1
|
Nam KH. Temperature-dependent structural changes in xylanase II from Trichoderma longibrachiatum. Carbohydr Res 2024; 541:109173. [PMID: 38833820 DOI: 10.1016/j.carres.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Endo-β-1,4-xylanases degrade heteroxylans that constitute the lignocellulosic plant cell wall. This enzyme is widely used in the food, paper, textile, and biorefinery industries. Temperature affects the optimum activity of xylanase and is an important factor in its application. Various structural analyses of xylanase have been performed, but its structural influence by temperature is not fully elucidated. To better understand the structural influence of xylanase due to temperature, the crystal structure of xylanase II from Trichoderma longibrachiatum (TloXynII) at room and cryogenic temperatures was determined at 2.1 and 1.9 Å resolution, respectively. The room-temperature structure of TloXynII (TloXynIIRT) showed a B-factor value 2.09 times higher than that of the cryogenic-temperature structure of TloXynII (TloXynIICryo). Subtle movement of the catalytic and substrate binding residues was observed between TloXynIIRT and TloXynIICryo. In TloXynIIRT, the thumb domain exhibited high flexibility, whereas in TloXynIICryo, the finger domain exhibited high flexibility. The substrate binding cleft of TloXynIIRT was narrower than that of TloXynIICryo, indicating a distinct finger domain conformation. Numerous water molecule networks were observed in the substrate binding cleft of TloXynIICryo, whereas only a few water molecules were observed in TloXynIIRT. These structural analyses expand our understanding of the temperature-dependent conformational changes in xylanase.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
2
|
Nour SA, El-Sayed GM, Taie HAA, Emam MTH, El-Sayed AF, Salim RG. Safe production of Aspergillus terreus xylanase from Ricinus communis: gene identification, molecular docking, characterization, production of xylooligosaccharides, and its biological activities. J Genet Eng Biotechnol 2022; 20:121. [PMID: 35960448 PMCID: PMC9374855 DOI: 10.1186/s43141-022-00390-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The production of industrial enzymes such as xylanase using sufficient cost-effective substrates from potent microorganisms is considered economically feasible. Studies have reported castor cake (Ricinus communis) as the most potent and inexpensive alternative carbon source for production of xylanase C by using Aspergillus terreus (A. terreus). RESULTS A. terreus strain RGS Eg-NRC, a local isolate from agro-wastes, was first identified by sequencing the internal transcribed spacer region of a nuclear DNA encoding gene cluster deposited in GenBank (accession number MW282328). Before optimization of xylanase production, A. terreus produced 20.23 U/g of xylanase after 7 days using castor cake as a substrate in a solid-state fermentation (SSF) system that was employed to achieve ricin detoxification and stimulate xylanase production. Physicochemical parameters for the production of xylanase were optimized by using a one-variable-at-a-time approach and two statistical methods (two-level Plackett-Burman design and central composite design, CCD). The maximum xylanase yield after optimization was increased by 12.1-fold (245 U/g). A 60-70% saturation of ammonium sulfate resulted in partially purified xylanase with a specific activity of 3.9 IU/mg protein. At 60 °C and pH 6, the partially purified xylanase had the highest activity, and the activation energy (Ea) was 23.919 kJmol. Subsequently, antioxidant capacity and cytotoxicity tests in normal Ehrlich ascites carcinoma human cells demonstrated xylooligosaccharides produced by the xylanase degradation of xylan as a potent antioxidant and moderate antitumor agent. Further investigations with sodium dodecyl sulfate polyacrylamide gel electrophoresis then determined the molecular weight of partially purified xylanase C to be 36 kDa. Based on the conserved regions, observations revealed that xylanase C belonged to the glycosyl hydrolase family 10. Next, the xylanase-encoding gene (xynC), which has an open reading frame of 981 bp and encodes a protein with 326 amino acids, was isolated, sequenced, and submitted to the NCBI GenBank database (accession number LC595779.1). Molecular docking analysis finally revealed that Glu156, Glu262, and Lys75 residues were involved in the substrate-binding and protein-ligand interaction site of modeled xylanase, with a binding affinity of -8.7 kcal. mol-1. CONCLUSION: The high production of safe and efficient xylanase could be achieved using economical materials such as Ricinus communis.
Collapse
Affiliation(s)
- Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Ghada M El-Sayed
- Microbial Genetic Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, Agricultural and Biology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| | - Maha T H Emam
- Genetics & Cytology Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetic Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| | - Rasha G Salim
- Microbial Genetic Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
3
|
Kruasuwan W, Puseenam A, Tanapongpipat S, Roongsawang N. Multiplexed CRISPR-mediated engineering of protein secretory pathway genes in the thermotolerant methylotrophic yeast Ogataea thermomethanolica. PLoS One 2021; 16:e0261754. [PMID: 34941944 PMCID: PMC8699913 DOI: 10.1371/journal.pone.0261754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
CRISPR multiplex gRNA systems have been employed in genome engineering in various industrially relevant yeast species. The thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC 656 is an alternative host for heterologous protein production. However, the limited secretory capability of this yeast is a bottleneck for protein production. Here, we refined CRISPR-based genome engineering tools for simultaneous mutagenesis and activation of multiple protein secretory pathway genes to improve heterologous protein secretion. We demonstrated that multiplexed CRISPR-Cas9 mutation of up to four genes (SOD1, VPS1, YPT7 and YPT35) in one single cell is practicable. We also developed a multiplexed CRISPR-dCas9 system which allows simultaneous activation of multiple genes in this yeast. 27 multiplexed gRNA combinations were tested for activation of three genes (SOD1, VPS1 and YPT7), three of which were demonstrated to increase the secretion of fungal xylanase and phytase up to 29% and 41%, respectively. Altogether, our study provided a toolkit for mutagenesis and activation of multiple genes in O. thermomethanolica, which could be useful for future strain engineering to improve heterologous protein production in this yeast.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Aekkachai Puseenam
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Sutipa Tanapongpipat
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| |
Collapse
|
4
|
Aiewviriyasakul K, Bunterngsook B, Lekakarn H, Sritusnee W, Kanokratana P, Champreda V. Biochemical characterization of xylanase GH11 isolated from Aspergillus niger BCC14405 (XylB) and its application in xylooligosaccharide production. Biotechnol Lett 2021; 43:2299-2310. [PMID: 34718907 DOI: 10.1007/s10529-021-03202-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To develop an endo-β-1,4-xylanase with high specificity for production of prebiotic xylooligosaccharides that optimally works at moderate temperature desirable to reduce the energy cost in the production process. RESULTS The xylB gene, encoding for a glycosyl hydrolase family 11 xylanase from a thermoresistant fungus, Aspergillus niger BCC14405 was expressed in a methylotrophic yeast P. pastoris KM71 in a secreted form. The recombinant XylB showed a high specific activity of 3852 and 169 U mg-1 protein on beechwood xylan and arabinoxylan, respectively with no detectable side activities against different forms of cellulose (Avicel Ò PH101 microcrystalline cellulose, phosphoric acid swollen cellulose and carboxymethylcellulose). The enzyme worked optimally at 45 °C, pH 6.0. It showed a specific cleavage pattern by releasing xylobiose (X2) as the major product from xylooligosaccharides (X3 to X6) substrates. The highest XOS yield of 708 mg g-1 substrate comprising X2, X3 and X6 was obtained from beechwood xylan hydrolysis. CONCLUSION The enzyme is potent for XOS production and for saccharification of lignocellulosic biomass.
Collapse
Affiliation(s)
- Katesuda Aiewviriyasakul
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Wipawee Sritusnee
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
5
|
Cai J, Chen XL, Fan JX, Huang XM, Li R, Sun XD, Li QQ, Li DY. Cloning and Heterologous Expression of a Novel Xylanase Gene TAX1 from Trichoderma atroviride and Its Application in the Deconstruction of Corn Stover. Appl Biochem Biotechnol 2021; 193:3029-3044. [PMID: 33970424 DOI: 10.1007/s12010-021-03582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Xylanase plays a vital role in the efficient utilization of xylan, which accounts for up to 30% of plant dry matter. However, the production cost of xylanase remains high, and the enzymatic characteristics of xylanases of most microorganisms are not suitable for industrial production. Therefore, it is of great significance to discover and develop new and efficient xylanases. In this study, the xylanase gene TAX1 (672 bp cDNA) was cloned from Trichoderma atroviride 3.3013 and expressed in Pichia pastoris. The TAX1 gene encoded a 223-amino acid protein (TAX1) with a molecular weight of 24.2 kDa which showed high similarity to glycoside hydrolase family 11. Enzyme activity assay verified that the recombinant xylanase TAX1 had optimal activity (215.3 IU/mL) at 50°C and pH 6.0. Stable working conditions were measured as pH 4.0-7.0 and 40-60°C. By adding Zn2+, the relative enzymatic activity of recombinant TAX1 was enhanced by 26%. The recombinant xylanase showed high activity toward birchwood xylan and corn stover. The Km and Kcat for xylan and corn stover were 0.36 mg/mL and 0.204 S-1 and 0.48 mg/mL and 0.149 S-1, respectively. The enzymatic activity of the TAX1 produced by P. pastoris was about 2.4-4 times higher that directly isolated from T. atroviride, so engineered P. pastoris for xylanase production could be an ideal candidate for industrial enzyme production.
Collapse
Affiliation(s)
- Jin Cai
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, 154007, People's Republic of China
| | - Xiu-Ling Chen
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin-Xia Fan
- Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- The College of Engineering, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiao-Mei Huang
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, 154007, People's Republic of China.
| | - Rui Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu-Dong Sun
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qing-Qing Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dong-Yu Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
6
|
Kruasuwan W, Puseenam A, Phithakrotchanakoon C, Tanapongpipat S, Roongsawang N. Modulation of heterologous protein secretion in the thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC 656 by CRISPR-Cas9 system. PLoS One 2021; 16:e0258005. [PMID: 34582499 PMCID: PMC8478189 DOI: 10.1371/journal.pone.0258005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
The thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC 656 is a potential host strain for industrial protein production. Heterologous proteins are often retained intracellularly in yeast resulting in endoplasmic reticulum (ER) stress and poor secretion, and despite efforts to engineer protein secretory pathways, heterologous protein production is often lower than expected. We hypothesized that activation of genes involved in the secretory pathway could mitigate ER stress. In this study, we created mutants defective in protein secretory-related functions using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) tools. Secretion of the model protein xylanase was significantly decreased in loss of function mutants for oxidative stress (sod1Δ) and vacuolar and protein sorting (vps1Δ and ypt7Δ) genes. However, xylanase secretion was unaffected in an autophagy related atg12Δ mutant. Then, we developed a system for sequence-specific activation of target gene expression (CRISPRa) in O. thermomethanolica and used it to activate SOD1, VPS1 and YPT7 genes. Production of both non-glycosylated xylanase and glycosylated phytase was enhanced in the gene activated mutants, demonstrating that CRISPR-Cas9 systems can be used as tools for understanding O. thermomethanolica genes involved in protein secretion, which could be applied for increasing heterologous protein secretion in this yeast.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Microbial Cell Factory Research Team, Microbial Biotechnology and Biochemicals Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Aekkachai Puseenam
- Microbial Cell Factory Research Team, Microbial Biotechnology and Biochemicals Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chitwadee Phithakrotchanakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Sutipa Tanapongpipat
- Microbial Cell Factory Research Team, Microbial Biotechnology and Biochemicals Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Microbial Biotechnology and Biochemicals Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| |
Collapse
|
7
|
Cloning, Expression, and Characterization of Xylanase G2 from Aspergillus oryzae VTCC-F187 in Aspergillus niger VTCC-F017. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/8840038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study focuses on engineering of recombinant Aspergillus niger to produce highly active xylanase. The xylanase G2 encoding gene originating from Aspergillus oryzae VTCC-F187 was cloned, amplified, and inserted into the pAN7.1GluA vector with specific primers possessing BamHI. The recombinant plasmid was introduced into Aspergillus niger VTCC-F017 by chemical methods. The recombinant strain was checked by polymerase chain reaction method and Southern blot. Next, the recombinant protein was expressed and purified by His-tag column. The molecular mass of the purified xylanase G2, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), was 21 kDa with a specific activity of 1025 IU/mg towards 0.5% (w/v) of birchwood xylan. The optimal temperature and pH were 55°C and pH 6.5, respectively. The enzyme was stable in a temperature ranges 25–40°C and a pH ranges 5–7. The presence of Tween 80 enhanced xylanase activity. Triton X-100, however, had no impact on the function of the enzyme. The xylanase activity was reduced by Tween 20, SDS, and organic solvents. The enzyme was completely inhibited by Hg2+ and partially by Zn2+, Fe2+, and Ag+, while it was slightly stimulated by K+ and EDTA.
Collapse
|
8
|
Phithakrotchanakoon C, Puseenam A, Kruasuwan W, Likhitrattanapisal S, Phaonakrop N, Roytrakul S, Ingsriswang S, Tanapongpipat S, Roongsawang N. Identification of proteins responsive to heterologous protein production in thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC656. Yeast 2021; 38:316-325. [PMID: 33445217 DOI: 10.1002/yea.3548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
The thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC656 is a potential host for heterologous protein production. However, overproduction of heterologous protein can induce cellular stress and limit the level of its secretion. To improve the secretion of heterologous protein, we identified the candidate proteins with altered production during production of heterologous protein in O. thermomethanolica by using a label-free comparative proteomic approach. Four hundred sixty-four proteins with various biological functions showed differential abundance between O. thermomethanolica expressing fungal xylanase (OT + Xyl) and a control strain. The induction of proteins in transport and proteasomal proteolysis was prominently observed. Eight candidate proteins involved in cell wall biosynthesis (Chs3, Gas4), chaperone (Sgt2, Pex19), glycan metabolism (Csf1), protein transport (Ypt35), and vacuole and protein sorting (Cof1, Npr2) were mutated by a CRISPR/Cas9 approach. An Sgt2 mutant showed higher phytase and xylanase activity compared with the control strain (13%-20%), whereas mutants of other genes including Cof1, Pex19, Gas4, and Ypt35 showed lower xylanase activity compared with the control strain (15%-25%). In addition, an Npr2 mutant showed defective growth, while overproduction of Npr2 enhanced xylanase activity. These results reveal genes that can be mutated to modulate heterologous protein production and growth of O. thermomethanolica TBRC656.
Collapse
Affiliation(s)
- Chitwadee Phithakrotchanakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Aekkachai Puseenam
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Worarat Kruasuwan
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Somsak Likhitrattanapisal
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sutipa Tanapongpipat
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
9
|
Efficient Expression of Xylanase by Codon Optimization and Its Effects on the Growth Performance and Carcass Characteristics of Broiler. Animals (Basel) 2019; 9:ani9020065. [PMID: 30791602 PMCID: PMC6406647 DOI: 10.3390/ani9020065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/03/2019] [Accepted: 02/16/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The aim of this work was to combine xylanase expression and broiler production. The xylanase (XynB) gene from Trichoderma reesei was optimized to increase its expression level in Pichia pastoris. The maximum activity of xylanase (optiXynB) secreted by P. pastoris pPICZaA-optiXynB was 1299 U/mL after 96 h induction. The recombinase was highly specific towards birchwood xylan, beechwood xylan, and oat-spelt xylan. Dietary 1000 and 1500 IU/kg optiXynB significantly increased (p < 0.05) final weight and body weight gain; dietary 500, 1000, and 1500 IU/kg optiXynB significantly increased (p < 0.05) pre-evisceration weight, dressed percentage, and eviscerated weight compared with the control group. Results suggested that the optiXynB from P. pastoris pPICZaA-optiXynB has great application in broiler production. Abstract The aim of the present study was to improve the expression level of Trichoderma reesei xylanase (XynB) in Pichia pastoris through a codon optimization strategy and evaluate its effects on the growth performance and carcass characteristics of broiler. According to the codon bias of Pichia genome, the XynB gene from T. reesei was optimized and synthesized by whole gene assembly to improve its expression level in P. pastoris. Approximately 180 target mutations were successfully introduced into natural XynB. The maximum activity of xylanase (optiXynB) secreted by P. pastoris pPICZaA-optiXynB was 1299 U/mL after 96 h induction. Purified recombinant optiXynB had the molecular weight of 24 kDa. The optiXynB presented highest activity in pH 5.0 and 50 °C. The recombinase was highly specific towards birchwood xylan, beechwood xylan, and oat-spelt xylan. In the broiler experiment, a total of 200 Arbor Acre broilers (one day old) were randomly allocated into four groups fed with basal diets containing 0 (control group), 500, 1000, and 1500 IU/kg optiXynB. Dietary 1000 and 1500 IU/kg optiXynB significantly increased (p < 0.05) final weight and body weight gain; dietary 500, 1000, and 1500 IU/kg optiXynB significantly increased (p < 0.05) pre-evisceration weight, dressed percentage, and eviscerated weight compared with the control group. Inclusion of optiXynB in broiler diets linearly increased final weight, body weight gain, breast muscle weight and leg muscle weight, but linearly decreased feed conversion rate (p < 0.05). Furthermore, inclusion of optiXynB in broiler diets linearly and quadratically increased pre-evisceration weight, dressed percentage, and eviscerated weight (p < 0.05). The recombinant optiXynB from P. pastoris pPICZaA-optiXynB was beneficial in improving growth performance and carcass characteristics of broilers.
Collapse
|
10
|
Transgenic pigs expressing β-xylanase in the parotid gland improve nutrient utilization. Transgenic Res 2019; 28:189-198. [PMID: 30637610 DOI: 10.1007/s11248-019-00110-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Xylan is one of the main anti-nutritional factors in pig's feed. Although supplementation of β-xylanase in diet can improve the utilization of nutrients in animals, it is limited by feed cost, manufacturing process and storage stability. To determine whether the expression of endogenous β-xylanase gene xynB in vivo can improve digestibility of dietary xylan and absorption of nutrients, we produced transgenic pigs which express the xynB from Aspergillus Niger CGMCC1067 in the parotid gland via nuclear transfer. In four live transgenic founders, β-xylanase activities in the saliva were 0.74, 0.59, 0.37 and 0.24 U/mL, respectively. Compared with non-transgenic pigs, the content of crude protein (CP) in feces reduced by 15.5% (P < 0.05). Furthermore, in 100 of the 271 F1 pigs the xynB gene was detectable. The digestibility of gross energy and CP in F1 transgenic pigs were increased by 5% and 22%, respectively, with the CP content in feces decreased by 6.4%. Taken together, our study showed that the transgenic pigs producing β-xylanase from parotid gland can reduce the anti-nutritional effect in animal diet and improve the utilization of nutrients.
Collapse
|
11
|
Puseenam A, Kocharin K, Tanapongpipat S, Eurwilaichitr L, Ingsriswang S, Roongsawang N. A novel sucrose-based expression system for heterologous proteins expression in thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol Lett 2018; 365:5106342. [DOI: 10.1093/femsle/fny238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Aekkachai Puseenam
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokarn Kocharin
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sutipa Tanapongpipat
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Lily Eurwilaichitr
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Supawadee Ingsriswang
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Niran Roongsawang
- Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
12
|
Wickramasinghe GHIM, Rathnayake PPAMSI, Chandrasekharan NV, Weerasinghe MSS, Wijesundera RLC, Wijesundera WSS. Expression, Docking, and Molecular Dynamics of Endo- β-1,4-xylanase I Gene of Trichoderma virens in Pichia stipitis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4658584. [PMID: 28856159 PMCID: PMC5569632 DOI: 10.1155/2017/4658584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022]
Abstract
It is essential that major carbohydrate polymers in the lignocellulosic biomass are converted into fermentable sugars for the economical production of energy. Xylan, the major component of hemicelluloses, is the second most naturally abundant carbohydrate polymer comprising 20-40% of the total biomass. Endoxylanase (EXN) hydrolyzes xylan into mixtures of xylooligosaccharides. The objective of this study was to genetically modify Pichia stipitis, a pentose sugar fermenting yeast species, to hydrolyze xylan into xylooligosaccharides via cloning and heterologous extracellular expression of EXNI gene from locally isolated Trichoderma virens species. Pichia stipitis was engineered to carry the EXNI gene of T. virens using pGAPZα expression vector. The open reading frame encodes 191 amino acids and SDS-PAGE analysis revealed a 24 kDA recombinant protein. The EXNI activity expressed by recombinant P. stipitis clone under standard conditions using 1% beechwood xylan was 31.7 U/ml. Molecular docking and molecular dynamics simulations were performed to investigate EXNI-xylan interactions. Free EXNI and xylan bound EXNI exhibited similar stabilities and structural behavior in aqueous medium. Furthermore, this in silico work opens avenues for the development of newer generation EXN proteins that can perform better and have enhanced catalytic activity.
Collapse
|
13
|
van Munster JM, Thomas B, Riese M, Davis AL, Gray CJ, Archer DB, Flitsch SL. Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger. Sci Rep 2017; 7:43117. [PMID: 28220903 PMCID: PMC5318901 DOI: 10.1038/srep43117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/19/2017] [Indexed: 01/25/2023] Open
Abstract
Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry.
Collapse
Affiliation(s)
- Jolanda M van Munster
- Fungal Biology and Genetics, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Baptiste Thomas
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michel Riese
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Adrienne L Davis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Christopher J Gray
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David B Archer
- Fungal Biology and Genetics, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Sabine L Flitsch
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
14
|
Heterologous expression of Aspergillus aculeatus endo-polygalacturonase in Pichia pastoris by high cell density fermentation and its application in textile scouring. BMC Biotechnol 2017; 17:15. [PMID: 28209146 PMCID: PMC5314705 DOI: 10.1186/s12896-017-0334-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/09/2017] [Indexed: 11/25/2022] Open
Abstract
Background Removal of non-cellulosic impurities from cotton fabric, known as scouring, by conventional alkaline treatment causes environmental problems and reduces physical strength of fabrics. In this study, an endo-polygalacturonase (EndoPG) from Aspergillus aculeatus produced in Pichia pastoris was evaluated for its efficiency as a bioscouring agent while most current bioscouring process has been performed using crude pectinase preparation. Results The recombinant EndoPG exhibited a specific activity of 1892.08 U/mg on citrus pectin under the optimal condition at 50 °C, pH 5.0 with a Vmax and Km of 65,451.35 μmol/min/mL and 15.14 mg/mL, respectively. A maximal activity of 2408.70 ± 26.50 U/mL in the culture supernatant was obtained by high cell density batch fermentation, equivalent to a 4.8 times greater yield than that from shake-flask culture. The recombinant enzyme was shown to be suitable for application as a bioscouring agent, in which the wettability of cotton fabric was increased by treatment with enzyme at 300 U/mL scouring solution at 40 °C, pH 5.0 for 1 h. The bio-scoured fabric has comparable wettability to that obtained by conventional chemical scouring, but has higher tensile strength. Conclusion The work has demonstrated for the first time functions of A. aculeatus EndoPG on bioscouring in eco-textile processing. EndoPG alone was shown to possess effective scouring activity. High expression level and homogeneity could be achieved in bench-scale bioreactor. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0334-9) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
16
|
Roongsawang N, Puseenam A, Kitikhun S, Sae-Tang K, Harnpicharnchai P, Ohashi T, Fujiyama K, Tirasophon W, Tanapongpipat S. A Novel Potential Signal Peptide Sequence and Overexpression of ER-Resident Chaperones Enhance Heterologous Protein Secretion in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica. Appl Biochem Biotechnol 2015; 178:710-24. [DOI: 10.1007/s12010-015-1904-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
|
17
|
Zhao L, Geng J, Guo Y, Liao X, Liu X, Wu R, Zheng Z, Zhang R. Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization. BMC Biotechnol 2015; 15:18. [PMID: 25887328 PMCID: PMC4369062 DOI: 10.1186/s12896-015-0135-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/06/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Xylan is a major component of plant cells and the most abundant hemicellulose. Xylanases degrade xylan into monomers by randomly cleaving β-1,4-glycosidic bonds in the xylan backbone, and have widespread potential applications in various industries. The purpose of our study was to clone and express the endoxylanase gene xynA of Thermobifida fusca YX in its native form and with a C-terminal histidine (His) tag in Pichia pastoris X-33. We analyzed and compared these two forms of the protein and examined their potential applications in various industries. RESULTS The xynA gene from T. fusca YX was successfully cloned and expressed using P. pastoris X-33. We produced a recombinant native form of the protein (rXyn11A) and a C-terminal His-tagged form of the desired protein (rXyn11A-(His)6). The specific activities of rXyn11A and rXyn11A-(His)6 in culture supernatants approached 149.4 and 133.4 U/mg, respectively. These activities were approximately 4- and 3.5-fold higher than those for the non-recombinant wild-type Xyn11A (29.3 U/mg). Following purification, the specific activities of rXyn11A and rXyn11A-(His)6 were 557.35 and 515.84 U/mg, respectively. The specific activity of rXyn11A was 8% higher than that of rXyn11A-(His)6. Both recombinant xylanases were optimally active at 80°C and pH 8.0, and exhibited greater than 60% activity between pH 6-9 and 60-80°C. They exhibited similar pH stability, while rXyn11A exhibited better thermostability; N-glycosylation enhanced the thermostability of both recombinant xylanases. The products of beechwood xylan hydrolyzed by both xylanases included xylobiose, xylotriose, xylotetraose and xylopentaose. CONCLUSIONS The C-terminal His tag had adverse effects when added to the Xyn11A protein. The thermostability of both recombinant xylanases was enhanced by N-glycosylation. Their stabilities at a high pH and temperature indicate their potential for application in various industries.
Collapse
Affiliation(s)
- Longmei Zhao
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Jiang Geng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yaoqi Guo
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Xiudong Liao
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Xuhui Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Rujuan Wu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Zhaojun Zheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Qian C, Liu N, Yan X, Wang Q, Zhou Z, Wang Q. Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability. Enzyme Microb Technol 2015; 70:35-41. [DOI: 10.1016/j.enzmictec.2014.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/03/2014] [Accepted: 11/21/2014] [Indexed: 11/29/2022]
|
19
|
Kumar V, Satyanarayana T. Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris. BIORESOURCE TECHNOLOGY 2015; 179:382-389. [PMID: 25553569 DOI: 10.1016/j.biortech.2014.12.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The recombinant Pichia pastoris harboring the endoxylanase gene (TSEV1xyl) of Bacillus halodurans TSEV1 yielded a high titer of extracellular xylanase (502±23 U ml(-1)) on induction with methanol. The purified recombinant xylanase (TSEV1xyl) displayed optimal activity at 80°C and pH 9.0. The glycosylated recombinant xylanase exhibited higher thermostability (T1/2 of 45 min at 80°C) than the native enzyme (T1/2 of 35 min at 80°C). The agroresidues subjected to pretreatment (soaking in alkali followed by microwave irradiation) liberated xylooligosaccharides (XOS) upon hydrolysis with the recombinant xylanase. The removal of unhydrolyzed agroresidues, xylanase and xylose from the hydrolysate by two-step ultrafiltration led to the purification of XOS as confirmed by TLC as well as HPLC analysis.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | - T Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
20
|
Screening of signal sequences for extracellular production of Aspergillus niger xylanase in Pichia pastoris. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zhang HM, Wang JQ, Wu MC, Gao SJ, Li JF, Yang YJ. Optimized expression, purification and characterization of a family 11 xylanase (AuXyn11A) from Aspergillus usamii E001 in Pichia pastoris. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:699-706. [PMID: 23881861 DOI: 10.1002/jsfa.6309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/30/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Xylanases have attracted much attention because of their potential applications. Unfortunately, the commercialization of xylanases is limited by their low catalytic activities. The aim of this study was to improve the activity of a xylanase by optimization of the expression conditions and to investigate its characterization. RESULTS The activity of recombinant AuXyn11A (reAuXyn11A), a family 11 xylanase from Aspergillus usamii E001 expressed in Pichia pastoris GS115, reached 912.6 U mL⁻¹ under the optimized conditions, which was 2.14 times as high as that expressed using the standard protocol. After the endogenous 18-aa propeptide had been processed in P. pastoris, reAuXyn11A (188-aa mature peptide) was secreted and purified with a specific activity of 22 714 U mg⁻¹. It displayed maximum activity at pH 5 and 50 °C and was stable in the pH range 4-8 and at a temperature of 45 °C or below. Its activity was not significantly affected by most metal ions and EDTA. Xylooligosaccharides ranging from xylobiose (X2) to xylohexaose (X6) were produced from insoluble corncob xylan by reAuXyn11A. CONCLUSION Its high specific activity and good enzymatic properties suggest that reAuXyn11A is a potential candidate for applications in industrial processes.
Collapse
Affiliation(s)
- Hui-Min Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | | | | | | | | | | |
Collapse
|
22
|
Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger. Protein Expr Purif 2013; 92:196-202. [PMID: 24084008 DOI: 10.1016/j.pep.2013.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/15/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
Abstract
A gene coding for an endo-β-1,4-xylanase (XlnA) (glycosyl hydrolase family 10) from Aspergillus niger DSM 1957 was cloned and sequenced. The cDNA sequence (984 bp) and its putative endoxylanase (327 aa protein with a predicted molecular mass of 35.5 kDa and pI 6.23) showed 91.3-99.5% and 96.3-99.1% identities with cDNA sequences and their corresponding endoxylanases from A. niger strains from GenBank, respectively. The cDNA was expressed in Pichia pastoris GS115 under the control of AOX1 promoter at a level of 46.4 U/ml culture supernatant, after 144 h of growth at 30°C in YP medium induced with 0.5% (v/v) of methanol. The molecular mass of the purified XlnA determined by SDS-PAGE was 35.5k Da with a specific activity of 808.5 U/mg towards 1% (w/v) of birch wood xylan. Temperature and pH optimum were observed at 50°C and pH 7.0, respectively. The enzyme was stable over a temperature range of 25-40°C and at pH range of 4.5-8.5 and resistant to Tween 80 and acetone. The K(m) and V(max) value obtained for the purified xylanase were 25.5mg/ml and 5000 μmol/min/mg protein with birch wood xylan as substrate, respectively. The xylanase was free of cellulase and mannanase activity but highly active towards birch wood xylan. The major products of the birch wood xylan hydrolysis were predicted as xylotriose, xylotetraose, and xylopentose. The biochemical characteristics suggested that the recombinant xylanase has a potential application, including use as a feed enzyme.
Collapse
|
23
|
Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World J Microbiol Biotechnol 2013; 29:2407-15. [PMID: 23793944 DOI: 10.1007/s11274-013-1409-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Extracellular cellulase free xylanase from Thermomyces lanuginosus sp. SS-8, isolated from self heating plant wreckage material was identified as β-1,4-endo-xylanase precursor, a monomer of 21.3 kDa with no carbohydrate residue. This xylanase retained 80 % activity at 60 °C for 96 h, was active at a wide pH range of 3-11 and uniquely hydrolyzed xylan to xylose without production of xylo-oligosaccharides. Gene xynSS8 encoding xylanase from T. lanuginosus SS-8 was cloned and functionally expressed in Escherichia coli XL1 Blue using pTZ57R/T plasmid and xynSS8/pQE-9 expression vector construct respectively. Gene xynSS8 was of 777 bp and deduced amino acid sequence was a mature xylanase of 258 amino acids. XynSS8 has extra 33 amino acids compared to its nearest homolog and was thermo-alkali tolerant as that of native protein. The xylanase could degrade pulp and release substantial chromophoric materials and lignin derived compounds indicating its effective utility in pulp bleaching. Novel characteristics of the enzyme may contribute to its wide industrial usage. This is first report of cloning and functional expression of the novel xylanase from T. lanuginosus SS-8.
Collapse
|
24
|
Fang W, Gao H, Cao Y, Shan A. Cloning and expression of a xylanase xynB from Aspergillus niger IA-001 in Pichia pastoris. J Basic Microbiol 2013; 54 Suppl 1:S190-9. [PMID: 23788000 DOI: 10.1002/jobm.201300078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/24/2013] [Indexed: 11/12/2022]
Abstract
The high-level expression of the xylanase GH11 gene from Aspergillus niger IA-001 called xynB was successfully completed in Pichia pastoris. The xynB gene encoding a mature xylanase of 225 amino acid was subcloned into the pPICZαA vector and was transformed into P. pastoris X-33 under the control of the alcohol oxidase I (AOX1) promoter. The xynB gene was ligated with a sequence encoding modified α-factor signal peptide (pPICZαmA) and the recombinant xylanase activity, which was measured 1280 U ml(-1), was 1.5-fold higher than when it was inserted into pPICZαA and was 19.39-fold greater than the native xylanase in the original strain. In a 10 L fermenter, the recombinant xylanase activity measured 10,035 U ml(-1) after 114 h. The SDS-PAGE analysis revealed that the purified xynB protein migrated as a single band with an apparent molecular weight of 24 kDa. The specific activity, using beechwood xylan as a substrate, was 1916 U mg(-1). The xylanase activity was optimal at pH 5.0 and at 50 °C. In addition, the xynB was active over a pH range of 2.2 to 10.0. The apparent Km and Vmax values were 4.429 mg ml(-1) and 1429 U mg(-1), respectively.
Collapse
Affiliation(s)
- Wei Fang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R., China
| | | | | | | |
Collapse
|
25
|
Wongwisansri S, Promdonkoy P, Matetaviparee P, Roongsawang N, Eurwilaichitr L, Tanapongpipat S. High-level production of thermotolerant β-xylosidase of Aspergillus sp. BCC125 in Pichia pastoris: characterization and its application in ethanol production. BIORESOURCE TECHNOLOGY 2013; 132:410-413. [PMID: 23265813 DOI: 10.1016/j.biortech.2012.11.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/26/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
A gene coding for thermotolerant β-xylosidase from Aspergillus sp. BCC125 was characterized. The recombinant enzyme was expressed in methylotrophic yeast Pichia pastoris KM71 and especially high yield of secreted enzyme was obtained. β-xylosidase possessed high enzyme efficiency (Kcat/Km=198.8mM(-1)s(-1)) toward pNP-β-D-xylopyranoside (pNPβX) with optimal temperature and pH for activity of 60°C and pH 4.0-5.0, respectively. The identified β-xylosidase showed clear synergism with previously identified xylanase for hydrolysis of xylan in vitro as well as simultaneous saccharification and fermentation process (SSF) in vivo with Pichia stipitis.
Collapse
Affiliation(s)
- Sriwan Wongwisansri
- Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand.
| | | | | | | | | | | |
Collapse
|
26
|
Jiang X, Lin J, Liang S, Zhang M. High-Efficient Expression and Pilot Scale Fermentation ofStreptomycesXylanase from a ConstitutivePichia pastorisVector. FOOD BIOTECHNOL 2013. [DOI: 10.1080/08905436.2012.755693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Yin X, Gong YY, Wang JQ, Tang CD, Wu MC. Cloning and expression of a family 10 xylanase gene (Aoxyn10) from Aspergillus oryzae in Pichia pastoris. J GEN APPL MICROBIOL 2013; 59:405-15. [DOI: 10.2323/jgam.59.405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Li JF, Gao SJ, Liu XT, Gong YY, Chen ZF, Wei XH, Zhang HM, Wu MC. Modified pPIC9K vector-mediated expression of a family 11 xylanase gene, Aoxyn11A, from Aspergillus oryzae in Pichia pastoris. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0568-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Wang JQ, Yin X, Wu MC, Zhang HM, Gao SJ, Wei JT, Tang CD, Li JF. Expression of a family 10 xylanase gene from Aspergillus usamii E001 in Pichia pastoris and characterization of the recombinant enzyme. J Ind Microbiol Biotechnol 2012; 40:75-83. [PMID: 23053346 DOI: 10.1007/s10295-012-1201-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/18/2012] [Indexed: 12/29/2022]
Abstract
A cDNA gene (Auxyn10A), which encodes a mesophilic family 10 xylanase from Aspergillus usamii E001 (abbreviated to AuXyn10A), was amplified and inserted into the XhoI and NotI sites of pPIC9K(M) vector constructed from a parent pPIC9K. The recombinant expression vector, designated pPIC9K(M)-Auxyn10A, was transformed into Pichia pastoris GS115. All P. pastoris transformants were spread on a MD plate, and then inoculated on geneticin G418-containing YPD plates for screening multiple copies of integration of the Auxyn10A. One transformant expressing the highest recombinant AuXyn10A (reAuXyn10A) activity of 368.6 U/ml, numbered as P. pastoris GSX10A4-14, was selected by flask expression test. SDS-PAGE assay demonstrated that the reAuXyn10A was extracellularly expressed with an apparent M.W. of 39.8 kDa. The purified reAuXyn10A displayed the maximum activity at pH 5.5 and 50 °C. It was highly stable at a broad pH range of 4.5-8.5, and at a temperature of 45 °C. Its activity was not significantly affected by EDTA and several metal ions except Mn(2+), which caused a strong inhibition. The K(m) and V(max), towards birchwood xylan at pH 5.5 and 50 °C, were 2.25 mg/ml and 6,267 U/mg, respectively. TLC analysis verified that the AuXyn10A is an endo-β-1,4-D-xylanase, which yielded a major product of xylotriose and a small amount of xylose, xylotetraose, and xylopentose from birchwood xylan, but no xylobiose.
Collapse
Affiliation(s)
- Jun-Qing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tanapongpipat S, Promdonkoy P, Watanabe T, Tirasophon W, Roongsawang N, Chiba Y, Eurwilaichitr L. Heterologous protein expression in Pichia thermomethanolica BCC16875, a thermotolerant methylotrophic yeast and characterization of N-linked glycosylation in secreted protein. FEMS Microbiol Lett 2012; 334:127-34. [DOI: 10.1111/j.1574-6968.2012.02628.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sutipa Tanapongpipat
- Bioresources Technology Unit; National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency; Pathum Thani; Thailand
| | - Peerada Promdonkoy
- Bioresources Technology Unit; National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency; Pathum Thani; Thailand
| | - Toru Watanabe
- Research Center for Medical Glycoscience; National Institute of Advanced Industrial Science and Technology (AIST); Ibaraki; Japan
| | - Witoon Tirasophon
- The Institute of Molecular Biosciences; Mahidol University; Nakhonpathom; Thailand
| | - Niran Roongsawang
- Bioresources Technology Unit; National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency; Pathum Thani; Thailand
| | - Yasunori Chiba
- Research Center for Medical Glycoscience; National Institute of Advanced Industrial Science and Technology (AIST); Ibaraki; Japan
| | - Lily Eurwilaichitr
- Bioresources Technology Unit; National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency; Pathum Thani; Thailand
| |
Collapse
|
31
|
Li J, Wang J, Wang S, Xing M, Yu S, Liu G. Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters. Microb Cell Fact 2012; 11:84. [PMID: 22709462 PMCID: PMC3439336 DOI: 10.1186/1475-2859-11-84] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/07/2012] [Indexed: 05/06/2023] Open
Abstract
Backgrounds The fungus Trichoderma reesei is an important workhorse for expression of homologous or heterologous genes, and the inducible cbh1 promoter is generally used. However, constitutive expression is more preferable in some cases than inducible expression that leads to production of unwanted cellulase components. In this work, constitutive promoters of T. reesei were screened and successfully used for high level homologous expression of xylanase II. Results The transcriptional profiles of 13 key genes that participate in glucose metabolism in T. reesei were analyzed by quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR). The results indicated that the mRNA levels of pdc (encoding pyruvate decarboxylase) and eno (encoding enolase) genes were much higher than other genes under high glucose conditions. Recombinant T. reesei strains that homologously expressed xylanase II were constructed by using the promoters of the pdc and eno genes, and they respectively produced 9266 IU/ml and 8866 IU/ml of xylanase activities in the cultivation supernatant in a medium with high glucose concentration. The productivities of xylanase II were 1.61 g/L (with the pdc promoter) and 1.52 g/L (with the eno promoter), approximately accounted for 83% and 82% of the total protein secreted by T. reesei, respectively. Conclusions This work demonstrates the screening of constitutive promoters by using RT-qPCR in T. reesei, and has obtained the highest expression of recombinant xylanase II to date by using these promoters.
Collapse
Affiliation(s)
- Junxin Li
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China
| | | | | | | | | | | |
Collapse
|
32
|
Cloning and Expression of a Novel Xylanase Gene (Auxyn11D) from Aspergillus usamii E001 in Pichia pastoris. Appl Biochem Biotechnol 2012; 167:2198-211. [DOI: 10.1007/s12010-012-9757-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
33
|
High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Birijlall N, Manimaran A, Kumar KS, Permaul K, Singh S. High level expression of a recombinant xylanase by Pichia pastoris NC38 in a 5 L fermenter and its efficiency in biobleaching of bagasse pulp. BIORESOURCE TECHNOLOGY 2011; 102:9723-9729. [PMID: 21852117 DOI: 10.1016/j.biortech.2011.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 05/31/2023]
Abstract
A genetically modified XynA gene from Thermomyces lanuginosus was expressed in Pichia pastoris under the control of GAP promoter. P. pastoris expressed greater levels of xylanase (160 IU ml(-1)) on BMGY medium without zeocin after 56 h. The xylanase production by recombinant P. pastoris was scaled up in a 5L fermenter containing 1% glycerol and the highest xylanase production of 139 IU ml(-1) was observed after 72 h. Further studies carried out in fermenter under controlled pH (5.5) yielded a maximum xylanase production of 177 IU ml(-1) after 72 h. The biobleaching efficacy of crude xylanase was also evaluated on bagasse pulp and a brightness of 47.4% was observed with 50 IU of crude xylanase used per gram of pulp, which was 2.1 points higher in brightness than the untreated samples. Reducing sugars (24.8 mg g(-1)) and UV absorbing lignin-derived compounds values were considerably higher with xylanase treated samples.
Collapse
Affiliation(s)
- Natasha Birijlall
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | | | | | | | | |
Collapse
|
35
|
Cloning and optimized expression of a GH-11 xylanase from Fusarium oxysporum in Pichia pastoris. N Biotechnol 2011; 28:369-74. [PMID: 21402188 DOI: 10.1016/j.nbt.2011.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/16/2011] [Accepted: 03/02/2011] [Indexed: 11/22/2022]
Abstract
The endo-1,4-β-xylanase gene xyn11a from Fusarium oxysporum, member of the fungal glycosyl hydrolase (GH) family 11, was cloned and expressed in Pichia pastoris. The mature xylanase gene, which generates after the excision of one intron and the secreting signal peptide, was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPICZαC. The final construction was integrated into the genome of the methylotrophic yeast P. pastoris X33 and the ability to produce xylanase activity was evaluated in flask cultures. Recombinant P. pastoris efficiently secreted xylanase into the medium and produced high level of enzymatic activity (110 U/ml) after 216 hours of growth, under methanol induction. To achieve higher enzyme production, the influence of initial pH, methanol concentration, agitation and flask design was evaluated. Under optimum culture conditions, production of the recombinant xylanase increased by 50%, reaching a final yield of 170 U/ml, underpinning aeration as the most important factor in improving enzyme production.
Collapse
|
36
|
Roongsawang N, Promdonkoy P, Wongwanichpokhin M, Sornlake W, Puseenam A, Eurwilaichitr L, Tanapongpipat S. Coexpression of fungal phytase and xylanase utilizing the cis-acting hydrolase element in Pichia pastoris. FEMS Yeast Res 2010; 10:909-16. [DOI: 10.1111/j.1567-1364.2010.00669.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Chen DL, Tong X, Chen SW, Chen S, Wu D, Fang SG, Wu J, Chen J. Heterologous expression and biochemical characterization of alpha-glucosidase from Aspergillus niger by Pichia pastroris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4819-4824. [PMID: 20369871 DOI: 10.1021/jf1000502] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aglu of Aspergillus niger encodes the pro-protein of alpha-glucosidase, and the mature form of wild-type enzyme is a heterosubunit protein. In the present study, the cDNA of alpha-glucosidase was cloned and expressed in Pichia pastoris strain KM71. The activity of recombinant enzyme in a 3 L fermentor reached 2.07 U/mL after 96 h of induction. The recombinant alpha-glucosidase was able to produce oligoisomaltose. The molecular weight of the recombinant enzyme was estimated to be about 145 kDa by SDS-PAGE, and it reduced to 106 kDa after deglycosylation. The enzymatic activity of recombinant alpha-glucosidase was not significantly affected by a range of metal ions. The optimum temperature of the enzyme was 60 degrees C, and it was stable below 50 degrees C. The enzyme was active over the range of pH 3.0-7.0 with maximal activity at pH 4.5. Using pNPG as substrate, the K(m) and V(max) values were 0.446 mM and 43.48 U/mg, respectively. These studies provided the basis for the application of recombinant alpha-glucosidase in the industry of functional oligosaccharides.
Collapse
Affiliation(s)
- Dong-Li Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenve, Wuxi 214122, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ghaffar A, Khan SA, Mukhtar Z, Rajoka MI, Latif F. Heterologous expression of a gene for thermostable xylanase from Chaetomium thermophilum in Pichia pastoris GS115. Mol Biol Rep 2010; 38:3227-33. [DOI: 10.1007/s11033-010-9996-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 02/07/2010] [Indexed: 11/27/2022]
|
39
|
Chen X, Xu S, Zhu M, Cui L, Zhu H, Liang Y, Zhang Z. Site-directed mutagenesis of an Aspergillus niger xylanase B and its expression, purification and enzymatic characterization in Pichia pastoris. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Gaffney M, Carberry S, Doyle S, Murphy R. Purification and characterisation of a xylanase from Thermomyces lanuginosus and its functional expression by Pichia pastoris. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 2009; 84:19-35. [PMID: 19568746 DOI: 10.1007/s00253-009-2079-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Xylanases have received great attention in the development of environment-friendly technologies in the paper and pulp industry. Their use could greatly improve the overall lignocellulosic materials for the generation of liquid fuels and chemicals. Fungi are widely used as xylanase producers and are generally considered as more potent producers of xylanases than bacteria and yeasts. Large-scale production of xylanases is facilitated with the advent of genetic engineering. Recent breakthroughs in genomics have helped to overcome the problems such as limited enzyme availability, substrate scope, and operational stability. Genes encoding xylanases have been cloned in homologous and heterologous hosts with the objectives of overproducing the enzyme and altering its properties to suit commercial applications. Owing to the industrial importance of xylanases, a significant number of studies are reported on cloning and expression of the enzymes during the last few years. We, therefore, have reviewed recent knowledge regarding cloning of fungal xylanase genes into various hosts for heterologous production. This will bring an insight into the current status of cloning and expression of the fungal xylanases for industrial applications.
Collapse
|
42
|
He J, Yu B, Zhang K, Ding X, Chen D. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol 2009; 9:56. [PMID: 19527524 PMCID: PMC2702311 DOI: 10.1186/1472-6750-9-56] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/16/2009] [Indexed: 11/11/2022] Open
Abstract
Background In recent years, xylanases have attracted considerable research interest because of their potential in various industrial applications. The yeast Pichia pastoris can neither utilize nor degrade xylan, but it possesses many attributes that render it an attractive host for the expression and production of industrial enzymes. Results The Xyn2 gene, which encodes the main Trichoderma reesei Rut C-30 endo-β-1, 4-xylanase was cloned into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strains produced as 4,350 nkat/ml β-xylanase under the control of the methanol inducible alcohol oxidase 1 (AOX1) promoter. The secreted recombinant Xyn2 was estimated by SDS-PAGE to be 21 kDa. The activity of the recombinant Xyn2 was highest at 60°C and it was active over a broad range of pH (3.0–8.0) with maximal activity at pH 6.0. The enzyme was quite stable at 50°C and retained more than 94% of its activity after 30 mins incubation at this temperature. Using Birchwood xylan, the determined apparent Km and kcat values were 2.1 mg/ml and 219.2 S-1, respectively. The enzyme was highly specific towards xylan and analysis of xylan hydrolysis products confirmed as expected that the enzyme functions as endo-xylanase with xylotriose as the main hydrolysis products. The produced xylanase was practically free of cellulolytic activity. Conclusion The P. pastoris expression system allows a high level expression of xylanases. Xylanase was the main protein species in the culture supernatant, and the functional tests indicated that even the non-purified enzyme shows highly specific xylanase activity that is free of cellulolytic side acitivities. Therefore, P pastoris is a very useful expression system when the goal is highly specific and large scale production of glycosyl hydrolases.
Collapse
Affiliation(s)
- Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| | | | | | | | | |
Collapse
|
43
|
Mchunu NP, Singh S, Permaul K. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J Biotechnol 2009; 141:26-30. [DOI: 10.1016/j.jbiotec.2009.02.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 02/20/2009] [Accepted: 02/26/2009] [Indexed: 12/19/2022]
|
44
|
Wang Y, Wang Z, Du G, Hua Z, Liu L, Li J, Chen J. Enhancement of alkaline polygalacturonate lyase production in recombinant Pichia pastoris according to the ratio of methanol to cell concentration. BIORESOURCE TECHNOLOGY 2009; 100:1343-1349. [PMID: 18789682 DOI: 10.1016/j.biortech.2008.07.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 05/26/2023]
Abstract
Polygalacturonate lyase (PGL) production by Pichia pastoris GS115 was used as a model to study the mechanism and strategy for enhancing heterologous protein production. It was found that the ratio of methanol to cell concentration had a significant influence on PGL production. In this study, an advanced glycerol exponential feeding strategy was developed for biomass accumulation in cell growth phase, by which cell concentration reached 140 g L(-1) after 19 h glycerol feeding. In subsequent production phase, a methanol feeding profile was proposed according to the optimal ratio of methanol to cell concentration at a range of 0.163-0.171 g g(-1), and PGL activity and productivity reached 430 U mL(-1) and 4.34 U mL(-1)h(-1), respectively. The strategy for enhancing PGL production by controlling the optimal ratio may provide an alternative approach to enhance heterologous protein production with P. pastoris.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Optimized expression of an acid xylanase from Aspergillus usamii in Pichia pastoris and its biochemical characterization. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9622-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|