1
|
Ding W, Mo Z, Qi J, Wang M, Zou J, Wang K, Gong D, Zhao Y, Miao H, Zhao Z. Luminescent iron phthalocyanine organic polymer nanosheets with space-separated dual-active sites for the detection and photocatalytic reduction of Cr(Ⅵ) from wastewater. ENVIRONMENTAL RESEARCH 2025; 264:120282. [PMID: 39505132 DOI: 10.1016/j.envres.2024.120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Cr(Ⅵ) residues in livestock and poultry wastewater are a rising concern for human health and biotic environments. For the removal of Cr(Ⅵ), its simultaneous reduction and adsorption represents a sustainable and efficient strategy. Herein, iron nodes on covalently bonded two-dimensional phthalocyanine organic polymer (PcOP-Fe) nanosheets with space-separated dual-active sites are developed for the simultaneous detection and removal of Cr(VI) from wastewater. In the FeN4 structure of PcOP-Fe nanosheets, Fe acts as an electron capture center, effectively facilitating the accumulation of photogenerated electrons and transferring them to Cr(VI), thereby achieving its photocatalytic reduction. Meanwhile, pyrrolic nitrogen provides excellent adsorption sites, enabling the adsorption of Cr(III) or Cr(0). Fe accumulates the photogenerated electrons from pyrrole N and transfer them to Cr(Ⅵ). The formation of N-Cr(Ⅲ) bonds causes a space-separation between Cr(Ⅵ) and Cr(III). In addition, PcOP-Fe can be used for a Cr(Ⅵ) detection agent. The photoluminescence intensity decreases linearly with increasing Cr(Ⅵ) concentration from 80 μM to 2 mM, with a limit of detection of 0.18 μM. The PcOP-Fe nanosheets exhibit good Cr(Ⅵ) detection and reduction performance in livestock and poultry wastewater, suggesting their suitability for practical sensing applications. Thus, the PcOP-Fe nanosheets with space-separated dual-active sites are promising for the simultaneous detection and removal of Cr(Ⅵ) in water treatment processes.
Collapse
Affiliation(s)
- Wenfei Ding
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhaoyi Mo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jia Qi
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Mengying Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Junyu Zou
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Kuo Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Daxiang Gong
- Chongqing Tengda Animal Husbandry Co., Ltd., Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hong Miao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Mamardashvili G, Kaigorodova E, Nikitin K, Mamardashvili N. Photophysical properties of hybrid porphyrin-erythrosine B fluorophore in aqueous media and PVA films. J PORPHYR PHTHALOCYA 2024; 28:665-674. [DOI: 10.1142/s1088424624500421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
A diaxial complex of the Sn(IV)-5,10,15,20-tetra-(4-carboxyphenyl)porphyrin with a fluorescein halogen derivative– Erythrosine B (triad “luminophore-porphyrinate-luminophore”) was synthesized. Its structure was established using NMR spectroscopy and mass spectrometry. Its luminescent properties (fluorescence spectra, quantum yield and fluorescence lifetime, as well as the ability to generate singlet oxygen) were studied. It has been established that the resulting triad has the properties of a fluorescent molecular rotor, and both fragments of the triad [porphyrinate ([Formula: see text] = 420 nm) and xanthene ([Formula: see text] = 470 nm) fragments] show high fluorescent sensitivity to local viscosity. By immobilizing the triad “luminophore-porphyrinate-luminophore” into a polymer matrix of polyvinyl alcohol (PVA), hybrid film materials were obtained. It has been shown that the fixation of the triad in the polymer matrix due to the formation of hydrogen bonds between carboxyl groups and the organic polymer does not have a significant effect on its luminescent properties. It has been established that both fragments in the triad immobilized in PVA-based polymer organic films retain their properties as fluorescent “molecular rotors” in non-aqueous media.
Collapse
Affiliation(s)
- G.M. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - E.Yu. Kaigorodova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - K.S. Nikitin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - N.Z. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| |
Collapse
|
3
|
Bariki R, Joseph RG, El-Kadri OM, Al-Sayah MH. The Development of Metal-Free Porous Organic Polymers for Sustainable Carbon Dioxide Photoreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1432. [PMID: 39269094 PMCID: PMC11397385 DOI: 10.3390/nano14171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
A viable tactic to effectively address the climate crisis is the production of renewable fuels via photocatalytic reactions using solar energy and available resources like carbon dioxide (CO2) and water. Organic polymer material-based photocatalytic materials are thought to be one way to convert solar energy into valuable chemicals and other solar fuels. The use of porous organic polymers (POPs) for CO2 fixation and capture and sequestration to produce beneficial compounds to reduce global warming is still receiving a lot of interest. Visible light-responsive organic photopolymers that are functionally designed and include a large number of heteroatoms and an extended π-conjugation allow for the generation of photogenerated charge carriers, improved absorption of visible light, increased charge separation, and decreased charge recombination during photocatalysis. Due to their rigid structure, high surface area, flexible pore size, permanent porosity, and adaptability of the backbone for the intended purpose, POPs have drawn more and more attention. These qualities have been shown to be highly advantageous for numerous sustainable applications. POPs may be broadly categorized as crystalline or amorphous according to how much long-range order they possess. In terms of performance, conducting POPs outperform inorganic semiconductors and typical organic dyes. They are light-harvesting materials with remarkable optical characteristics, photostability, cheap cost, and low cytotoxicity. Through cocatalyst loading and morphological tweaking, this review presents optimization options for POPs preparation techniques. We provide an analysis of the ways in which the preparative techniques will affect the materials' physicochemical characteristics and, consequently, their catalytic activity. An inventory of experimental methods is provided for characterizing POPs' optical, morphological, electrochemical, and catalytic characteristics. The focus of this review is to thoroughly investigate the photochemistry of these polymeric organic photocatalysts with an emphasis on understanding the processes of internal charge generation and transport within POPs. The review covers several types of amorphous POP materials, including those based on conjugated microporous polymers (CMPs), inherent microporosity polymers, hyper-crosslinked polymers, and porous aromatic frameworks. Additionally, common synthetic approaches for these materials are briefly discussed.
Collapse
Affiliation(s)
- Ranjit Bariki
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Reshma G Joseph
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Oussama M El-Kadri
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Research Centre, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H Al-Sayah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Research Centre, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
4
|
Liu Q, Pan W, Zhang J, Yang M, Chen Q, Liu F, Li J, Wei S, Zhu G. Porphyrin-based porous organic polymers synthesized using the Alder-Longo method: the most traditional synthetic strategy with exceptional capacity. RSC Adv 2024; 14:20837-20855. [PMID: 38952933 PMCID: PMC11216041 DOI: 10.1039/d4ra02277g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Porphyrin is a typical tetrapyrrole chromophore-based pigment with a special electronic structure and functionalities, which is frequently introduced into various porous organic polymers (POPs). Porphyrin-based POPs are widely used in various fields ranging from environmental and energy to biomedicine-related fields. Currently, most porphyrin-based POPs are prepared via the copolymerization of specific-group-functionalized porphyrins with other building blocks, in which the tedious and inefficient synthesis procedure for the porphyrin greatly hinders the development of such materials. This review aimed to summarize information on porphyrin-based POPs synthesized using the Alder-Longo method, thereby skipping the complex synthesis of porphyrin-bearing monomers, in which the porphyrin macrocycles are formed directly via the cyclic tetramerization of pyrrole with monomers containing multiple aldehyde groups during the polymerization process. The representative applications of porphyrin-based POPs derived using the Alder-Longo method are finally introduced, which pinpoints a clear relationship between the structure and function from the aspect of the building blocks used and porous structures. This review is therefore valuable for the rational design of efficient porphyrin-based porous organic polymer systems that may be utilized in various fields from energy-related conversion/storage technologies to biomedical science.
Collapse
Affiliation(s)
- Qian Liu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University Weifang 261053 Shandong P. R. China
| | - Wen Pan
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Junshan Zhang
- Weifang People's Hospital, Shandong Second Medical University Weifang 261041 Shandong P. R. China
| | - Mei Yang
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Qin Chen
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Feng Liu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Juan Li
- Weifang People's Hospital, Shandong Second Medical University Weifang 261041 Shandong P. R. China
| | - Songrui Wei
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Guoji Zhu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| |
Collapse
|
5
|
Devendrapandi G, Liu X, Balu R, Ayyamperumal R, Valan Arasu M, Lavanya M, Minnam Reddy VR, Kim WK, Karthika PC. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 249:118404. [PMID: 38341071 DOI: 10.1016/j.envres.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Persistent organic pollutants (POPs) provide a serious threat to human health and the environment in soil and water ecosystems. This thorough analysis explores creative remediation techniques meant to address POP pollution. Persistent organic pollutants are harmful substances that may withstand natural degradation processes and remain in the environment for long periods of time. Examples of these pollutants include dioxins, insecticides, and polychlorinated biphenyls (PCBs). Because of their extensive existence, cutting-edge and environmentally friendly eradication strategies must be investigated. The most recent advancements in POP clean-up technology for soil and water are evaluated critically in this article. It encompasses a wide range of techniques, such as nanotechnology, phytoremediation, enhanced oxidation processes, and bioremediation. The effectiveness, cost-effectiveness, and environmental sustainability of each method are assessed. Case studies from different parts of the world show the difficulties and effective uses of these novel techniques. The study also addresses new developments in POP regulation and monitoring, highlighting the need of all-encompassing approaches that include risk assessment and management. In order to combat POP pollution, the integration of diverse remediation strategies, hybrid approaches, and the function of natural attenuation are also examined. Researchers, legislators, and environmental professionals tackling the urgent problem of persistent organic pollutants (POPs) in soil and water should benefit greatly from this study, which offers a complete overview of the many approaches available for remediating POPs in soil and water.
Collapse
Affiliation(s)
- Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Xinghui Liu
- Key Laboratory of Western China's Environmental System, College of Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411, India.
| | | | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mahimaluru Lavanya
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
6
|
Zhuang Y, Li S, Rene ER, Dong S, Ma W. Green synthesis of magnetic azo-linked porous organic polymers with recyclable properties for enhanced Bisphenol-A adsorption from aqueous solutions. ENVIRONMENTAL RESEARCH 2024; 249:118427. [PMID: 38325780 DOI: 10.1016/j.envres.2024.118427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Porous organic polymers (POPs) present superior adsorption performance to steroid endocrine disruptors. However, the effective recovery and high cost have been a big limitation for their large-scale applications. Herein, magnetic azo-linked porous polymers (Fe3O4@SiO2/ALP-p) were designed and prepared in a green synthesis approach using low-price materials from phloroglucinol and pararosaniline via a diazo-coupling reaction under standard temperature and pressure conditions, which embedded with Fe3O4@SiO2 nanoparticles to form three-dimensional interlayer network structure with flexible-rigid interweaving. The saturated adsorption capacity to bisphenol-A (BPA) was 485.09 mg/g at 298 K, which increased by 1.4 times compared with ALP-p of relatively smaller mass density. This enhanced adsorption was ascribed to increment from surface adsorption and pore filling with 2.3 times of specific surface area and 2.6 times of pore volume, although the total organic functional groups decreased with Fe3O4@SiO2 amendment. Also, the adsorption rate increased by about 1.1 and 1.5-fold due to enhancement in the initial stage of surface adsorption and subsequent stage pore diffusion, respectively. Moreover, this adsorbent could be used in broad pH (3.0-7.0) and salinity adaptability (<0.5 mol/L). The loss of adsorption capacity and magnetic recovery were lower than 1.1% and 0.8% in each operation cycle because of the flexible-rigid interweave. This excellent performance was contributed by synergistic effects from physisorption and chemisorption, such as pore filling, electrostatic attraction, π-π stacking, hydrogen bonding, and hydrophobic interaction. This study offered a cost-effective, high-performing, and ecologically friendly material along with a green preparation method.
Collapse
Affiliation(s)
- Yuqi Zhuang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Sinuo Li
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Shuoyu Dong
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Shetty S, Baig N, Sengupta D, Farha OK, Alameddine B. Tröger's Base-Enriched Conjugated Cyclopentannulated Copolymers: Prominent Adsorbents of CO 2, H 2, and Iodine. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8130-8139. [PMID: 38315161 DOI: 10.1021/acsami.3c18055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Three copolymers with conjugated structures, PTB1-PTB3, were produced utilizing a palladium-catalyzed cyclopentannulation polymerization by reacting a specially designed diethynyl Tröger's base surrogate with different dihalogenated polycondensed aromatic hydrocarbons. Brunauer, Emmet, and Teller nitrogen gas adsorption investigation revealed the surface areas of the copolymers, attaining ∼365 m2 g-1. Gas uptake studies demonstrated a considerable carbon dioxide uptake for PTB2 of 44.41 mg g-1 at 273 K and a promising H2 gas uptake of 3.18 mg g-1 at 77 K. PTB1-PTB3 displayed a sizable iodine adsorption capacity, achieving 4000 mg g-1, and mechanistic investigations demonstrated the prevalence of a pseudo-second-order kinetic model. Recyclability experiments proved the effective regeneration of the copolymers, even after performing several adsorption and desorption tests.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
| | - Debabrata Sengupta
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Hawally 32093, Kuwait
| |
Collapse
|