1
|
Rahmani A, Naidu H, Świergosz T, Rahimi HR, Mousavi Z, Dolatabadi M, Ahmadzadeh S. Process and mechanism modeling of cefotaxime removal from hospital wastewater using pistachio shells based magnetic activated carbon nanoparticles. Sci Rep 2024; 14:29951. [PMID: 39622855 PMCID: PMC11612276 DOI: 10.1038/s41598-024-76271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/11/2024] [Indexed: 12/06/2024] Open
Abstract
Antibiotic residues have been extensively identified in diverse aquatic environments, posing significant health risks to both humans and animals, while also presenting challenges to the environment. Consequently, the imperative need to effectively removal antibiotics from the environment has become a very importance issue. In this study, response surface methodology with central composite design was employed to systematically investigate the effects of key process parameters, on the removal of cefotaxime (CTX) from hospital wastewater using pistachio sells based activated carbon modified with FeCl3. The modified activated carbon was synthesized using a thermochemical method and characterized by analytical techniques including FE-SEM, FTIR, XRD, pHpzc, and BET analysis, which demonstrated its remarkable physicochemical properties. Maximum removal efficiency of 99.1% was obtained via the optimal values of 45 mg L- 1 of initial CTX concentration, solution pH 7, and 200 mg L- 1 of Fe@ACP dosage, 56 min of reaction time through adsorption process. According to the results, the non-linear Langmuir isotherm model (R2 = 0.9931) and non-linear second order kinetic model (R2 = 0.9934) are suitably described the monolayer and chemisorption of CTX adsorption. The maximum adsorption capacity of Fe@ACP is 651.6 mg g- 1. Consequently, the developed treatment process revealed successful performance for quick and efficient removal of CTX by Fe@ACP. The developed process introduced an economic and green approach for the comprehensive utilization of agricultural waste resources used for environmental pollution control.
Collapse
Affiliation(s)
- Atefeh Rahmani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Haripriya Naidu
- Graduated from Department of Civil Engineering, Kansas State University, Fiedler Hall, 1701C Platt Street, Manhattan, KS, 66502, USA
| | - Tomasz Świergosz
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St, Kraków, 31-155, Poland
| | - Hamid Reza Rahimi
- Department of Toxicology and Pharmacology, faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Dolatabadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeid Ahmadzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Sun N, Wang H, Zhang X, Chen Z, Peng A. Clay minerals-mediated removal of Norfloxacin and Norfloxin-resistant bacteria from water environments and associated mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67024-67034. [PMID: 39656335 DOI: 10.1007/s11356-024-35719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
Norfloxacin (NOR) is frequently detected in various water bodies and has the potential to promote the proliferation of NOR-resistant bacteria/genes in the environment. Efficiently removing residual NOR and NOR-resistant bacteria from contaminated water is critical to mitigating their environmental risks. This study investigated the ability of two common clay minerals, kaolinite and montmorillonite, to remove NOR and NOR-resistant bacteria from five different water environments (ultrapure water, simulated and real freshwater, and simulated and real seawater) and explored the underlying removal mechanisms. The results showed that both clays adsorbed NOR according to a pseudo-first-order kinetic model. In simulated and actual freshwater and seawater, the adsorption of NOR by kaolinite was 0.199, 0.120, 0.094, and 0.010 mg g-1, while montmorillonite adsorbed NOR at significantly higher levels, with values of 2.880, 2.208, 0.433, and 0.067 mg g-1, respectively. The primary mechanisms of adsorption included electrostatic interactions, cation exchange, and cation bonding and bridging. In addition to NOR sorption, culture tests revealed that montmorillonite exhibited significant antibacterial activity against NOR-resistant bacteria, achieving an inhibition ratio of 83.84 ± 4.01% when the initial concentrations of bacteria and montmorillonite were 1.68 ± 1.00 × 105 CFU·mL-1 and 40 mg mL-1, respectively. Remarkably, montmorillonite maintained its high sorption capacity and antibacterial activity even after multiple reuse cycles. These findings highlight the promising application potential of montmorillonite, particularly in terms of its storage and long-distance distribution capabilities, making it an effective material for removing both NOR and NOR-resistant bacteria from the environment. However, it is important to note that under estuarine conditions, clay-bound NOR could be released if water quality changes. Therefore, we conclude that strategies to degrade and remove antibiotics adsorbed onto clay minerals should be developed to prevent the release of antibiotics when clay particles enter the ocean, thus avoiding further environmental contamination.
Collapse
Affiliation(s)
- Ningyu Sun
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No.26, Jinjing Rd, Xiqing District, Tianjin, 300384, China
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No.26, Jinjing Rd, Xiqing District, Tianjin, 300384, China
| | - Huimin Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No.26, Jinjing Rd, Xiqing District, Tianjin, 300384, China
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No.26, Jinjing Rd, Xiqing District, Tianjin, 300384, China
| | - Xinbo Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No.26, Jinjing Rd, Xiqing District, Tianjin, 300384, China
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No.26, Jinjing Rd, Xiqing District, Tianjin, 300384, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Anping Peng
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No.26, Jinjing Rd, Xiqing District, Tianjin, 300384, China.
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, No.26, Jinjing Rd, Xiqing District, Tianjin, 300384, China.
| |
Collapse
|
3
|
Zhu J. Utilization of peanut hull hydrochar /beta cyclodextrin/Fe 3O 4 magnetic composite for lead ion removal from water solution. ENVIRONMENTAL RESEARCH 2024; 259:119525. [PMID: 38964586 DOI: 10.1016/j.envres.2024.119525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
This study involves synthesizing peanut hull hydrochar (PHH) and a PHH/β-CD/Fe3O4 magnetic composite through hydrothermal and chemical precipitation methods, respectively, to use as effective adsorbents for Pb2+ removal. Vibrating-sample magnetometry (VSM) and Brunauer-Emmett-Teller (BET) analyses revealed that the magnetic saturation value and specific active surface area of PHH/β-CD/Fe3O4 are 31.543 emu/g and 32.123 m2/g, respectively. The impact of key variables on adsorption efficiency was evaluated using the response surface method - central composite design. ANOVA results (F-value: 166.22 and p-value: <0.05) demonstrated that the model effectively assesses the interaction of variables in the adsorption process. Additionally, R2, Adjusted R2, and Predicted R2 values were 0.999, 0.986, and 0.975, respectively, indicating the model's high adequacy in describing response changes. The maximum efficiency for Pb2+ adsorption was found to be 95.35% using PHH and 99.73% with the PHH/β-CD/Fe3O4 magnetic composite. These measurements were taken at a temperature of 25 °C, an adsorbent dose of 1 g/L, a pH of 6, and a Pb2+ concentration of 5 mg/L, with respective contact times of 130 min and 50 min. Thermodynamic analysis revealed negative enthalpy and Gibbs free energy values, indicating that the adsorption process is exothermic and spontaneous. The negative entropy parameter suggests a reduction in random interactions during the process. The Pb2+ adsorption data for both PHH (R2: 0.982) and PHH/β-CD/Fe3O4 (R2: 0.985) were best described by the Pseudo 2nd order kinetic model. Equilibrium data followed the Freundlich model, with R2 values of 0.981 for PHH and 0.990 for PHH/β-CD/Fe3O4, highlighting the importance of heterogeneous surfaces in the removal process. The maximum adsorption capacities for Pb2+ were 26.72 mg/g for PHH and 33.88 mg/g for PHH/β-CD/Fe3O4. Reuse and stability tests confirmed the structural stability and reusability of the adsorbents. Therefore, the PHH/β-CD/Fe3O4 magnetic composite is a promising option for removing Pb2+ from aqueous solutions.
Collapse
Affiliation(s)
- Junren Zhu
- Chongqing Vocational Institute of Engineering, Chongqing, 402660, PR China.
| |
Collapse
|
4
|
Akkari I, Kaci MM, Pazos M. Revolutionizing waste: Harnessing agro-food hydrochar for potent adsorption of organic and inorganic contaminants in water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1035. [PMID: 39379759 DOI: 10.1007/s10661-024-13171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Constant pollution from a wide range of human activities has a negative impact on the quantity and quality of the planet's water resources. On the other hand, agro-food waste can impact climate change and other forms of life, in addition to having social, economic, and environmental consequences. However, as a result of their inherent physicochemical properties and lignocellulosic composition, these residues are becoming increasingly recognized as valuable products in line with government policies advocating zero waste and circular economies. An advantageous way to convert these wastes into energy and chemicals is hydrothermal carbonization (HTC). This review highlights the valorization of agro-food waste into hydrochar-based adsorbents for the elimination of organic and inorganic contaminants from aqueous environments. An overview of the toxicity of pollutants in aqueous environments, food waste management, as well as HTC technology was initially proposed. Then, a discussion on the conversion of major agro-food wastes into contaminant adsorbents was given in detail. Adsorption mechanisms as well as the possibility of reuse of adsorbents were also discussed. Enhanced properties of the produced materials enable them to provide competent solutions to various ecological contexts, including removing pollutants from wastewater with cost-effectiveness and satisfactory results. Besides addressing environmental concerns, this sustainable approach opens the door for more environmentally-friendly and resource-efficient applications in the future, making it an exciting prospect.
Collapse
Affiliation(s)
- Imane Akkari
- Materials Technology and Process Engineering Laboratory (LTMGP), University of Bejaia, 06000, Bejaia, Algeria.
| | - Mohamed Mehdi Kaci
- Laboratory of Reaction Engineering, Faculty of Mechanical and Process Engineering (USTHB), BP 32, 16111, Algiers, Algeria.
| | - Marta Pazos
- CINTECX-Universidade de Vigo, Department of Chemical Engineering Campus As Lagoas-Marcosende, University of Vigo, 36310, Vigo, Spain.
| |
Collapse
|
5
|
Hao YS, Othman N, Zaini MAA. Waste newspaper as cellulose resource of activated carbon by sodium salts for methylene blue and congo red removal. Int J Biol Macromol 2024; 277:134353. [PMID: 39089559 DOI: 10.1016/j.ijbiomac.2024.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The work was aimed at evaluating the adsorptive properties of waste newspaper (WN) activated carbons chemically produced using sodium salts for methylene blue (MB) and congo red (CR) removal. The activated carbons, designated as AC1, AC2, AC3 and AC4 were prepared through impregnation with NaH2PO4, Na2CO3, NaCl and NaOH, respectively and activation at 500 °C for 1 h. The activated carbons were characterized for surface chemistry, thermal stability, specific area, morphology and composition. The AC1 with a surface area of 917 m2/g exhibits a greater MB capacity of 651 mg/g. Meanwhile, a greater CR capacity was recorded by AC2 at 299 mg/g. The pseudo-second order model fitted well with the kinetic data, while the equilibrium data could be described by Langmuir model. The thermodynamic parameters, i.e.., positive ΔH°, negative ΔG° and positive ΔS° suggest that the adsorption of dyes is endothermic, spontaneous and feasible at high solution temperature. To conclude, WN is a potential cellulose source for producing activated carbon, while NaH2PO4 activation could be employed to convert WN into activated carbon for effective dye wastewater treatment.
Collapse
Affiliation(s)
- Yeo Shi Hao
- Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Norasikin Othman
- Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
6
|
Alehegn M, Gonfa G, Vivekanand PA, Lal B, Baigenzhenov O, Hosseini-Bandegharaei A, Bokov DO, Baisalova G. Valorization of castor seed shell waste as lead adsorbent by treatment with hot phosphoric acid: Optimization and evaluation of adsorption properties. CHEMOSPHERE 2024; 362:142655. [PMID: 38908444 DOI: 10.1016/j.chemosphere.2024.142655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Lead is used in many industries such as refining, mining, battery manufacturing, smelting. Releases of lead from these industries is one of the major public health concerns due to widespread persistence in the environment and its resulting poisoning character. In this work, the castor seed shell (CSS) waste was exploited for preparing a beneficial bio-adsorbent for removal of Pb(II) ions from water. The raw CSS was modified with H3PO4 at different acid concentrations, impregnation ratios, activation times, and temperatures. An optimum adsorption capacity was observed for CSS modified with 2 M acid, 5 mL g-1 solid to liquid ratio, treated at 95 °C for 160 min. Exploiting acid modification, the SEM, XRD, and FTIR analyses show some alterations in functional groups and the surface morphology of the biomass. The impacts of physiochemical variables (initial lead ions concentration, pH, adsorbent dose and adsorption time) on the lead removal percentage were investigated, using response surface methodology (RSM). Maximum removal of 72.26% for raw CSS and 97.62% for modified CSS were obtained at an initial lead concentration (50 mg L-1), pH (5.7), adsorption time (123 min) and adsorbent dosage (1.1 g/100 mL). Isothermal and kinetics models were fitted to adsorption equilibrium data and kinetics data for the modified CSS and the adsorption system was evaluated thermodynamically and from the energy point of view. Isothermal scrutinization indicated the mono-layer nature of adsorption, and the kinetics experimental outcomes best fitted with the pseudo-second-order, implying that the interaction of lead ions and hot acid-treated CSS was the rate-controlling phenomenon of process. Overall, results illustrated that the hot acid-treated biomass-based adsorbent can be considered as an alternative bio-adsorbent for removing lead from water media.
Collapse
Affiliation(s)
- Mulusew Alehegn
- Department of Chemical Engineering, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia
| | - Girma Gonfa
- Department of Chemical Engineering, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia; Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia
| | - P A Vivekanand
- Department of Chemistry, Bharath Institute of Higher Education and Research, Selaiyur, Chennai-600073, India
| | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura-281406, India
| | - Omirserik Baigenzhenov
- Department of Metallurgical Engineering, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan.
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai-602105, Tamil Nadu, India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Galiya Baisalova
- Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satpayev Street, Astana, 010008, Kazakhstan
| |
Collapse
|
7
|
Guadalupe GA, Grandez-Yoplac DE, García L, Doménech E. A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee. TOXICS 2024; 12:526. [PMID: 39058178 PMCID: PMC11281111 DOI: 10.3390/toxics12070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
The research aimed to carefully review the chemical hazards linked to the coffee production chain to analyse the risks and opportunities for consumers and the environment, as well as identify potential knowledge gaps. The Scopus database was consulted from 1949 to April 2024 to conduct a bibliometric analysis. As a result, 680 articles were analysed. Results indicated a significant increase in research activity since 2015. China, Brazil, and the USA were the leading countries in scientific production and collaborations. The most prolific journals in this field were Chemosphere, Science of the Total Environment, Food Chemistry, Journal of Agricultural and Food Chemistry, and Journal of Environmental Management, all of which are in the first quartile. The word analysis revealed two main themes: the first focuses on the chemical hazards of coffee and their impact on health, while the second explores the waste generated during coffee production and its potential for reuse. The topics covered in the research include the composition of coffee, associated chemical hazards, possible health risks, and ways to reuse waste for environmental protection. Future research should concentrate on optimising techniques and processes to ensure quality, safety, and sustainability.
Collapse
Affiliation(s)
- Grobert A. Guadalupe
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Dorila E. Grandez-Yoplac
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Ligia García
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru;
| | - Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
8
|
Sharififard H. A biohybrid nanomaterial of biosynthesized TiO 2 NPs from Mangrove leaf and shrimp shell-based Chitosan: ultrasonic-assisted synthesis and its application for methylene blue removal and COD reduction of real industrial wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1465-1473. [PMID: 38493293 DOI: 10.1080/15226514.2024.2327620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
In the present study, TiO2 NPs (particle size: 25-35 nm) were biosynthesized from the Mangrove leaf extract. These nanoparticles were used to modify chitosan, and Chitosan@TiO2 biohybrid nanomaterial was synthesized and characterized using FTIR, XRD, BET, and, EDX-FE-SEM analyses. The adsorption ability of Chitosan@TiO2 nanomaterial has been investigated for Methylene blue (MB) removal from aqueous solution. The results indicated that the amount of MB removal is high in alkaline pH (optimum pH = 9). The pseudo-second-order model was able to describe the effect of contact time on the adsorption ability. The Langmuir model well described the equilibrium manner, and one gram of Chitosan@TiO2 could attract 416.66 mg of MB. Kinetic data, values of parameters of activation energy (+57.283 kJ/mol), enthalpy (-86.8148 kJ/mol), and Gibbs free energy (-27.999 to -22.8987 kJ/mol) indicate the dominance of chemical adsorption over physical adsorption. The breakthrough curves of 3 adsorption/desorption cycles showed the acceptable ability and reusability of prepared nanomaterial. Synthesized biohybrid nanomaterial can reduce 75% COD and 79% nitrate of the effluent from industrial city no.3 of Yasouj. The results of this research show the high ability of chitosan@TiO2 biohybrid to remove dyes from wastewater and reduce the pollution load of industrial wastewater.
Collapse
|