1
|
Optimum synthesis of esomeprazole catalyzed by Rhodococcus rhodochrous ATCC 4276 through response surface methodology. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0757-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Highly efficient asymmetric reduction of 2-octanone in biphasic system by immobilized Acetobacter sp. CCTCC M209061 cells. J Biotechnol 2019; 299:37-43. [DOI: 10.1016/j.jbiotec.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/12/2019] [Accepted: 04/27/2019] [Indexed: 11/22/2022]
|
3
|
Zhu YB, Xu Y, Wang LM, Qi B. Biosynthesis of (R)-2-hydroxy-3-phenylpropionic acid using whole recombinant Escherichia coli cells in an aqueous/n-octane biphasic system. J Zhejiang Univ Sci B 2018; 19:285-292. [PMID: 29616504 DOI: 10.1631/jzus.b1700040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
(R)-2-hydroxy-3-phenylpropionic acid (PLA) is an ideal antimicrobial compound with broad-spectrum activity against a wide range of Gram-positive bacteria, some Gram-negative bacteria, and fungi. We studied the bioconversion of phenylpyruvate (PPA) to PLA using whole recombinant Escherichia coli cells in a series of buffer/organic solvent systems. Octane was found to be the best organic solvent. The optimum volume ratio of the water phase to the n-octane phase, conversion temperature, substrate concentration, and cell concentration were 6:4, 40 °C, 12.5 g/L, and 30 g/L wet cells, respectively. Under the optimized conditions, the average PLA productivity in the aqueous/ n-octane system was 30.69% higher than that in the aqueous system, and 32.31 g/L PLA was obtained with the use of a stirred reactor (2-L scale). Taken together, our findings indicated that PLA biosynthesis was more efficient in an aqueous/n-octane biphasic system than in a monophasic aqueous system. The proposed biphasic system is an effective strategy for enhancing PLA yield and the biosynthesis of its analogues.
Collapse
Affiliation(s)
- Yi-Bo Zhu
- Key Laboratory of Food and Biotechnology of Suzhou, Changshu Institute of Technology, Changshu 215500, China
| | - Yan Xu
- Key Laboratory of Food and Biotechnology of Suzhou, Changshu Institute of Technology, Changshu 215500, China.,Institute of Basic Medical and Biological Sciences, Soochow University, Suzhou 215000, China
| | - Li-Mei Wang
- Key Laboratory of Food and Biotechnology of Suzhou, Changshu Institute of Technology, Changshu 215500, China
| | - Bin Qi
- Key Laboratory of Food and Biotechnology of Suzhou, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
4
|
Zheng Y, Li L, Shi X, Huang Z, Li F, Yang J, Guo Y. Nonionic surfactants and their effects on asymmetric reduction of 2-octanone with Saccharomyces cerevisiae. AMB Express 2018; 8:111. [PMID: 29978349 PMCID: PMC6033843 DOI: 10.1186/s13568-018-0640-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022] Open
Abstract
In an aqueous buffer system, serious reverse and side reactions were found in the asymmetric reduction of 2-octanone with Saccharomyces cerevisiae. However, some nonionic surfactants added to the aqueous buffer system improved the bioreduction process by decreasing the reverse and side reaction rates in addition to effectively increasing the average positive reaction rate. Further, a shorter carbon chain length of hydrophilic or hydrophobic moieties in surfactants resulted in a higher yield of (S)-2-octanol. The alkylphenol ethoxylate surfactants had a less influence than polyoxyethylenesorbitan trialiphatic surfactants on the product e.e. It suggested that the product e.e. resulting from the change of carbon chain length of the hydrophobic moieties varied markedly compared with the change of carbon chain length of the hydrophilic moiety. Emulsifier OP-10 and Tween 20 markedly enhanced the yield and product e.e. at the concentration of 0.4 mmol L−1 with a yield of 73.3 and 93.2%, and the product e.e. of 99.2 and 99.3%, respectively, at the reaction time of 96 h.
Collapse
|
5
|
Fiedurek J, Trytek M, Szczodrak J. Strain improvement of industrially important microorganisms based on resistance to toxic metabolites and abiotic stress. J Basic Microbiol 2017; 57:445-459. [DOI: 10.1002/jobm.201600710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Fiedurek
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| | - Mariusz Trytek
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| | - Janusz Szczodrak
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| |
Collapse
|
6
|
Wei P, Liang J, Cheng J, Zong MH, Lou WY. Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system. Microb Cell Fact 2016; 15:5. [PMID: 26758368 PMCID: PMC4711044 DOI: 10.1186/s12934-015-0407-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Enantiopure (S)-1-(4-methoxyphenyl) ethanol {(S)-MOPE} can be employed as an important synthon for the synthesis of cycloalkyl [b] indoles with the treatment function for general allergic response. To date, the biocatalytic resolution of racemic MOPE through asymmetric oxidation in the biphasic system has remained largely unexplored. Additionally, deep eutectic solvents (DESs), as a new class of promising green solvents, have recently gained increasing attention in biocatalysis for their excellent properties and many successful examples in biocatalytic processes. In this study, the biocatalytic asymmetric oxidation of MOPE to get (S)-MOPE using Acetobacter sp. CCTCC M209061 cells was investigated in different two-phase systems, and adding DES in a biphasic system was also explored to further improve the reaction efficiency of the biocatalytic oxidation. RESULTS Of all the examined water-immiscible organic solvents and ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophoshpate ([C4MIM][PF6]) afforded the best results, and consequently was selected as the second phase of a two-phase system for the asymmetric oxidation of MOPE with immobilized Acetobacter sp. CCTCC M209061 cells. For the reaction performed in the [C4MIM][PF6]/buffer biphasic system, under the optimized conditions, the initial reaction rate, the maximum conversion and the residual substrate e.e. recorded 97.8 μmol/min, 50.5 and >99.9 % after 10 h reaction. Furthermore, adding the DES [ChCl][Gly] (10 %, v/v) to the aqueous phase, the efficiency of the biocatalytic oxidation was rose markedly. The optimal substrate concentration and the initial reaction rate were significantly increased to 80 mmol/L and 124.0 μmol/min, respectively, and the reaction time was shortened to 7 h with 51.3 % conversion. The immobilized cell still retained over 72 % of its initial activity after 9 batches of successive reuse in the [C4MIM][PF6]/[ChCl][Gly]-containing buffer system. Additionally, the efficient biocatalytic process was feasible up to a 500-mL preparative scale. CONCLUSION The biocatalytic asymmetric oxidation of MOPE with Acetobacter sp. CCTCC M209061 cells was successfully conducted in the [C4MIM][PF6]-containing biphasic system with high conversion and enantioselectivity, and the reaction efficiency was further enhanced by adding [ChCl][Gly] to the reaction system. The efficient biocatalytic process was promising for the preparation of enantiopure (S)-MOPE.
Collapse
Affiliation(s)
- Ping Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Jing Liang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Jing Cheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Min-Hua Zong
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Wen-Yong Lou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Xu Z, Wu Q, Yang M, Wang S, Wang Z, Xu X. Efficient asymmetric biosynthesis of (R)-(−)-epinephrine in hydrophilic ionic liquid-containing systems. RSC Adv 2016. [DOI: 10.1039/c6ra22140h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acinetobacter sp. UN-16 cell biocatalytic process with [HOOCEMIM]NO3 is very promising for efficient preparation of (R)-(−)-epinephrine.
Collapse
Affiliation(s)
- Zhiqun Xu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Qiao Wu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Meixia Yang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Shuai Wang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Zhenshou Wang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Xiaoping Xu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| |
Collapse
|
8
|
Wang N, Li J, Sun J, Huang J, Wang P. Bioreduction of 3,5-bis(trifluoromethyl)acetophenone using ionic liquid as a co-solvent catalyzed by recombinant Escherichia coli cells. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Wei P, Xu P, Wang XT, Lou WY, Zong MH. Asymmetric reduction of ethyl acetoacetate catalyzed by immobilized Acetobacter sp. CCTCC M209061 cells in hydrophilic ionic liquid hybrid system. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0751-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Design and application of a biphasic system that enhances productivity of Daucus carota-catalyzed asymmetric reduction. Biotechnol Lett 2015; 37:1703-9. [DOI: 10.1007/s10529-015-1838-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
11
|
Du PX, Wei P, Lou WY, Zong MH. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158. Microb Cell Fact 2014; 13:84. [PMID: 24916156 PMCID: PMC4075937 DOI: 10.1186/1475-2859-13-84] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/05/2014] [Indexed: 01/23/2023] Open
Abstract
Background Enantiomerically pure alcohols are important building blocks for production of chiral pharmaceuticals, flavors, agrochemicals and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. At present, most of these biocatalysts follow Prelog’s rule, and thus the (S)-alcohols are usually obtained when the smaller substituent of the ketone has the lower CIP priority. Only a few anti-Prelog (R)-specific whole cell biocatalysts have been reported. In this paper, the biocatalytic anti-Prelog reduction of 2-octanone to (R)-2-octanol was successfully conducted with high enantioselectivity using whole cells of Acetobacter pasteurianus GIM1.158. Results Compared with other microorganisms investigated, Acetobacter pasteurianus GIM1.158 was shown to be more effective for the reduction reaction, affording much higher yield, product enantiomeric excess (e.e.) and initial reaction rate. The optimal temperature, buffer pH, co-substrate and its concentration, substrate concentration, cell concentration and shaking rate were 35°C, 5.0, 500 mmol/L isopropanol, 40 mmol/L, 25 mg/mL and 120 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 89.5% and >99.9%, respectively, in 70 minutes. Compared with the best available data in aqueous system (yield of 55%), the yield of (R)-2-octanol was greatly increased. Additionally, the efficient whole-cell biocatalytic process was feasible on a 200-mL preparative scale and the chemical yield increased to 95.0% with the product e.e. being >99.9%. Moreover, Acetobacter pasteurianus GIM1.158 cells were proved to be capable of catalyzing the anti-Prelog bioreduction of other prochiral carbonyl compounds with high efficiency. Conclusions Via an effective increase in the maximum yield and the product e.e. with Acetobacter pasteurianus GIM1.158 cells, these results open the way to use of whole cells of this microorganism for challenging enantioselective reduction reactions on laboratory and commercial scales.
Collapse
Affiliation(s)
| | | | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, South China University of Technology, Guangzhou 510640, China.
| | | |
Collapse
|
12
|
Ni Y, Su Y, Li H, Zhou J, Sun Z. Scalable biocatalytic synthesis of optically pure ethyl (R)-2-hydroxy-4-phenylbutyrate using a recombinant E. coli with high catalyst yield. J Biotechnol 2013; 168:493-8. [DOI: 10.1016/j.jbiotec.2013.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/30/2022]
|
13
|
Wang XT, Yue DM, Zong MH, Lou WY. Use of Ionic Liquid To Significantly Improve Asymmetric Reduction of Ethyl Acetoacetate Catalyzed by Acetobacter sp. CCTCC M209061 Cells. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401561r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao-Ting Wang
- Laboratory of Applied
Biocatalysis,
School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong,
People’s Republic of China
| | - Dong-Mei Yue
- Laboratory of Applied
Biocatalysis,
School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong,
People’s Republic of China
| | - Min-Hua Zong
- State Key Laboratory of Pulp
and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People’s Republic of China
| | - Wen-Yong Lou
- Laboratory of Applied
Biocatalysis,
School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong,
People’s Republic of China
- State Key Laboratory of Pulp
and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People’s Republic of China
| |
Collapse
|
14
|
Silva VD, Carletto JS, Carasek E, Stambuk BU, Nascimento MDG. Asymmetric reduction of (4S)-(+)-carvone catalyzed by baker's yeast: A green method for monitoring the conversion based on liquid–liquid–liquid microextraction with polypropylene hollow fiber membranes. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Saccharomyces cerevisiae catalyzed one pot synthesis of isoindolo[2,1-a]quinazoline performed under ultrasonication. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Biocatalytic anti-Prelog stereoselective reduction of ethyl acetoacetate catalyzed by whole cells of Acetobacter sp. CCTCC M209061. J Biotechnol 2013; 163:292-300. [DOI: 10.1016/j.jbiotec.2012.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022]
|
17
|
Using water-miscible ionic liquids to improve the biocatalytic anti-Prelog asymmetric reduction of prochiral ketones with whole cells of Acetobacter sp. CCTCC M209061. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Silva VD, Stambuk BU, Nascimento MDG. Asymmetric reduction of (4R)-(?)-carvone catalyzed by Baker's yeast in aqueous mono- and biphasic systems. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Quezada MA, Carballeira JD, Sinisterra JV. Diplogelasinospora grovesii IMI 171018 immobilized in polyurethane foam. An efficient biocatalyst for stereoselective reduction of ketones. BIORESOURCE TECHNOLOGY 2012; 112:18-27. [PMID: 22424921 DOI: 10.1016/j.biortech.2012.02.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
Diplogelasinospora grovesii has been reported as a very active biocatalyst in the reduction of ketones. Along the text, the properties of this filamentous fungus as an immobilized catalyst are described. For this purpose, several immobilization supports as agar and polyurethane foam were tested. Experimental assays were also performed to test different co-substrates for the regeneration of the required enzyme cofactor. The fungus immobilized in polyurethane foam lead to the most stable and active catalyst. This derivative, using i-PrOH as co-substrate, could be reused at least 18 times without appreciable activity loss (>90% activity remains). Kinetic runs experiments shown that the reduction of cyclohexanone, selected as model substrate, followed a pseudo-first kinetic order and that the rate controlling step was the mass transfer through the cell wall. The deactivation kinetic constants were also determined. The reduction of different chiral ketones showed that the ketone reductase activity followed the Prelog's rule.
Collapse
Affiliation(s)
- M A Quezada
- Department of Chemical Engineering, Faculty of Chemical Engineering, Universidad Nacional de Trujillo, Peru
| | | | | |
Collapse
|
20
|
Asymmetric Bioreduction of 3,5-Bis(trifluoromethyl) Acetophenone to Its Corresponding Alcohol by Candida tropicalis. Chin J Chem Eng 2011. [DOI: 10.1016/s1004-9541(11)60087-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Rundbäck F, Fidanoska M, Adlercreutz P. Coupling of permeabilized cells of Gluconobacter oxydans and Ralstonia eutropha for asymmetric ketone reduction using H2 as reductant. J Biotechnol 2011; 157:154-8. [PMID: 22001848 DOI: 10.1016/j.jbiotec.2011.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/02/2011] [Accepted: 09/25/2011] [Indexed: 11/25/2022]
Abstract
A combined two-cell reaction system containing Gluconobacter oxydans and Ralstonia eutropha was evaluated with regard to asymmetric ketone reduction using H(2) as the reductant. Whole cells permeabilized by EDTA/toluene were used, and synthesis was performed in a biphasic aqueous/organic reaction medium. The two-cell system was compared with a system in which G. oxydans alone was used for both ketone reduction and cofactor regeneration, using an alcohol as co-substrate. The two-cell system exhibited almost twice the initial reaction rate of the single-cell system, a higher yield (75% vs. 48%) but slightly lower enantiomeric purity (93% vs. 98%) of the product (S)-2-octanol. The permeabilized R. eutropha cells are worth evaluating for byproduct-free NADH regeneration in combination with other whole cell catalysts.
Collapse
Affiliation(s)
- Fabian Rundbäck
- Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | |
Collapse
|
22
|
Dennewald D, Pitner WR, Weuster-Botz D. Recycling of the ionic liquid phase in process integrated biphasic whole-cell biocatalysis. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Ou Z, Chen X, Ying G, Shi H, Sun X. Continuous preparation of (S)-3-hydroxy-3-phenylpropionate by asymmetric reduction of 3-oxo-3-phenylpropionic acid ethyl ester with Saccharomyces cerevisiae CGMCC No.2266 in a membrane reactor. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0214-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Chen X, Ou Z, Ying G. Kinetic model of asymmetric reduction of 3-oxo-3-phenylpropionic acid ethyl ester using Saccharomyces cerevisiae CGMCC No.2266. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-010-0307-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Świzdor A, Janeczko T, Dmochowska-Gładysz J. Didymosphaeria igniaria: a new microorganism useful for the enantioselective reduction of aryl-aliphatic ketones. J Ind Microbiol Biotechnol 2010; 37:1121-30. [DOI: 10.1007/s10295-010-0759-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
26
|
Efficient chemoselective biohydrogenation of 1,3-diaryl-2-propen-1-ones catalyzed by Saccharomyces cerevisiae yeasts in biphasic system. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Meng F, Xu Y. Improved production of (R)-2-octanol via asymmetric reduction of 2-octanone withOenococcus oeniCECT4730 in a biphasic system. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242420903536870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Biocatalytic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate with Candida krusei SW2026: A practical process for high enantiopurity and product titer. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Shi YG, Fang Y, Wu HP, Li F, Zuo XQ. Improved production of ethyl-(R)-2-hydroxy-4-phenylbutyrate with pretreatedSaccharomyces cerevisiaein water/organic solvent two-liquid phase systems. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420902808333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
XIAO M, YE J, ZHANG Y, HUANG Y. Reaction Characteristics of Asymmetric Synthesis of (2S,5S)-2,5-Hexanediol Catalyzed with Baker's Yeast Number 6. Chin J Chem Eng 2009. [DOI: 10.1016/s1004-9541(08)60236-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Houng JY, Tseng JC, Hsu HF, Wu JY. Kinetic investigation on asymmetric bioreduction of ethyl 4-chloro acetoacetate catalyzed by baker’s yeast in an organic solvent-water biphasic system. KOREAN J CHEM ENG 2008. [DOI: 10.1007/s11814-008-0234-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Kratzer R, Pukl M, Egger S, Nidetzky B. Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli. Microb Cell Fact 2008; 7:37. [PMID: 19077192 PMCID: PMC2637230 DOI: 10.1186/1475-2859-7-37] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/10/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole cell-catalyzed biotransformation is a clear process option for the production of chiral alcohols via enantioselective reduction of precursor ketones. A wide variety of synthetically useful reductases are expressed heterologously in Escherichia coli to a high level of activity. Therefore, this microbe has become a prime system for carrying out whole-cell bioreductions at different scales. The limited capacity of central metabolic pathways in E. coli usually requires that reductase coenzyme in the form of NADPH or NADH be regenerated through a suitable oxidation reaction catalyzed by a second NADP+ or NAD+ dependent dehydrogenase that is co-expressed. Candida tenuis xylose reductase (CtXR) was previously shown to promote NADH dependent reduction of aromatic alpha-keto esters with high Prelog-type stereoselectivity. We describe here the development of a new whole-cell biocatalyst that is based on an E. coli strain co-expressing CtXR and formate dehydrogenase from Candida boidinii (CbFDH). The bacterial system was evaluated for the synthesis of ethyl R-4-cyanomandelate under different process conditions and benchmarked against a previously described catalyst derived from Saccharomyces cerevisiae expressing CtXR. RESULTS Gene co-expression from a pETDuet-1 vector yielded about 260 and 90 units of intracellular CtXR and CbFDH activity per gram of dry E. coli cell mass (gCDW). The maximum conversion rate (rS) for ethyl 4-cyanobenzoylformate by intact or polymyxin B sulphate-permeabilized cells was similar (2 mmol/gCDWh), suggesting that the activity of CbFDH was partly rate-limiting overall. Uncatalyzed ester hydrolysis in substrate as well as inactivation of CtXR and CbFDH in the presence of the alpha-keto ester constituted major restrictions to the yield of alcohol product. Using optimized reaction conditions (100 mM substrate; 40 gCDW/L), we obtained ethyl R-4-cyanomandelate with an enantiomeric excess (e.e.) of 97.2% in a yield of 82%. By increasing the substrate concentration to 500 mM, the e.e. could be enhanced to congruent with100%, however, at the cost of a 3-fold decreased yield. A recombinant strain of S. cerevisiae converted 100 mM substrate to 45 mM ethyl R-4-cyanomandelate with an e.e. of >/= 99.9%. Modifications to the recombinant E. coli (cell permeabilisation; addition of exogenous NAD+) and addition of a water immiscible solvent (e.g. hexane or 1-butyl-3-methylimidazolium hexafluorophosphate) were not useful. To enhance the overall capacity for NADH regeneration in the system, we supplemented the original biocatalyst after permeabilisation with also permeabilised E. coli cells that expressed solely CbFDH (410 U/gCDW). The positive effect on yield (18% --> 62%; 100 mM substrate) caused by a change in the ratio of FDH to XR activity from 2 to 20 was invalidated by a corresponding loss in product enantiomeric purity from 86% to only 71%. CONCLUSION A whole-cell system based on E. coli co-expressing CtXR and CbFDH is a powerful and surprisingly robust biocatalyst for the synthesis of ethyl R-4-cyanomandelate in high optical purity and yield. A clear requirement for further optimization of the specific productivity of the biocatalyst is to remove the kinetic bottleneck of NADH regeneration through enhancement (>/= 10-fold) of the intracellular level of FDH activity.
Collapse
Affiliation(s)
- Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology (TUG), Petersgasse 12/1, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
33
|
Shi YG, Fang Y, Wu HP, Li F. Asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate with baker's yeast in water/organic biphasic system. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Effect of ionic liquid [BMIM][PF6] on asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2008; 35:1419-24. [DOI: 10.1007/s10295-008-0442-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 07/30/2008] [Indexed: 11/26/2022]
|
35
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Improvement the tolerance of baker's yeast to toxic substrate/product with cloud point system during the whole cell microbial transformation. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|