1
|
Hamal EK, Alfassi G, Antonenko M, Rein DM, Cohen Y. Cellulose-coated emulsion micro-particles self-assemble with yeasts for cellulose bio-conversion. Sci Rep 2024; 14:5499. [PMID: 38448579 PMCID: PMC10918086 DOI: 10.1038/s41598-024-56204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
In the quest for alternative renewable energy sources, a new self-assembled hybrid configuration of cellulose-coated oil-in-water emulsion particles with yeast was formed. In this research, the addition of yeasts (S. cerevisiae) to the micro-particle emulsion revealed a novel self-assembly configuration in which the yeast cell is connected to surrounding cellulose-coated micro-particles. This hybrid configuration may enhance the simultaneous saccharification and fermentation process by substrate channeling. Glucose produced by hydrolysis of the cellulose shells coating the micro-particles, catalyzed by cellulytic enzymes attached to their coating, is directly fermented to ethanol by the yeasts to which the particles are connected. The results indicate ethanol yield of 62%, based on the cellulose content of the emulsion, achieved by the yeast/micro-particle hybrids. The functionality of this hybrid configuration is expected to serve as a micro-reactor for a cascade of biochemical reactions in a "one-pot" consolidated process transforming cellulose to valuable chemicals, such as biodiesel.
Collapse
Affiliation(s)
- Ester Korkus Hamal
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Gilad Alfassi
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Margarita Antonenko
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Dmitry M Rein
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yachin Cohen
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| |
Collapse
|
2
|
Cao B, Li M, Zhao Y, Zhou H, Tang T, Li M, Song C, Zhuang W. Ultrathin 2D-MOFs for dual-enzyme cascade biocatalysis with sensitive glucose detection performances. Colloids Surf B Biointerfaces 2023; 230:113519. [PMID: 37633076 DOI: 10.1016/j.colsurfb.2023.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
In recent years, two-dimensional nanosheet metal-organic frameworks (2D MOFs) have been widely considered as promising carriers for enzyme immobilization owing to their large surface area, designable and tunable structures, and other properties that enhance enzyme loading and modulate interactions with enzymes. In this study, a series of ultrathin 2D M-TCPP (M = Co, Ni, Zn, Cu) nanosheets were synthesized employing a surfactant-assisted bottom-up approach, and the effect of solvent ratio on the morphology and properties of 2D MOFs was explored. After systematic characterization, Cu-based 2D MOFs with large specific surface areas and excellent water stability was selected as the carrier for the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP). The effects of adsorption and covalent immobilization strategies on bis-enzyme loading and enzyme activity, as well as their applications in rapid glucose detection, were systematically investigated. The results showed that A-CTGH and C-CTGH owned enzyme loadings of 187.9 and 249.1 mg/g, respectively, and exhibited superior enzymatic activity when exposed to harsh environments compared to free enzymes. In addition, the covalently immobilized biocatalyst based on GOx demonstrated a more sensitive glucose detection performance, including a wide linear range from 5.0 to 16 μM with a detection limit of 0.6 μM.
Collapse
Affiliation(s)
- Bin Cao
- Special Polymer Materials and Fiber Engineering Technology Research Center of Jiangsu, China Nuclear Industry Huawei Engineering Design & Research Co. Ltd., No. 79, Yunlongshan Road, Nanjing 210019, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Mengyu Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Ye Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Huimin Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Ting Tang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Mengran Li
- Special Polymer Materials and Fiber Engineering Technology Research Center of Jiangsu, China Nuclear Industry Huawei Engineering Design & Research Co. Ltd., No. 79, Yunlongshan Road, Nanjing 210019, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Chuan Song
- Department of Chemical Engineering, the University of Melbourne, Melbourne, Victoria 3010, Australia; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China.
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luzhou Laojiao Postdoctoral Programme, Luzhou Laojiao Co., Ltd., Luzhou 646000, China.
| |
Collapse
|
3
|
Skwierawska AM, Bliźniewska M, Muza K, Nowak A, Nowacka D, Zehra Syeda SE, Khan MS, Łęska B. Cellulose and its derivatives, coffee grounds, and cross-linked, β-cyclodextrin in the race for the highest sorption capacity of cationic dyes in accordance with the principles of sustainable development. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129588. [PMID: 35850070 DOI: 10.1016/j.jhazmat.2022.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, seven different materials were analyzed and includes coffee grounds (CG), two types of cellulose (CGC and CC), two types of modified cellulose (CT and CTCD), and cross-linked β-cyclodextrin (CD-1 and CD-2) were tested as adsorbents for the removal of dyes from the wastewater. The composition, morphology, and presence of functional groups in the obtained sorption materials were characterized by elemental analysis, SEM, TG/DTA, and FTIR spectroscopy. The sorption processes of the model contaminant, crystal violet (CV), were studied by kinetics and equilibrium models. The results showed, that using CTCD, the dye was adsorbed rapidly in 1 min and the slowest adsorption occurred in 20 min by CG. The time evolution was adjusted using a two-model, pseudo second-order model (CG and CGC) and pseudo first-order model in the rest adsorbents. According to the Langmuir and Sips isotherm models, the maximum adsorption capacities were very high in each case ranging from 1092.24 to 1220.40 mg g-1. Moreover, the adsorption capacity of the near-natural materials remained even higher after five regeneration cycles. The regeneration is almost waste-free and the materials used can be decomposed during composting. In addition, almost complete removal of cationic dyes was observed during the treatment of real wastewater samples.
Collapse
Affiliation(s)
- Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland.
| | - Monika Bliźniewska
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Kinga Muza
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Agnieszka Nowak
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Shan E Zehra Syeda
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Muhammad Shahzeb Khan
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza street, 80-233 Gdańsk, Poland
| | - Bogusława Łęska
- Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego street, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Xiang S, Wu Q, Ren W, Guo W, Ren N. Mechanism of powdered activated carbon enhancing caproate production. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Abstract
Biomass-derived sugars are platform molecules that can be converted into a variety of final products. Non-food, lignocellulosic feedstocks, such as agroforest residues and low inputs, high yield crops, are attractive bioresources for the production of second-generation sugars. Biorefining schemes based on the use of versatile technologies that operate at mild conditions contribute to the sustainability of the bio-based products. The present work describes the conversion of giant reed (Arundo donax), a non-food crop, to ethanol and furfural (FA). A sulphuric-acid-catalyzed steam explosion was used for the biomass pretreatment and fractionation. A hybrid process was optimized for the hydrolysis and fermentation (HSSF) of C6 sugars at high gravity conditions consisting of a biomass pre-liquefaction followed by simultaneous saccharification and fermentation with a step-wise temperature program and multiple inoculations. Hemicellulose derived xylose was dehydrated to furfural on the solid acid catalyst in biphasic media irradiated by microwave energy. The results indicate that the optimized HSSF process produced ethanol titers in the range 43–51 g/L depending on the enzymatic dosage, about 13–21 g/L higher than unoptimized conditions. An optimal liquefaction time before saccharification and fermentation tests (SSF) was 10 h by using 34 filter paper unit (FPU)/g glucan of Cellic® CTec3. C5 streams yielded 33.5% FA of the theoretical value after 10 min of microwave heating at 157 °C and a catalyst concentration of 14 meq per g of xylose.
Collapse
|
6
|
Velázquez R, Martínez A, Zamora E, Álvarez ML, Bautista-Gallego J, Hernández LM, Ramírez M. Genetic Improvement of Torulaspora delbrueckii for Wine Fermentation: Eliminating Recessive Growth-Retarding Alleles and Obtaining New Mutants Resistant to SO 2, Ethanol, and High CO 2 Pressure. Microorganisms 2020; 8:E1372. [PMID: 32906752 PMCID: PMC7564342 DOI: 10.3390/microorganisms8091372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/17/2022] Open
Abstract
The use of Torulaspora delbrueckii has been repeatedly proposed to improve a wine's organoleptic quality. This yeast has lower efficiency in completing wine fermentation than Saccharomyces cerevisiae since it has less fermentation capability and greater sensitivity to SO2, ethanol, and CO2 pressure. Therefore, the completion of fermentation is not guaranteed when must or wine is single-inoculated with T. delbrueckii. To solve this problem, new strains of T. delbrueckii with enhanced resistance to winemaking conditions were obtained. A genetic study of four wine T. delbrueckii strains was carried out. Spore clones free of possible recessive growth-retarding alleles were obtained from these yeasts. These spore clones were used to successively isolate mutants resistant to SO2, then those resistant to ethanol, and finally those resistant to high CO2 pressure. Most of these mutants showed better capability for base wine fermentation than the parental strain, and some of them approached the fermentation capability of S. cerevisiae. The genetic stability of the new mutants was good enough to be used in industrial-level production in commercial wineries. Moreover, their ability to ferment sparkling wine could be further improved by the continuous addition of oxygen in the culture adaptation stage prior to base wine inoculation.
Collapse
Affiliation(s)
- Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - María L. Álvarez
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - Joaquín Bautista-Gallego
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Luis M. Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| |
Collapse
|
7
|
Zhou J, Yin L, Wu C, Wu S, Lu J, Fang H, Qian Y. Screening of an Alkaline CMCase-Producing Strain and the Optimization of its Fermentation Condition. Curr Pharm Biotechnol 2020; 21:1304-1315. [PMID: 31995003 DOI: 10.2174/1389201021666200129123818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Alkaline Carboxymethyl Cellulase (CMCase) is an attractive enzyme for the textile, laundry, pulp, and paper industries; however, commercial preparations with sufficient activity at alkaline conditions are scarce. METHODS High CMCase-producing bacterial isolate, SX9-4, was screened out from soil bacteria, which was identified as Flavobacterium sp. on the basis of 16S rDNA sequencing. RESULTS The optimum pH and temperature for CMCase reaction were 8.0 and 55°C, respectively. Alkaline CMCase was stable over wide pH (3.0-10.6) and temperature (25-55°C) ranges. Enzyme activity was significantly inhibited by the bivalent cations Mn2+ and Cu2+, and was activated by Fe2+. To improve the alkaline CMCase production of SX9-4, fermentation parameters were selected through onefactor- at-a-time and further carried out by response surface methodologies based on a central composite design. CONCLUSION High CMCase production (57.18 U/mL) was achieved under the optimal conditions: 10.53 g/L carboxymethylcellulose sodium, 7.74 g/L glucose, 13.71 g/L peptone, and 5.27 g/L ammonium oxalate.
Collapse
Affiliation(s)
- Junmei Zhou
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Lianghong Yin
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Chenbin Wu
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Sijia Wu
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jidong Lu
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yongchang Qian
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
8
|
Mou H, Huang J, Li W, Wu X, Liu Y, Fan H. Study on the chemical modification of alkali lignin towards for cellulase adsorbent application. Int J Biol Macromol 2020; 149:794-800. [PMID: 31982529 DOI: 10.1016/j.ijbiomac.2020.01.229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 11/15/2022]
Abstract
The research of cost-efficient lignin-based adsorbents is a practical strategy for the recovery of cellulase. In this study, alkali lignin was modified to increase the phenolic hydroxyl (Ph-OH) content for cellulase adsorption applications. After phenolation, compared with the lignin reference, the maximum adsorption cellulase capacity of lignoresorcinol (LigR) and lignopyrogallol (LigP) was improved from 76.5 mg/g to 842.1 mg/g and 911.4 mg/g, respectively. The enzyme activity of the adsorbed cellulase on LigR was higher than that on LigP, which could migrate to the fresh substrates during enzymatic hydrolysis. The adsorbed cellulase could be easily recovered from two lignin-based adsorbents by adjusting pH. The distinct cellulase adsorption behavior of two lignin-based adsorbents was closely related to the high Ph-OH contents and low S/G ratio in phenolated lignin samples characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Heteronuclear Single Quantum Coherence-Nuclear Magnetic Resonance (HSQC-NMR).
Collapse
Affiliation(s)
- Hongyan Mou
- State Key Laboratory of Pulp and Papermaking, School of Light Industry and Engineering, South China University of Technology, China.
| | - Jin Huang
- State Key Laboratory of Pulp and Papermaking, School of Light Industry and Engineering, South China University of Technology, China
| | - Weiying Li
- State Key Laboratory of Pulp and Papermaking, School of Light Industry and Engineering, South China University of Technology, China
| | - Xiao Wu
- State Key Laboratory of Pulp and Papermaking, School of Light Industry and Engineering, South China University of Technology, China
| | - Yibei Liu
- State Key Laboratory of Pulp and Papermaking, School of Light Industry and Engineering, South China University of Technology, China
| | - Huiming Fan
- State Key Laboratory of Pulp and Papermaking, School of Light Industry and Engineering, South China University of Technology, China
| |
Collapse
|
9
|
Binod P, Gnansounou E, Sindhu R, Pandey A. Enzymes for second generation biofuels: Recent developments and future perspectives. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Gomes D, Gama M, Domingues L. Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:111. [PMID: 29686729 PMCID: PMC5901881 DOI: 10.1186/s13068-018-1103-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In spite of the continuous efforts and investments in the last decades, lignocellulosic ethanol is still not economically competitive with fossil fuels. Optimization is still required in different parts of the process. Namely, the cost effective usage of enzymes has been pursued by different strategies, one of them being recycling. RESULTS Cellulase recycling was analyzed on recycled paper sludge (RPS) conversion into bioethanol under intensified conditions. Different cocktails were studied regarding thermostability, hydrolysis efficiency, distribution in the multiphasic system and recovery from solid. Celluclast showed inferior stability at higher temperatures (45-55 °C), nevertheless its performance at moderate temperatures (40 °C) was slightly superior to other cocktails (ACCELLERASE®1500 and Cellic®CTec2). Celluclast distribution in the solid-liquid medium was also more favorable, enabling to recover 88% of final activity at the end of the process. A central composite design studied the influence of solid concentration and enzyme dosage on RPS conversion by Celluclast. Solids concentration showed a significant positive effect on glucose production, no major limitations being found from utilizing high amounts of solids under the studied conditions. Increasing enzyme loading from 20 to 30 FPU/gcellulose had no significant effect on sugars production, suggesting that 22% solids and 20 FPU/gcellulose are the best operational conditions towards an intensified process. Applying these, a system of multiple rounds of hydrolysis with enzyme recycling was implemented, allowing to maintain the steady levels of enzyme activity with only 50% of enzyme on each recycling stage. Additionally, interesting levels of solid conversion (70-81%) were also achieved, leading to considerable improvements on glucose and ethanol production comparatively with the reports available so far (3.4- and 3.8-fold, respectively). CONCLUSIONS Enzyme recycling viability depends on enzyme distribution between the solid and liquid phases at the end of hydrolysis, as well as enzymes thermostability. Both are critical features to be observed for a judicious choice of enzyme cocktail. This work demonstrates that enzyme recycling in intensified biomass degradation can be achieved through simple means. The process is possibly much more effective at larger scale, hence novel enzyme formulations favoring this possibility should be developed for industrial usage.
Collapse
Affiliation(s)
- Daniel Gomes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Liu Y, He P, Shao L, Zhang H, Lü F. Significant enhancement by biochar of caproate production via chain elongation. WATER RESEARCH 2017; 119:150-159. [PMID: 28456078 DOI: 10.1016/j.watres.2017.04.050] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 05/24/2023]
Abstract
In this study, biochar was introduced into a chain elongation system to enhance the bioproduction of caproate and caprylate. The concentration of caproate increased to 21.1 g/L upon the addition of biochar, which is the highest level of caproate reported for such a system to date when ethanol was used as electron donor. The addition of biochar created a tougher system with more stable microorganism community structure for chain elongation, in which no obvious inhibition by products or substrates was observed, moreover, the lag phase was reduced 2.3-fold compared to the system without biochar. These reinforcement effect of biochar are attributed to the enhanced conductivity due to the significant enrichment of functional microorganisms via the microbial network surrounding smaller biochar particles, and via the adsorption on the rough surfaces or pores of larger particles, which facilitated electron transfer. Higher amounts of extracellular polymer substances and higher conductivity induced by biochar could contribute to the reinforcement effect in chain elongation.
Collapse
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of P.R. China (MOHURD), China
| | - Liming Shao
- Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of P.R. China (MOHURD), China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Liu Y, Lü F, Shao L, He P. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum. BIORESOURCE TECHNOLOGY 2016; 218:1140-50. [PMID: 27469095 DOI: 10.1016/j.biortech.2016.07.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/11/2016] [Accepted: 07/17/2016] [Indexed: 05/14/2023]
Abstract
The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis.
Collapse
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Pollution Control and Resource Reuses, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuses, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| | - Liming Shao
- Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR China (MOHURD), China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR China (MOHURD), China
| |
Collapse
|
13
|
Barros D, Oliveira P, Pascoal C, Cássio F. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:489-495. [PMID: 27186876 DOI: 10.1016/j.scitotenv.2016.04.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
Fungi, particularly aquatic hyphomycetes, have been recognized as playing a dominant role in microbial decomposition of plant litter in streams. In this study, we used a microcosm experiment with different levels of fungal diversity (species number and identity) using monocultures and combinations with up to five aquatic hyphomycete species (Articulospora tetracladia, Tricladium splendens, Heliscus submersus, Tetrachaetum elegans and Flagellospora curta) to assess the effects of ethanol and phenanthrene on three functional measures: plant litter decomposition, fungal biomass accrual and reproduction. Alder leaves were conditioned by fungi for 7days and then were exposed to phenanthrene (1mgL(-1)) dissolved in ethanol (0.1% final concentration) or ethanol (at the concentration used to solubilise phenanthrene) for further 24days. Exposure to ethanol alone or in combination with phenanthrene decreased leaf decomposition and fungal reproduction, but increased fungal biomass produced. All aspects of fungal activity varied with species number. Fungal activity in polycultures was generally higher than that expected from the sum of the weighted performances of participating species in monoculture, suggesting complementarity between species. However, the activity of fungi in polycultures did not exceed the activity of the most productive species either in the absence or presence of ethanol alone or with phenanthrene.
Collapse
Affiliation(s)
- Diana Barros
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patrícia Oliveira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
14
|
P. Nghiem N, W. Ellis, Jr. C, Montanti J. The effects of ethanol on hydrolysis of cellulose and pretreated barley straw by some commercial cellulolytic enzyme products. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Caspeta L, Castillo T, Nielsen J. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 2015; 3:184. [PMID: 26618154 PMCID: PMC4641163 DOI: 10.3389/fbioe.2015.00184] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.
Collapse
Affiliation(s)
- Luis Caspeta
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Tania Castillo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , Gothenburg , Sweden ; Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg , Sweden ; Novo Nordisk Foundation Center for Biosustainability , Hørsholm , Denmark
| |
Collapse
|
16
|
Silva CDOG, Aquino EN, Ricart CAO, Midorikawa GEO, Miller RNG, Filho EXF. GH11 xylanase from Emericella nidulans with low sensitivity to inhibition by ethanol and lignocellulose-derived phenolic compounds. FEMS Microbiol Lett 2015; 362:fnv094. [DOI: 10.1093/femsle/fnv094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2015] [Indexed: 01/03/2023] Open
|
17
|
Paschos T, Xiros C, Christakopoulos P. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum. BMC Biotechnol 2015; 15:15. [PMID: 25887038 PMCID: PMC4417268 DOI: 10.1186/s12896-015-0130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/24/2015] [Indexed: 11/25/2022] Open
Abstract
Background Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high added value products, no systematic study has been performed concerning its ethanol tolerance levels. Results In aerobic conditions it was shown that both the biomass production and the specific growth rate were affected by the presence of ethanol. The maximum allowable ethanol concentration, above which cells could not grow, was predicted to be 72 g/L. Under limited aeration conditions the ethanol-producing capability of the cells was completely inhibited at 50 g/L ethanol. The lignocellulolytic enzymatic activities were affected to a lesser extent by the presence of ethanol, while the ethanol inhibitory effect appears to be more severe at elevated temperatures. Moreover, when the produced ethanol was partially removed from the broth, it led to an increase in fermenting ability of the fungus up to 22.5%. The addition of F. oxysporum’s system was shown to increase the fermentation of pretreated wheat straw by 11%, in co-fermentation with Saccharomyces cerevisiae. Conclusions The assessment of ethanol tolerance levels of F. oxysporum on aerobic growth, on lignocellulolytic activities and on fermentative performance confirmed its biotechnological potential for the production of bioethanol. The cellulolytic and xylanolytic enzymes of this fungus could be exploited within the biorefinery concept as their ethanol resistance is similar to that of the commercial enzymes broadly used in large scale fermentations and therefore, may substantially contribute to a rational design of a bioconversion process involving F. oxysporum. The SSCF experiments on liquefied wheat straw rich in hemicellulose indicated that the contribution of the metabolic system of F. oxysporum in a co-fermentation with S. cerevisiae may play a secondary role.
Collapse
Affiliation(s)
- Thomas Paschos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, Athens, 5780, Greece.
| | - Charilaos Xiros
- Industrial Biotechnology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden.
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.
| |
Collapse
|
18
|
Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:103-65. [PMID: 24767427 DOI: 10.1016/b978-0-12-800260-5.00004-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, the present knowledge on the occurrence of cellulases, with a special emphasis on the presence of carbohydrate-binding modules (CBMs) in various fungal strains, has been summarized. The importance of efficient fungal cellulases is growing due to their potential uses in biorefinery processes where lignocellulosic biomasses are converted to platform sugars and further to biofuels and chemicals. Most secreted cellulases studied in detail have a bimodular structure containing an active core domain attached to a CBM. CBMs are traditionally been considered as essential parts in cellulases, especially in cellobiohydrolases. However, presently available genome data indicate that many cellulases lack the binding domains in cellulose-degrading organisms. Recent data also demonstrate that CBMs are not necessary for the action of cellulases and they solely increase the concentration of enzymes on the substrate surfaces. On the other hand, in practical industrial processes where high substrate concentrations with low amounts of water are employed, the enzymes have been shown to act equally efficiently with and without CBM. Furthermore, available kinetic data show that enzymes without CBMs can desorb more readily from the often lignaceous substrates, that is, they are not stuck on the substrates and are thus available for new actions. In this review, the available data on the natural habitats of different wood-degrading organisms (with emphasis on the amount of water present during wood degradation) and occurrence of cellulose-binding domains in their genome have been assessed in order to identify evolutionary advantages for the development of CBM-less cellulases in nature.
Collapse
|
19
|
Pakarinen A, Haven MØ, Djajadi DT, Várnai A, Puranen T, Viikari L. Cellulases without carbohydrate-binding modules in high consistency ethanol production process. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:27. [PMID: 24559384 PMCID: PMC3974600 DOI: 10.1186/1754-6834-7-27] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/06/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Enzymes still comprise a major part of ethanol production costs from lignocellulose raw materials. Irreversible binding of enzymes to the residual substrate prevents their reuse and no efficient methods for recycling of enzymes have so far been presented. Cellulases without a carbohydrate-binding module (CBM) have been found to act efficiently at high substrate consistencies and to remain non-bound after the hydrolysis. RESULTS High hydrolysis yields could be obtained with thermostable enzymes of Thermoascus aurantiacus containing only two main cellulases: cellobiohydrolase I (CBH I), Cel7A and endoglucanase II (EG II), Cel5A. The yields were decreased by only about 10% when using these cellulases without CBM. A major part of enzymes lacking CBM was non-bound during the most active stage of hydrolysis and in spite of this, produced high sugar yields. Complementation of the two cellulases lacking CBM with CBH II (CtCel6A) improved the hydrolysis. Cellulases without CBM were more sensitive during exposure to high ethanol concentration than the enzymes containing CBM. Enzymes lacking CBM could be efficiently reused leading to a sugar yield of 90% of that with fresh enzymes. The applicability of cellulases without CBM was confirmed under industrial ethanol production conditions at high (25% dry matter (DM)) consistency. CONCLUSIONS The results clearly show that cellulases without CBM can be successfully used in the hydrolysis of lignocellulose at high consistency, and that this approach could provide new means for better recyclability of enzymes. This paper provides new insight into the efficient action of CBM-lacking cellulases. The relationship of binding and action of cellulases without CBM at high DM consistency should, however, be studied in more detail.
Collapse
Affiliation(s)
- Annukka Pakarinen
- Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
| | | | - Demi Tristan Djajadi
- Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
| | - Anikó Várnai
- Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432 Aas, Norway
| | - Terhi Puranen
- Roal Oy, Tykkimäentie 15, FIN-05200 Rajamäki, Finland
| | - Liisa Viikari
- Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
| |
Collapse
|
20
|
Viell J, Harwardt A, Seiler J, Marquardt W. Is biomass fractionation by Organosolv-like processes economically viable? A conceptual design study. BIORESOURCE TECHNOLOGY 2013; 150:89-97. [PMID: 24157680 DOI: 10.1016/j.biortech.2013.09.078] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
In this work, the conceptual designs of the established Organosolv process and a novel biphasic, so-called Organocat process are developed and analyzed. Solvent recycling and energy integration are emphasized to properly assess economic viability. Both processes show a similar energy consumption (approximately 5 MJ/kg(dry biomass)). However, they still show a lack of economic attractiveness even at larger scale. The Organocat process is more favorable due to more efficient lignin separation. The analysis uncovers the remaining challenges toward an economically viable design. They largely originate from by-products formation, product isolation, and solvent recycling. Necessary improvements in process chemistry, equipment design, energy efficiency and process design are discussed to establish economically attractive Organosolv-like processes of moderate capacity as a building block of a future biorefinery.
Collapse
Affiliation(s)
- Jörn Viell
- Aachener Verfahrenstechnik - Process Systems Engineering, RWTH Aachen University, Turmstr. 46, 52064 Aachen, Germany
| | | | | | | |
Collapse
|
21
|
Reducing values: dinitrosalicylate gives over-oxidation and invalid results whereas copper bicinchoninate gives no over-oxidation and valid results. Carbohydr Res 2013; 380:118-23. [DOI: 10.1016/j.carres.2013.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022]
|
22
|
Asgher M, Ahmad Z, Iqbal HMN. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. INDUSTRIAL CROPS AND PRODUCTS 2013; 44:488-495. [DOI: 10.1016/j.indcrop.2012.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Ribeiro BD, Barreto DW, Coelho MAZ. Enzyme-enhanced extraction of phenolic compounds and proteins from flaxseed meal. ISRN BIOTECHNOLOGY 2012; 2013:521067. [PMID: 25969774 PMCID: PMC4403571 DOI: 10.5402/2013/521067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/11/2012] [Indexed: 11/23/2022]
Abstract
Flaxseed (Linum usitatissimum) meal, the main byproduct of the flaxseed oil extraction process, is composed mainly of proteins, mucilage, and phenolic compounds. The extraction methods of phenolics either commonly employed the use of mixed solvents (dioxane/ethanol, water/acetone, water/methanol, and water/ethanol) or are done with the aid of alkaline, acid, or enzymatic hydrolysis. This work aimed at the study of optimal conditions for a clean process, using renewable solvents and enzymes, for the extraction of phenolics and proteins from flaxseed meal. After a screening of the most promising commercial preparations based on different carbohydrases and proteases, a central composite rotatable design and a mixture design were applied, achieving as optimal results a solution containing 6.6 and 152 g kg−1
meal of phenolics and proteins, respectively. The statistical approach used in the present study for the enzyme-enhanced extraction of phenolics and proteins from the major flaxseed byproduct was effective. By means of the sequential experimental design methodology, the extraction of such compounds was increased 10-fold and 14-fold, when compared to a conventional nonenzymatic extraction.
Collapse
Affiliation(s)
- Bernardo Dias Ribeiro
- School of Chemistry, Federal University of Rio de Janeiro, Ilha do Fundão, 21945-970, Rio de Janeiro, RJ, Brazil
| | - Daniel Weingart Barreto
- School of Chemistry, Federal University of Rio de Janeiro, Ilha do Fundão, 21945-970, Rio de Janeiro, RJ, Brazil
| | - Maria Alice Zarur Coelho
- School of Chemistry, Federal University of Rio de Janeiro, Ilha do Fundão, 21945-970, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Kang YM, Kang TH, Yun HD, Cho KM. Enhancing the Enzymatic Activity of the Multifunctional β-Glycosyl Hydrolase (Cel44C-Man26AP558) from Paenibacillus polymyxa GS01 Using DNA Shuffling. ACTA ACUST UNITED AC 2012. [DOI: 10.7845/kjm.2012.48.2.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Polizzi V, Fazzini L, Adams A, Picco AM, De Saeger S, Van Peteghem C, De Kimpe N. Autoregulatory properties of (+)-thujopsene and influence of environmental conditions on its production by Penicillium decumbens. MICROBIAL ECOLOGY 2011; 62:838-52. [PMID: 21744159 DOI: 10.1007/s00248-011-9905-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/19/2011] [Indexed: 05/18/2023]
Abstract
A Penicillium decumbens strain was collected from a water-damaged building, and the production of microbial volatile organic compounds (MVOCs) was investigated by means of headspace solid-phase microextraction, followed by GC-MS analysis. The strain was characterized by a high production of (+)-thujopsene. The influence of various temperatures, relative humidity (RH) values, substrates, and inoculum concentrations on fungal growth and (+)-thujopsene production was studied. The optimal temperature and relative humidity for P. decumbens growth were 30°C and 100% RH, respectively. In general, the more favourable the incubation parameters were for growth, the faster maximum (+)-thujopsene production was reached. Moreover, the antifungal activity of thujopsene was tested against 16 fungal strains. The growth of five of these fungal strains was negatively affected both by thujopsene alone and when grown in contact with the MVOCs produced by P. decumbens. Following these results and since growth of P. decumbens itself was also inhibited by thujopsene, an autoregulatory function for this compound was proposed. Few data are present in the literature about chemical communication between fungi. The present research could, therefore, contribute to understanding fungal metabolism and behaviour in indoor environments.
Collapse
Affiliation(s)
- Viviana Polizzi
- Faculty of Bioscience Engineering, Department of Sustainable Organic Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
26
|
Shen F, Kumar L, Hu J, Saddler JN. Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates. BIORESOURCE TECHNOLOGY 2011; 102:8945-8951. [PMID: 21816609 DOI: 10.1016/j.biortech.2011.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
Steam-pretreated sweet sorghum bagasse (SSB) and Douglas-fir (DF) were employed for SHF and SSF to evaluate the effects of xylanase supplementation and delignification on ethanol production. Results indicated final ethanol concentration in SHF could reach 28.4 g/L (SSB) and 20.4 g/L (DF) by xylanase supplementation with the increase of 46% and 61% in comparison with controls. The delignification could significantly enhance final ethanol concentration to 31.2g/L (SSB) and 30.2 g/L (DF) with the increase of 61% and 138%. In SSF, final ethanol concentration in the delignified SSB and DF arrived at 27.6 g/L and 34.3 g/L with the increase of 26% and 157% compared with controls. However, only 2.2 g/L (SSB) and 6.9 g/L (DF) ethanol were obtained with xylanase supplementation. According to these results, it could be concluded that delignification was beneficial to improve ethanol production of SHF and SSF. The xylanase supplementation (0.12 g protein/g glucan) was only positive to SHF while retarded SSF seriously.
Collapse
Affiliation(s)
- Fei Shen
- Provincial Key Laboratory of Agricultural Environmental Engineering, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, PR China.
| | | | | | | |
Collapse
|
27
|
Bioconversion of corn stover derived pentose and hexose to ethanol using cascade simultaneous saccharification and fermentation (CSSF). Bioprocess Biosyst Eng 2011; 35:99-104. [DOI: 10.1007/s00449-011-0617-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
|
28
|
Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production. Enzyme Microb Technol 2011; 49:413-9. [DOI: 10.1016/j.enzmictec.2011.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 11/24/2022]
|
29
|
Kim HJ, Gao W, Chung CH, Lee JW. Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method. ACTA ACUST UNITED AC 2011. [DOI: 10.5352/jls.2011.21.8.1083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Lupoi JS, Smith EA. Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng 2011; 108:2835-43. [DOI: 10.1002/bit.23246] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/31/2011] [Accepted: 06/06/2011] [Indexed: 11/06/2022]
|
31
|
Liu J, Lu J, Cui Z. Enzymatic hydrolysis of cellulose in a membrane bioreactor: assessment of operating conditions. Bioprocess Biosyst Eng 2010; 34:525-32. [DOI: 10.1007/s00449-010-0501-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
|
32
|
Kumar R, Wyman CE. Does change in accessibility with conversion depend on both the substrate and pretreatment technology? BIORESOURCE TECHNOLOGY 2009; 100:4193-202. [PMID: 19398329 DOI: 10.1016/j.biortech.2008.11.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/11/2008] [Accepted: 11/20/2008] [Indexed: 05/17/2023]
Abstract
The accessibility of cellulase and xylanase enzymes to glucan and xylan, respectively, and its change with conversion were measured for pure Avicel glucan and poplar solids that had been pretreated by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), dilute acid, and lime. Avicel and pretreated solids were digested to various degrees by cellulase together with beta-glucosidase enzymes and then cleaned of residual protein via a biological method using Protease. Glucan accessibility was determined by purified CBHI (Cel7A) adsorption at 4 degrees C, and 4 and 24 h hydrolysis yields were determined for solids loading containing equal amounts of glucan (1.0% w/v) and lignin (1.0% w/v), in two separate sets of experiments. Consistent with our previous study and in contrast to some in the literature, little change in glucan accessibility was observed with conversion for Avicel, but glucan and xylan accessibility for real biomass varied with the type of pretreatment. For example, AFEX pretreated solids showed a negligible change in glucan accessibility for conversion up to 90%, although xylan accessibility seemed to decline first and then remained constant. On the other hand, a substantial decline in glucan and xylan accessibility with conversion was observed for lime pretreated poplar solids, as shown by initial hydrolysis rates. Yet, an increase in CBHI adsorption with conversion for lime pretreated poplar solids suggested the opposite trend, possibly due to increased lignin exposure and/or reduced effectiveness of adsorbed enzyme.
Collapse
Affiliation(s)
- Rajeev Kumar
- Thayer School of Engineering, Dartmouth College, New Hampshire 03755, USA
| | | |
Collapse
|
33
|
Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Cho KM, Math RK, Hong SY, Asraful Islam SM, Kim JO, Hong SJ, Kim H, Yun HD. Changes in the activity of the multifunctional β-glycosyl hydrolase (Cel44C-Man26A) from Paenibacillus polymyxa by removal of the C-terminal region to minimum size. Biotechnol Lett 2008; 30:1061-8. [DOI: 10.1007/s10529-008-9640-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 11/27/2022]
|
35
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 2007. [PMID: 16865734 DOI: 10.1002/bbb.4] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To improve process economics of the lignocellulose to ethanol process a reactor system for enzymatic liquefaction and saccharification at high-solids concentrations was developed. The technology is based on free fall mixing employing a horizontally placed drum with a horizontal rotating shaft mounted with paddlers for mixing. Enzymatic liquefaction and saccharification of pretreated wheat straw was tested with up to 40% (w/w) initial DM. In less than 10 h, the structure of the material was changed from intact straw particles (length 1-5 cm) into a paste/liquid that could be pumped. Tests revealed no significant effect of mixing speed in the range 3.3-11.5 rpm on the glucose conversion after 24 h and ethanol yield after subsequent fermentation for 48 h. Low-power inputs for mixing are therefore possible. Liquefaction and saccharification for 96 h using an enzyme loading of 7 FPU/g.DM and 40% DM resulted in a glucose concentration of 86 g/kg. Experiments conducted at 2%-40% (w/w) initial DM revealed that cellulose and hemicellulose conversion decreased almost linearly with increasing DM. Performing the experiments as simultaneous saccharification and fermentation also revealed a decrease in ethanol yield at increasing initial DM. Saccharomyces cerevisiae was capable of fermenting hydrolysates up to 40% DM. The highest ethanol concentration, 48 g/kg, was obtained using 35% (w/w) DM. Liquefaction of biomass with this reactor system unlocks the possibility of 10% (w/w) ethanol in the fermentation broth in future lignocellulose to ethanol plants.
Collapse
Affiliation(s)
- Henning Jørgensen
- Forestry and Forest Products, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark.
| | | | | | | |
Collapse
|