1
|
Li J, Shao Q, Xiang Y, Li J, Chen J, Du G, Kang Z, Wang Y. High-activity recombinant human carboxypeptidase B expression in Pichia pastoris through rational protein engineering and enhancing secretion from the Golgi apparatus to the plasma membrane. Biotechnol J 2024; 19:e2400098. [PMID: 38797728 DOI: 10.1002/biot.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Human carboxypeptidase B1 (hCPB1) is vital for recombinant insulin production, holding substantial value in the pharmaceutical industry. Current challenges include limited hCPB1 enzyme activity. In this study, recombinant hCPB1 efficient expression in Pichia pastoris was achieved. To enhance hCPB1 secretion, we conducted signal peptides screening and deleted the Vps10 sortilin domain, reducing vacuolar mis-sorting. Overexpression of Sec4p increased the fusion of secretory vesicles with the plasma membrane and improved hCPB1 secretion by 20%. Rational protein engineering generated twenty-two single-mutation mutants and identified the A178L mutation resulted in a 30% increase in hCPB1 specific activity. However, all combinational mutations that increased specific activities decreased protein expression levels. Therefore, computer-aided global protein design with PROSS was employed for the aim of improving specific activities and preserving good protein expression. Among the six designed mutants, hCPB1-P6 showed a remarkable 114% increase in the catalytic rate constant (kcat), a 137% decrease in the Michaelis constant (Km), and a 490% increase in catalytic efficiency. Most mutations occurred on the surface of hCPB1-P6, with eight sites mutated to proline. In a 5 L fermenter, hCPB1-P6 was produced by the secretion-enhanced P. pastoris chassis to 199.6 ± 20 mg L-1 with a specific activity of 96 ± 0.32 U mg-1, resulting in a total enzyme activity of 19137 ± 1131 U L-1, demonstrating significant potential for industrial applications.
Collapse
Affiliation(s)
- Jia Li
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qinan Shao
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yulong Xiang
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Pieper R, Martin L, Schunter N, Villodre Tudela C, Weise C, Klopfleisch R, Zentek J, Einspanier R, Bondzio A. Impact of high dietary zinc on zinc accumulation, enzyme activity and proteomic profiles in the pancreas of piglets. J Trace Elem Med Biol 2015; 30:30-6. [PMID: 25744507 DOI: 10.1016/j.jtemb.2015.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/26/2022]
Abstract
The exocrine pancreas plays an important role in zinc homeostasis. Feeding very high (2000-3000mgzinc/kg diet) levels of zinc oxide to piglets for short periods is a common practice in the swine industry to improve performance and prevent diseases. The impact on pancreatic function and possible side effects during long-term feeding of high dietary zinc levels are still poorly understood. A total of 54 weaned piglets were either fed with low (57mg/kg, LZn), normal (164mg/kg, NZn) or high (2425mg/kg, HZn) zinc concentration in the diets. After 4 weeks of feeding, ten piglets per treatment were euthanized and pancreas samples were taken. Tissue zinc concentration and metallothionein abundance was greater with HZn compared with NZn and LZn (P<0.05). Similarly, activity of α-amylase, lipase, trypsin and chymotrypsin was higher with HZn as compared with NZn and LZn diets (P<0.05), whereas elastase activity was unchanged. Total trolox equivalent antioxidative capacity of pancreas tissue was higher with HZn diets compared with the other treatments (P<0.05). Pancreatic protein profiles of NZn and HZn fed piglets were obtained by 2D-DIGE technique and revealed 15 differentially expressed proteins out of 2100 detected spots (P<0.05). The differentially expressed proteins aldose reductase, eukaryotic elongation factor II and peroxiredoxin III were confirmed by immunoblotting. Identified proteins include zinc finger-containing transcription factors and proteins mainly associated with oxidative stress response and signal transduction in HZn compared with NZn pigs. Histologic examination however showed no morphologic changes. The results suggest that long-term supply of very high dietary zinc increases zinc and metallothionein concentration, and digestive enzyme activity, but also triggers oxidative stress reactions in the pancreas of young pigs. The data provide new insights into pancreatic function under outbalanced zinc homeostasis.
Collapse
Affiliation(s)
- R Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany.
| | - L Martin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - N Schunter
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - C Villodre Tudela
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - C Weise
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - R Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, D-14163 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - R Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, D-14163 Berlin, Germany
| | - A Bondzio
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, D-14163 Berlin, Germany
| |
Collapse
|
3
|
Ktari N, Ben Khaled H, Lassoued I, Ghorbel S, Nasri M. Isolation and Characteristics of Carboxypeptidase B from Zebra Blenny ( Salaria basilisca) Viscera. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2014. [DOI: 10.1080/10498850.2012.708388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|