1
|
Lei J, Yin J, Chen S, Fenton O, Liu R, Chen Q, Fan B, Zhang S. Understanding phosphorus mobilization mechanisms in acidic soil amended with calcium-silicon-magnesium-potassium fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170294. [PMID: 38272080 DOI: 10.1016/j.scitotenv.2024.170294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Calcium-silicon-magnesium-potassium fertilizer (CSMP) is usually used as an amendment to counteract soil acidification caused by historical excessive nitrogen (N) applications. However, the impact of CSMP addition on phosphorus (P) mobilization in acidic soils and the related mechanisms are not fully understood. Specifically, a knowledge gap exists with regards to changes in soil extracellular enzymes that contribute to P release. Such a knowledge gap was investigated by an incubation study with four treatments: i) initial soil (Control), ii) urea (60 mg kg-1) addition (U); iii) CSMP (1%) addition (CSMP) and iv) urea (60 mg kg-1) and CSMP (1%) additions (U + CSMP). Phosphorus mobilization induced by different processes was distinguished by biologically based P extraction. The Langmuir equation, K edge X-ray absorption near-edge structure spectroscopy, and ecoenzyme vector analysis according to the extracellular enzyme activity stoichiometry were deployed to investigate soil P sorption intensity, precipitation species, and microbial-driven turnover of organophosphorus. Results showed that CaCl2 extractable P (or citric acid extractable P) content increased by 63.4% (or 39.2%) in the soil with CSMP addition, compared with the study control. The accelerated mobilization of aluminum (Al)/iron (Fe)-bound P after CSMP addition, indicated by the reduction of the sum of FePO4·2H2O and AlPO4 proportion, contributed to this increase. The decrease of P sorption capacity can also be responsible for it. The CSMP addition increased enzyme extractable P in the soil nearly 7-fold and mitigated the limitations of carbon (C) and P for soil microorganisms (indicated by the enzyme stoichiometry and ecoenzyme vector analysis), suggesting that microbial turnover processes also contribute to P mobilization in amended acidic soil. These findings indicate that the P mobilization in CSMP amended acidic soil not only attributed to both decreasing P sorption capacity and dissolving phosphate precipitation, but also to the increase of the microbial turnover of the organophosphorus pool.
Collapse
Affiliation(s)
- Jilin Lei
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Junhui Yin
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; School of Agriculture, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Shuo Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Owen Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Rui Liu
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Bingqian Fan
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of PR China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China.
| | - Shuai Zhang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China.
| |
Collapse
|
2
|
Niu A, Lin C. Trends in research on characterization, treatment and valorization of hazardous red mud: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119660. [PMID: 38043310 DOI: 10.1016/j.jenvman.2023.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Meta-analysis of red mud-related literature in English published from 1976 to 2022 and in Chinese from 1990 to 2022 was performed to support critical analysis and evaluation of the available literature based on the following aspects of red mud research: (a) characterization, (b) treatment for harmfulness minimization, (c) recovery of valuable metals, (d) environmental applications, and (e) uses as construction materials. It was found that (a) sinter red mud tended to contain more silica and calcium, and less iron, sodium and aluminium compared to Bayer red mud; (b) gypsum was the most frequently used agent for harmfulness reduction treatment of red mud, followed by flue gas/CO2; (c) the mean optimal pH for adsorption of major anionic pollutants was 8.42 ± 1.13 (arsenite), 3.73 ± 0.68 (arsenate), 3.50 ± 2.38 (phosphate), 4.43 ± 1.04 (fluoride) and 3.80 ± 1.54 (chromate); (d) wastewater treatment has attracted more attention compared to contaminated soils and waste gases; (e) recovery of iron and scandium has attracted more attention compared to other metals; (f) cement making has been the focus in construction uses. Most of the research findings were based on laboratory-scale experiments that focused on efficacy rather than efficiency. There was a lack of integrated approaches for research in red mud valorization.
Collapse
Affiliation(s)
- Anyi Niu
- International Envirotech Limited, Hong Kong 999077, China; School of Geography, South China Normal University, Guangzhou 510631, China
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Burwood VIC 3125, Australia.
| |
Collapse
|
3
|
Peng Y, Chen Q, Guan CY, Yang X, Jiang X, Wei M, Tan J, Li X. Metal oxide modified biochars for fertile soil management: Effects on soil phosphorus transformation, enzyme activity, microbe community, and plant growth. ENVIRONMENTAL RESEARCH 2023; 231:116258. [PMID: 37268201 DOI: 10.1016/j.envres.2023.116258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Metal oxide modified biochars are increasingly being used for intensive agricultural soil remediation, but there has been limited research on their effects on soil phosphorus transformation, soil enzyme activity, microbe community and plant growth. Two highly-performance metal oxides biochars (FeAl-biochar and MgAl-biochar) were investigated for their effects on soil phosphorus availability, fractions, enzyme activity, microbe community and plant growth in two typical intensive fertile agricultural soils. Adding raw biochar to acidic soil increased NH4Cl-P content, while metal oxide biochar reduced NH4Cl-P content by binding to phosphorus. Original biochar slightly reduced Al-P content in lateritic red soil, while metal oxide biochar increased it. LBC and FBC significantly reduced Ca2-P and Ca8-P properties while improving Al-P and Fe-P, respectively. Inorganic phosphorus-solubilizing bacteria increased in abundance with biochar amendment in both soil types, and biochar addition affected soil pH and phosphorus fractions, leading to changes in bacterial growth and community structure. Biochar's microporous structure allowed it to adsorb phosphorus and aluminum ions, making them more available for plants and reducing leaching. In calcareous soils, biochar additions may dominantly increase the Ca (hydro)oxides bounded P or soluble P instead of Fe-P or Al-P through biotic pathways, favoring plant growth. The recommendations for using metal oxides biochar for fertile soil management include using LBC biochar for optimal performance in both P leaching reduction and plant growth promotion, with the mechanisms differing depending on soil type. This research highlights the potential of metal oxide modified biochars for improving soil fertility and reducing phosphorus leaching, with specific recommendations for their use in different soil types.
Collapse
Affiliation(s)
- Yutao Peng
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqian Jiang
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Mi Wei
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Jinfang Tan
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| |
Collapse
|