PMID: 39393649 DOI: 10.1016/j.biortech.2024.131621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Efficient nitrogen removal yeasts are rarely encountered. Here, a heterotrophic nitrification-aerobic denitrification strain of Candida boidinii L21 was isolated. The optimal removal conditions for strain L21 were glucose as carbon source, C/N of 15, salinity of 10 ppt, pH of 7, shaking speed of 120 rpm, and temperature of 30 °C. Strain L21 removed NH4+-N, NO2--N, NO3--N (14---140 mg/L) and achieved nearly complete NO2--N, removal. Nitrogen balance and enzyme activity analysis indicated the nitrogen removal pathway of strain L21 through assimilation, nitrification, and denitrification pathways. When applied in wastewater and sludge, strain L21 reduced inorganic nitrogen levels within 4 days, with a 58-fold increase in nitrite removal compared to controls. These findings demonstrate that strain L21 holds great potential for enhancing nitrogen removal in wastewater treatment processes, providing valuable insights for improving environmental management practices.
Collapse
Affiliation(s)
- Jinkun Fang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Shaoan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Tengpeng Gu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Weihao Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiaohan Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Mianrong Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Binxi Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China.
| |
Collapse
|
4
|
Liu Z, Liu S, Ye Y, Tang Q, Tian W, Liu H, Li D, Jiang W, Wang Z, Liu D. Characteristics of a heavy metal resistant heterotrophic nitrification-aerobic denitrification bacterium isolated from municipal activated sludge. ENVIRONMENTAL RESEARCH 2024; 263:120111. [PMID: 39401605 DOI: 10.1016/j.envres.2024.120111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
The heterotrophic nitrification-aerobic denitrification (HNAD) is a new biological denitrification technology, the present study isolated a new HNAD strain named Cupriavidus metallidurans TX6 with heavy metal resistance. The gene expression, electron transport, enzyme activity and nitrogen removal property of strain TX6 were studied with different influencing factors. Strain TX6 has five nitrogen metabolism pathways (NH4+ → NH2OH → NO → NO2- → NH4+ → GOGAT/GDH; NH4+-N → NH2OH → NO → N2O → N2; NH4+ → NH2OH → NO → NO2- → NO3-; NO3- → NO2- → NH4+ → GOGAT/GDH; NO3-→ NO2- → NH4+ → GOGAT/GDH). Nitrogen balance analysis shows that 29 ± 4 mg/L of N was converted to intracellular nitrogen by assimilation and 50 ± 3 mg/L N loss may be attributed to aerobic denitrification. The results provide a theoretical basis for the HAND bacteria application in nitrogen removal from wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Zhuang Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Shixi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Qian Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Weimin Tian
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Huan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Daosheng Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
| | - Zijie Wang
- Gongcheng Middle School, 71 Taiping Street, Gongcheng, Guilin, Guangxi, 542500, PR China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
5
|
Wu T, Li J, Cao R, Chen X, Wang B, Huang T, Wen G. Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176614. [PMID: 39357767 DOI: 10.1016/j.scitotenv.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Reducing nitrate contamination in drinking water has become a critical issue in urban water resource management. Here a novel oligotrophic aerobic denitrifying bacterium, Pelomonas puraquae WJ1, was isolated and purified from artificial lake sediments. For the first time, excellent aerobic denitrification capabilities were demonstrated. At a carbon-to‑nitrogen ratio of 5.0, strain WJ1 achieved 100.0 % nitrate removal and 84.92 % total nitrogen removal within 24 h, with no nitrite accumulation. PCR amplification and sequencing confirmed the presence of the denitrification genes napA, nirS, and nosZ in the strain. The nitrogen balance demonstrated that approximately 74.95 % of the initial nitrogen was eliminated as gaseous products under aerobic conditions. Furthermore, carbon balance analysis showed that most electron donors from strain WJ1 were directed towards oxygen, with limited availability for nitrate reduction. A combination of bio-ECO analysis and network modeling indicated that strain WJ1 has robust metabolic capabilities for diverse carbon sources and exhibits high adaptability to complex carbon environments. Overall, Pelomonas puraquae WJ1 removed approximately 45.89 % of the nitrates in raw water, demonstrating significant potential for practical applications in oligotrophic denitrification.
Collapse
Affiliation(s)
- Tianhua Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxin Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaojie Chen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
6
|
Lu J, Tan Y, Tian S, Qin Y, Zhou M, Hu H, Zhao X, Wang Z, Hu B. Effect of carbon source on carbon and nitrogen metabolism of common heterotrophic nitrification-aerobic denitrification pathway. CHEMOSPHERE 2024; 361:142525. [PMID: 38838867 DOI: 10.1016/j.chemosphere.2024.142525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Pseudomonas sp. ZHL02, removing nitrogen via ammonia nitrogen (NH4+) → hydroxylamine (HN2OH) → nitrite (NO2-) → nitrate (NO3-) → NO2- → nitric oxide (NO) → nitrous oxide (N2O) pathway was employed for getting in-depth information on the heterotrophic nitrification-aerobic denitrification (HNAD) pathway from carbon oxidation, nitrogen conversion, electron transport process, enzyme activity, as well as gene expression while sodium succinate, sodium citrate, and sodium acetate were utilized as the carbon sources. The nitrogen balance analysis results demonstrated that ZHL02 mainly removed NH4+-N through assimilation. The carbon source metabolism resulted in the discrepancies in electron transport chain and nitrogen removal between different HNAD bacteria. Moreover, the prokaryotic strand-specific transcriptome method showed that, amo and hao were absent in ZHL02, and unknown genes may be involved in ZHL02 during the HNAD process. As a fascinating process for removing nitrogen, the HNAD process is still puzzling, and the relationship between carbon metabolism and nitrogen metabolism among different HNAD pathways should be studied further.
Collapse
Affiliation(s)
- Jiyan Lu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Yue Tan
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Shanghong Tian
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Yuxiao Qin
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Meng Zhou
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Hao Hu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Xiaohong Zhao
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Zhoufeng Wang
- School of Water and Environment, Changan University, Xian, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China.
| | - Bo Hu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China.
| |
Collapse
|
7
|
Ren J, Tang J, Min H, Tang D, Jiang R, Liu Y, Huang X. Nitrogen removal characteristics of novel bacterium Klebsiella sp. TSH15 by assimilatory/dissimilatory nitrate reduction and ammonia assimilation. BIORESOURCE TECHNOLOGY 2024; 394:130184. [PMID: 38086459 DOI: 10.1016/j.biortech.2023.130184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
A novel strain with heterotrophic nitrification and aerobic denitrification was screened and identified as Klebsiella sp. TSH15 by 16S rRNA. The results demonstrated that the ammonia-N and nitrate-N removal rates were 2.99 mg/L/h and 2.53 mg/L/h under optimal conditions, respectively. The analysis of the whole genome indicated that strain TSH15 contained the key genes involved in assimilatory/dissimilatory nitrate reduction and ammonia assimilation, including nas, nar, nir, nor, glnA, gltB, gdhA, and amt. The relative expression levels of key nitrogen removal genes were further detected by RT-qPCR. The results indicated that the N metabolic pathways of strain TSH15 were the conversion of nitrate or nitrite to ammonia by assimilatory/dissimilatory nitrate reduction (NO3-→NO2-→NH4+) and further conversion of ammonia to glutamate (NH4+-N → Glutamate) by ammonia assimilation. These results indicated that the strain TSH15 had the potential to be applied to practical sewage treatment in the future.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiajun Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hongping Min
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, 430100, China
| | - Dingding Tang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, 430100, China
| | - Rui Jiang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, 430100, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Yang J, Xie X, Miao Y, Dong Z, Zhu B. Isolation and characterization of a cold-tolerant heterotrophic nitrification-aerobic denitrification bacterium and evaluation of its nitrogen-removal efficiency. ENVIRONMENTAL RESEARCH 2024; 242:117674. [PMID: 38029814 DOI: 10.1016/j.envres.2023.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
With a view toward addressing the poor efficiency with which nitrogen is removed from wastewater below 10 °C, in this study, we isolated a novel cold-tolerant heterotrophic nitrification-aerobic denitrification (HN-AD) bacterium from a wetland and characterized its nitrogen removal performance and nitrogen metabolic pathway. On the basis of 16S rRNA gene sequencing, this strain was identified as a species of Janthinobacterium, designated J1-1. At 8 °C, strain J1-1 showed excellent removal efficiencies of 89.18% and 68.18% for single-source NH4+-N and NO3--N, respectively, and removal efficiencies of 96.23% and 79.64% for NH4+-N and NO3--N, respectively, when supplied with mixed-source nitrogen. Whole-genome sequence analysis and successful amplification of the amoA, napA, and nirK functional genes related to nitrogen metabolism provided further evidence in support of the HN-AD capacity of strain J1-1. The deduced HN-AD metabolic pathway of the strain was NH4+-N→NH2OH→NO2--N→NO3--N→NO2--N→NO→N2O. In addition, assessments of NH4+-N removal under different conditions revealed the following conditions to be optimal for efficient removal: a temperature of 20 °C, pH of 7, shaking speed of 150 rpm, sodium succinate as a carbon source, and a C/N mass ratio of 16. Given its efficient nitrogen removal capacity at 8 °C, the J1-1 strain characterized in this study has considerable application potential in the treatment of low-temperature wastewater.
Collapse
Affiliation(s)
- Jingyu Yang
- Sichuan Academy of Forestry Sciences, Chengdu, 610081, China
| | - Xiuhong Xie
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Yuanying Miao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Zhixin Dong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Yang S, Huang T, Zhang H, Guo H, Xu J, Cheng Y. Pollutants reduction via artificial mixing in a drinking water reservoir: Insights into bacterial metabolic activity, biodiversity, interactions and co-existence of core genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165473. [PMID: 37454840 DOI: 10.1016/j.scitotenv.2023.165473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endogenous pollution due to long periods of hypolimnetic anoxia in stratified reservoirs has become a worldwide concern, which can threaten metabolic activity, biodiversity, water quality security, and ultimately human health. In the present study, an artificial mixing system applied in a drinking water reservoir was developed to reduce pollutants, and the biological mechanism involved was explored. After approximately 44 days of system operation, the reservoir content was completely mixed resulting in the disappearance of anoxic layers. Furthermore, the metabolic activity estimated by the Biolog-ECO microplate technique and biodiversity was enhanced. 16S rRNA gene sequencing indicated a great variability on the composition of bacterial communities. Co-occurrence network analysis showed that interactions among bacteria were significantly affected by the proposed mixing system. Bacteria exhibited a more mutualistic state and >10 keystone genera were identified. Pollutants, including nitrogen, phosphorus, organic matter, iron, and manganese decreased by 30.63-80.15 %. Redundancy discriminant analysis revealed that environmental factors, especially the temperature and dissolved oxygen, were crucial drivers of the bacterial community structure. Furthermore, Spearman's correlation analysis between predominant genera and pollutants suggested that core genus played a vital role in pollutant reduction. Overall, our findings highlight the importance and provide insights on the artificial mixing systems' microbial mechanisms of reducing pollutants in drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Yang S, Huang T, Zhang H, Guo H, Hu R, Lin Z, Li Y, Cheng Y. Activation of indigenous denitrifying bacteria and enhanced nitrogen removal via artificial mixing in a drinking water reservoir: Insights into gene abundance, community structure, and co-existence model. ENVIRONMENTAL RESEARCH 2023; 236:116830. [PMID: 37543131 DOI: 10.1016/j.envres.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution poses a severe threat to aquatic ecosystems and human health. This study investigated the use of water lifting aerators for in situ nitrogen reduction in a drinking water reservoir. The reservoir was thoroughly mixed and oxygenated after using water-lifting aerators for 42 days. The average total nitrogen concentration, nitrate nitrogen, and ammonium nitrogen-in all water layers-decreased significantly (P < 0.01), with a reduction efficiency of 35 ± 3%, 34 ± 2%, and 70 ± 6%, respectively. Other pollutants, including organic matter, phosphorus, iron, and manganese, were also effectively removed. Quantitative polymerase chain reactions indicated that bacterial nirS gene abundance was enhanced 26.34-fold. High-throughput sequencing, phylogenetic tree, and network analysis suggested that core indigenous nirS-type denitrifying bacteria, such as Dechloromonas, Simplicispira, Thauera, and Azospira, played vital roles in nitrogen and other pollutant removal processes. Furthermore, structural equation modeling revealed that nitrogen removal responded positively to WT, DO, and nirS gene abundance. Our findings provide a promising strategy for nitrogen removal in oligotrophic drinking water reservoirs with carbon deficiencies.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zishen Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanqing Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
11
|
Zhang M, Jiao T, Chen S, Zhou W. A review of microbial nitrogen transformations and microbiome engineering for biological nitrogen removal under salinity stress. CHEMOSPHERE 2023; 341:139949. [PMID: 37648161 DOI: 10.1016/j.chemosphere.2023.139949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
The osmotic stress caused by salinity exerts severe inhibition on the process of biological nitrogen removal (BNR), leading to the deterioration of biosystems and the discharge of nitrogen with saline wastewater. Feasible strategies to solve the bottleneck in saline wastewater treatment have attracted great attention, but relevant studies to improve nitrogen transformations and enhance the salt-tolerance of biosystems in terms of microbiome engineering have not been systematically reviewed and discussed. This work attempted to provide a more comprehensive explanation of both BNR and microbiome engineering approaches for saline wastewater treatment. The effect of salinity on conventional BNR pathways, nitrification-denitrification and anammox, was summarized at cellular and metabolic levels, including the nitrogen metabolic pathways, the functional microorganisms, and the inhibition threshold of salinity. Promising nitrogen transformations, such as heterotrophic nitrification-aerobic denitrification, ammonium assimilation and the coupling of conventional pathways, were introduced and compared based on advantages and challenges in detail. Strategies to improve the salt tolerance of biosystems were proposed and evaluated from the perspective of microbiome engineering. Finally, prospects of future investigation and applications on halophilic microbiomes in saline wastewater treatment were discussed.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China
| | - Tong Jiao
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China
| | - Shigeng Chen
- Shandong Nongda Fertilizer Sci.&Tech. Co., Ltd., Taian, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China.
| |
Collapse
|
12
|
Zhou H, Cheng L, Xia L, Deng G, Zhang Y, Shi X. Rapid simultaneous removal of nitrogen and phosphorous by a novel isolated Pseudomonas mendocina SCZ-2. ENVIRONMENTAL RESEARCH 2023; 231:116062. [PMID: 37149028 DOI: 10.1016/j.envres.2023.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) and phosphorous (P) removal by a single bacterium could improve the biological reaction efficiency and reduce the operating cost and complexity in wastewater treatment plants (WWTPs). Here, an isolated strain was identified as Pseudomonas mendocina SCZ-2 and showed high performance of heterotrophic nitrification (HN) and aerobic denitrification (AD) without intermediate accumulation. During the AD process, the nitrate removal efficiency and rate reached a maximum of 100% and 47.70 mg/L/h, respectively, under optimal conditions of sodium citrate as carbon source, a carbon-to-nitrogen ratio of 10, a temperature of 35 °C, and shaking a speed of 200 rpm. Most importantly, the strain SCZ-2 could rapidly and simultaneously eliminate N and P with maximum NH4+-N, NO3--N, NO2--N, and PO43--P removal rates of 14.38, 17.77, 20.13 mg N/L/h, and 2.93 mg P/L/h, respectively. Both the N and P degradation curves matched well with the modified Gompertz model. Moreover, the amplification results of functional genes, whole genome sequencing, and enzyme activity tests provided theoretical support for simultaneous N and P removal pathways. This study deepens our understanding of the role of HN-AD bacteria and provides more options for simultaneous N and P removal from actual sewage.
Collapse
Affiliation(s)
- Hongfeng Zhou
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Lei Cheng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| | - Lisong Xia
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Guozhi Deng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Youde Zhang
- Anhui Xinyu Environmental Protection Technology Co., Ltd., Hefei, 230051, China
| | - Xianyang Shi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|