1
|
Bonciani N, Lauridsen BW, Jakobsen R, Feilberg KL. Impact of offshore energy activities on trace elements content and mobility in marine sediments. MARINE POLLUTION BULLETIN 2025; 211:117491. [PMID: 39709783 DOI: 10.1016/j.marpolbul.2024.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The offshore oilfields in the North Sea area are increasingly employed for projects beyond oil production, like carbon capture and storage (CCS). Still, the fossil fuel production from mature fields is significant. It has raised environmental concerns associated with discharging produced waters (PW) and drilling mud into the sea. These discharges, which may be highly saline and contain production chemicals, vary significantly in metals and particulate content. Due to density and release depth, the plume is assumed to sink towards the seafloor. Also, a single oilfield can input up to 7.5 tons of Ba, 675 kg of Fe, and 619 kg of P into the water column through PW. Therefore, this study investigates the impact of these discharges on seafloor sediments around two Danish oilfields, assesses the mobility of metals within these sediments, and evaluates the environmental status. PW samples were collected at the discharge outlets from the platforms. Sediment cores were taken near the two oil platforms and from control sites. Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and an optimized BCR sequential extraction, we analyzed the composition and distribution of 24 elements in sediment samples. The results revealed significant differences in total extracted concentrations between sediments near the platforms and those from distant locations and stratigraphically older samples, with relevant levels of Br, Ba, and Sn near the platforms (averaged 14, 27, and 0.1 ppb, respectively). Sediment quality indices showed considerable enrichment and geo-accumulation of toxic metals, particularly at one of the platform sites. However, cumulative indices did not display significant pollution anomalies. Therefore, our findings suggest that oil extraction activities may increase the availability of toxic metals in nearby sediments, potentially impacting marine ecosystems.
Collapse
Affiliation(s)
- Neri Bonciani
- Danish Offshore Technology Centre (DTU), - Elektrovej 375, 2800 Kgs. Lyngby, Denmark.
| | - Bodil W Lauridsen
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Rasmus Jakobsen
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Karen L Feilberg
- Danish Offshore Technology Centre (DTU), - Elektrovej 375, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Johnson J, Jain KR, Patel A, Parmar N, Joshi C, Madamwar D. Chronic industrial perturbation and seasonal change induces shift in the bacterial community from gammaproteobacteria to betaproteobacteria having catabolic potential for aromatic compounds at Amlakhadi canal. World J Microbiol Biotechnol 2023; 40:52. [PMID: 38146029 DOI: 10.1007/s11274-023-03848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.
Collapse
Affiliation(s)
- Jenny Johnson
- Post Graduate Department of Biosciences, Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol (Anand), Gujarat, 388 315, India
| | - Kunal R Jain
- Post Graduate Department of Biosciences, Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol (Anand), Gujarat, 388 315, India
| | - Anand Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India
| | - Nidhi Parmar
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, 6th Floor, M. S. Building, Sector 11, Gandhinagar, Gujarat, 382011, India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa (Anand), Gujarat, 388 421, India.
| |
Collapse
|
4
|
Li YQ, Xin Y, Li C, Liu J, Huang T. Metagenomics-metabolomics analysis of microbial function and metabolism in petroleum-contaminated soil. Braz J Microbiol 2023:10.1007/s42770-023-01000-7. [PMID: 37162704 DOI: 10.1007/s42770-023-01000-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Contamination of soil by petroleum is becoming increasingly serious in the world today. However, the research on gene functional characteristics, metabolites and distribution of microbial genomes in oil-contaminated soil is limited. Considering that, metagenomic and metabonomic were used to detect microbes and metabolites in oil-contaminated soil, and the changes of functional pathways were analyzed. We found that oil pollution significantly changed the composition of soil microorganisms and metabolites, and promoted the relative abundance of Pseudoxanthomonas, Pseudomonas, Mycobacterium, Immundisolibacter, etc. The degradation of toluene, xylene, polycyclic aromatic hydrocarbon and fluorobenzoate increased in Xenobiotics biodegradation and metabolism. Key monooxygenases and dioxygenase systems were regulated to promote ring opening and degradation of aromatic hydrocarbons. Metabolite contents of polycyclic aromatic hydrocarbons (PAHs) such as 9-fluoronone and gentisic acid increased significantly. The soil microbiome degraded petroleum pollutants into small molecular substances and promoted the bioremediation of petroleum-contaminated soil. Besides, we discovered the complete degradation pathway of petroleum-contaminated soil microorganisms to generate gentisic acid from the hydroxylation of naphthalene in PAHs by salicylic acid. This study offers important insights into bioremediation of oil-contaminated soil from the aspect of molecular regulation mechanism and provides a theoretical basis for the screening of new oil degrading bacteria.
Collapse
Affiliation(s)
- Yong-Quan Li
- School of Medicine, Northwest Minzu University, Lanzhou, China.
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, State Ethnic Affairs Commission, Lanzhou, China.
| | - Ying Xin
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Caili Li
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Jin Liu
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Tao Huang
- School of Medicine, Northwest Minzu University, Lanzhou, China
| |
Collapse
|