1
|
Mestre-Tomás J, Esgueva-Vilà D, Fuster-Alonso A, Lopez-Moya F, Lopez-Llorca LV. Chitosan Modulates Volatile Organic Compound Emission from the Biocontrol Fungus Pochonia chlamydosporia. Molecules 2023; 28:molecules28104053. [PMID: 37241794 DOI: 10.3390/molecules28104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal volatile organic compounds (VOCs) are responsible for fungal odor and play a key role in biological processes and ecological interactions. VOCs represent a promising area of research to find natural metabolites for human exploitation. Pochonia chlamydosporia is a chitosan-resistant nematophagous fungus used in agriculture to control plant pathogens and widely studied in combination with chitosan. The effect of chitosan on the production of VOCs from P. chlamydosporia was analyzed using gas chromatography-mass spectrometry (GC-MS). Several growth stages in rice culture medium and different times of exposure to chitosan in modified Czapek-Dox broth cultures were analyzed. GC-MS analysis resulted in the tentative identification of 25 VOCs in the rice experiment and 19 VOCs in the Czapek-Dox broth cultures. The presence of chitosan in at least one of the experimental conditions resulted in the de novo production of 3-methylbutanoic acid and methyl 2,4-dimethylhexanoate, and oct-1-en-3-ol and tetradec-1-ene in the rice and Czapek-Dox experiments, respectively. Other VOCs changed their abundance because of the effect of chitosan and fungal age. Our findings suggest that chitosan can be used as a modulator of the production of VOCs in P. chlamydosporia and that there is also an effect of fungal age and exposure time.
Collapse
Affiliation(s)
- Jorge Mestre-Tomás
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, 46980 Paterna, Spain
| | - David Esgueva-Vilà
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Alba Fuster-Alonso
- Institut de Ciències del Mar (ICM-CSIC), Renewable Marine Resources Department, 08003 Barcelona, Spain
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
2
|
Altoé LSC, de Araújo Costa E, Tavares GP, Rocha MS, Queiroz JHD, Gonçalves JBC, de Figueiredo SG, de Araújo JV. On the interactions involving serine proteases obtained from Monacrosporium thaumasium (Ascomycota: Orbiliomycetes) and deoxyribonucleic acid (DNA): biological macromolecules in action. Arch Microbiol 2023; 205:208. [PMID: 37103635 DOI: 10.1007/s00203-023-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
The use of force spectroscopy approaches performed with optical tweezers can be very useful in determining the binding modes and the physical chemistry of DNA interactions with ligands, from small drugs to proteins. Helminthophagous fungi, on the other hand, have important enzyme secretion mechanisms for various purposes, and the interactions between such enzymes and nucleic acids are very poorly studied. Therefore, the main goal of the present work was to investigate, at the molecular level, the mechanisms of interaction between fungal serine proteases and the double-stranded (ds) DNA molecule. Experimental assays performed with this single molecule technique consist in exposing different concentrations of the protease of this fungus to dsDNA until saturation while monitoring the changes on the mechanical properties of the macromolecular complexes formed, from where the physical chemistry of the interaction can be deduced. It was found that the protease binds strongly to the double-helix, forming aggregates and changing the persistence length of the DNA molecule. The present work thus allowed us to infer information at the molecular level on the pathogenicity of these proteins, an important class of biological macromolecules, when applied to a target specimen.
Collapse
Affiliation(s)
| | - Ethe de Araújo Costa
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Márcio Santos Rocha
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Humberto de Queiroz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Suely Gomes de Figueiredo
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | |
Collapse
|
3
|
Fan Y, Yin M, Chen H. Insights into the role of chitosan in hydrogen production by dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160401. [PMID: 36414059 DOI: 10.1016/j.scitotenv.2022.160401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Chitosan is widely used as a dewatering flocculant, but whether it affects hydrogen production from sludge anaerobic fermentation is unclear. This study aimed to elucidate the role of chitosan in the dark fermentation of waste activated sludge for hydrogen production. The results showed that chitosan had a negative effect on hydrogen production from sludge. Chitosan at 30 g/kg total suspended solids reduced hydrogen accumulation by 56.70 ± 1.22 % from 3.94 ± 0.12 to 1.71 ± 0.10 mL/g volatile suspended solids. Chitosan hindered the solubilization of sludge by flocculation, which reduced the available substrate for anaerobic fermentation. In addition, chitosan interfered with the electron transport system by reducing cytochrome C and caused lipid peroxidation by inducing reactive oxygen species, thereby inhibiting the activity of enzymes involved in anaerobic fermentation. Hydrogen production was reduced because hydrogen-producing processes (i.e., hydrolysis, acidification, and acetification) were inhibited more strongly than hydrogen-consuming processes (i.e., methanogenesis, sulfate reduction, and homoacetogenesis). Furthermore, chitosan enriched the abundance of Spirochaetaceae sp. and Holophagaceae sp., which occupied the survival space of hydrogen-producing microorganisms. This study reveals the potential impact of chitosan on hydrogen production in dark fermentation of sludge and provide direct evidence that chitosan triggers oxidative stress in anaerobic fermentation.
Collapse
Affiliation(s)
- Yanchen Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
4
|
Sambles C, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV, Studholme DJ. Chitosan induces differential transcript usage of chitosanase 3 encoding gene (csn3) in the biocontrol fungus Pochonia chlamydosporia 123. BMC Genomics 2022; 23:101. [PMID: 35123406 PMCID: PMC8817618 DOI: 10.1186/s12864-021-08232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background Pochonia chlamydosporia is an endophytic fungus used for nematode biocontrol that employs its cellular and molecular machinery to degrade the nematode egg-shell. Chitosanases, among other enzymes, are involved in this process. In this study, we improve the genome sequence assembly of P. chlamydosporia 123, by utilizing long Pacific Biosciences (PacBio) sequence reads. Combining this improved genome assembly with previous RNA-seq data revealed alternative isoforms of a chitosanase in the presence of chitosan. This study could open new insights into understanding fungal resistance to chitosan and root-knot nematode (RKN) egg infection processes. Results The P. chlamydosporia 123 genome sequence assembly has been updated using long-read PacBio sequencing and now includes 12,810 predicted protein-coding genes. Compared with the previous assembly based on short reads, there are 701 newly annotated genes, and 69 previous genes are now split. Eight of the new genes were differentially expressed in fungus interactions with Meloidogyne javanica eggs or chitosan. A survey of the RNA-seq data revealed alternative splicing in the csn3 gene that encodes a chitosanase, with four putative splicing variants: csn3_v1, csn3_v2, csn3_v3 and csn3_v4. When P. chlamydosporia is treated with 0.1 mg·mL− 1 chitosan for 4 days, csn3 is expressed 10-fold compared with untreated controls. Furthermore, the relative abundances of each of the four transcripts are different in chitosan treatment compared with controls. In controls, the abundances of each transcript are nil, 32, 55, and 12% for isoforms csn3_v1, csn3_v2, csn3_v3 and csn3_v4 respectively. Conversely, in chitosan-treated P. chlamydosporia, the abundances are respectively 80, 15%, 2—3%, 2—3%. Since isoform csn3_v1 is expressed with chitosan only, the putatively encoded enzyme is probably induced and likely important for chitosan degradation. Conclusions Alternative splicing events have been discovered and described in the chitosanase 3 encoding gene from P. chlamydosporia 123. Gene csn3 takes part in RKN parasitism process and chitosan enhances its expression. The isoform csn3_v1 would be related to the degradation of this polymer in bulk form, while other isoforms may be related to the degradation of chitosan in the nematode egg-shell. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08232-7.
Collapse
|
5
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|
6
|
Suarez-Fernandez M, Sambles C, Lopez-Moya F, Nueda MJ, Studholme DJ, Lopez-Llorca LV. Chitosan modulates Pochonia chlamydosporia gene expression during nematode egg parasitism. Environ Microbiol 2021; 23:4980-4997. [PMID: 33496078 PMCID: PMC8518118 DOI: 10.1111/1462-2920.15408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/24/2021] [Indexed: 01/22/2023]
Abstract
Climate change makes plant‐parasitic nematodes (PPN) an increasing threat to commercial crops. PPN can be managed sustainably by the biocontrol fungus Pochonia chlamydosporia (Pc). Chitosan generated from chitin deacetylation enhances PPN parasitism by Pc. In this work, we investigate the molecular mechanisms of Pc for chitosan resistance and root‐knot nematode (RKN) parasitism, using transcriptomics. Chitosan and RKN modify the expression of Pc genes, mainly those involved in oxidation–reduction processes. Both agents significantly modify the expression of genes associated to 113 GO terms and 180 Pc genes. Genes encoding putative glycoproteins (Pc adhesives) to nematode eggshell, as well as genes involved in redox, carbohydrate and lipid metabolism trigger the response to chitosan. We identify genes expressed in both the parasitic and endophytic phases of the Pc lifecycle; these include proteases, chitosanases and transcription factors. Using the Pathogen—Host Interaction database (PHI‐base), our previous RNA‐seq data and RT‐PCR of Pc colonizing banana we have investigated genes expressed both in the parasitic and endophytic phases of Pc lifecycle.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain.,Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, Alicante, 03080, Spain
| | | | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain
| | - María J Nueda
- Mathematics Department, University of Alicante, Alicante, 03080, Spain
| | | | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, 03080, Spain.,Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, Alicante, 03080, Spain
| |
Collapse
|
7
|
Ma J, Zhong L, Peng X, Xu Y, Sun R. Functional Chitosan-based Materials for Biological Applications. Curr Med Chem 2020; 27:4660-4672. [DOI: 10.2174/0929867327666200420091312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Background:
Bio-based materials, as the plentiful and renewable resources for
natural constituents which are essential for biomedical and pharmaceutical applications, have
not been exploited adequately yet. Chitosan is a naturally occurring polysaccharide obtained
from chitin, which has recently attracted widespread attention owing to its excellent activity.
This review shows the methods of extraction and modification of chitosan and provides recent
progress of synthesis and use of chitosan-based materials in biological applications.
Methods:
By consulting the research literature of the last decade, the recent progresses of
functional chitosan-based materials for biological applications were summarized and divided
into the methods of extraction chitosan, the chemical modification of chitosan, chitosan-based
materials for biological applications were described and discussed.
Results:
Chemical modification of chitosan broadens its applications, leading to developing
numerous forms of chitosan-based materials with excellent properties. The excellent bioactivity
of chitosan-based material enables it serves potential applications in biomedical fields.
Conclusion:
Chitosan-based materials not only exhibit the excellent activities of chitosan but
also show other appealing performance of combined materials, even give the good synergistic
properties of chitosan and its composite materials. Further studies are needed to define the
ideal physicochemical properties of chitosan for each type of biomedical applications. The
development of various functional chitosan-based materials for biological applications will be
an important field of research, and this kind of material has important commercial value.
Collapse
Affiliation(s)
- Jiliang Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongkang Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int J Mol Sci 2019; 20:E332. [PMID: 30650540 PMCID: PMC6359256 DOI: 10.3390/ijms20020332] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chitosan is a versatile compound with multiple biotechnological applications. This polymer inhibits clinically important human fungal pathogens under the same carbon and nitrogen status as in blood. Chitosan permeabilises their high-fluidity plasma membrane and increases production of intracellular oxygen species (ROS). Conversely, chitosan is compatible with mammalian cell lines as well as with biocontrol fungi (BCF). BCF resistant to chitosan have low-fluidity membranes and high glucan/chitin ratios in their cell walls. Recent studies illustrate molecular and physiological basis of chitosan-root interactions. Chitosan induces auxin accumulation in Arabidopsis roots. This polymer causes overexpression of tryptophan-dependent auxin biosynthesis pathway. It also blocks auxin translocation in roots. Chitosan is a plant defense modulator. Endophytes and fungal pathogens evade plant immunity converting chitin into chitosan. LysM effectors shield chitin and protect fungal cell walls from plant chitinases. These enzymes together with fungal chitin deacetylases, chitosanases and effectors play determinant roles during fungal colonization of plants. This review describes chitosan mode of action (cell and gene targets) in fungi and plants. This knowledge will help to develop chitosan for agrobiotechnological and medical applications.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| |
Collapse
|
9
|
Escudero N, Lopez-Moya F, Ghahremani Z, Zavala-Gonzalez EA, Alaguero-Cordovilla A, Ros-Ibañez C, Lacasa A, Sorribas FJ, Lopez-Llorca LV. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage. FRONTIERS IN PLANT SCIENCE 2017; 8:1415. [PMID: 28919898 PMCID: PMC5585746 DOI: 10.3389/fpls.2017.01415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/31/2017] [Indexed: 05/23/2023]
Abstract
The use of biological control agents could be a non-chemical alternative for management of Meloidogyne spp. [root-knot nematodes (RKN)], the most damaging plant-parasitic nematodes for horticultural crops worldwide. Pochonia chlamydosporia is a fungal parasite of RKN eggs that can colonize endophytically roots of several cultivated plant species, but in field applications the fungus shows a low persistence and efficiency in RKN management. The combined use of P. chlamydosporia with an enhancer could help its ability to develop in soil and colonize roots, thereby increasing its efficiency against nematodes. Previous work has shown that chitosan enhances P. chlamydosporia sporulation and production of extracellular enzymes, as well as nematode egg parasitism in laboratory bioassays. This work shows that chitosan at low concentrations (up to 0.1 mg ml-1) do not affect the viability and germination of P. chlamydosporia chlamydospores and improves mycelial growth respect to treatments without chitosan. Tomato plants irrigated with chitosan (same dose limit) increased root weight and length after 30 days. Chitosan irrigation increased dry shoot and fresh root weight of tomato plants inoculated with Meloidogyne javanica, root length when they were inoculated with P. chlamydosporia, and dry shoot weight of plants inoculated with both P. chlamydosporia and M. javanica. Chitosan irrigation significantly enhanced root colonization by P. chlamydosporia, but neither nematode infection per plant nor fungal egg parasitism was affected. Tomato plants cultivated in a mid-suppressive (29.3 ± 4.7% RKN egg infection) non-sterilized clay loam soil and irrigated with chitosan had enhanced shoot growth, reduced RKN multiplication, and disease severity. Chitosan irrigation in a highly suppressive (73.7 ± 2.6% RKN egg infection) sterilized-sandy loam soil reduced RKN multiplication in tomato. However, chitosan did not affect disease severity or plant growth irrespective of soil sterilization. Chitosan, at an adequate dose, can be a potential tool for sustainable management of RKN.
Collapse
Affiliation(s)
- Nuria Escudero
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de CatalunyaCastelldefels, Spain
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
| | - Zahra Ghahremani
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de CatalunyaCastelldefels, Spain
| | - Ernesto A. Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
| | - Aurora Alaguero-Cordovilla
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
| | - Caridad Ros-Ibañez
- Instituto Murciano de Investigación y Desarrollo Agrario y AlimentarioMurcia, Spain
| | - Alfredo Lacasa
- Instituto Murciano de Investigación y Desarrollo Agrario y AlimentarioMurcia, Spain
| | - Francisco J. Sorribas
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de CatalunyaCastelldefels, Spain
| | - Luis V. Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies – Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
10
|
Aranda-Martinez A, Naranjo Ortiz MÁ, Abihssira García IS, Zavala-Gonzalez EA, Lopez-Llorca LV. Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Microbiol Res 2017; 204:30-39. [PMID: 28870289 DOI: 10.1016/j.micres.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/14/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Chitin is the second most abundant biopolymer after cellulose and virtually unexplored as raw material for bioethanol production. In this paper, we investigate chitosan, the deacetylated form of chitin which is the main component of shellfish waste, as substrate for bioethanol production by fungi. Fungal parasites of invertebrates such as the nematophagous Pochonia chlamydosporia (Pc) or the entomopathogens Beauveria bassiana (Bb) and Metarhizium anisopliae (Ma) are biocontrol agents of plant parasitic nematodes (eg. Meloidogyne spp.) or insect pests such as the red palm weevil (Rhynchophorus ferrugineus). These fungi degrade chitin-rich barriers for host penetration. We have therefore tested the chitin/chitosanolytic capabilities of Pc, Bb and Ma for generating reducing sugars using chitosan as only nutrient. Among the microorganisms used in this study, Pc is the best chitosan degrader, even under anaerobic conditions. These fungi have alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) encoding genes in their genomes. We have therefore analyzed their ethanol production under anaerobic conditions using chitosan as raw material. P. chlamydosporia is the largest ethanol producer from chitosan. Our studies are a starting point to develop chitin-chitosan based biofuels.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | | | - Isabel Sofía Abihssira García
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | - Ernesto A Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain.
| |
Collapse
|
11
|
Aranda-Martinez A, Lenfant N, Escudero N, Zavala-Gonzalez EA, Henrissat B, Lopez-Llorca LV. CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modification are involved in nematode parasitism. Environ Microbiol 2016; 18:4200-4215. [PMID: 27668983 DOI: 10.1111/1462-2920.13544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Pochonia chlamydosporia is a soil fungus with a multitrophic lifestyle combining endophytic and saprophytic behaviors, in addition to a nematophagous activity directed against eggs of root-knot and other plant parasitic nematodes. The carbohydrate-active enzymes encoded by the genome of P. chlamydosporia suggest that the endophytic and saprophytic lifestyles make use of a plant cell wall polysaccharide degradation machinery that can target cellulose, xylan and, to a lesser extent, pectin. This enzymatic machinery is completed by a chitin breakdown system that involves not only chitinases, but also chitin deacetylases and a large number of chitosanases. P. chlamydosporia can degrade and grow on chitin and is particularly efficient on chitosan. The relevance of chitosan breakdown during nematode egg infection is supported by the immunolocalization of chitosan in Meloidogyne javanica eggs infected by P. chlamydosporia and by the fact that the fungus expresses chitosanase and chitin deacetylase genes during egg infection. This suggests that these enzymes are important for the nematophagous activity of the fungus and they are targets for improving the capabilities of P. chlamydosporia as a biocontrol agent in agriculture.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Nicolas Lenfant
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Nuria Escudero
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Ernesto A Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,INRA, USC 1408 AFMB, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| |
Collapse
|
12
|
Cota-Arriola O, Plascencia-Jatomea M, Lizardi-Mendoza J, Robles-Sánchez RM, Ezquerra-Brauer JM, Ruíz-García J, Vega-Acosta JR, Cortez-Rocha MO. Preparation of chitosan matrices with ferulic acid: physicochemical characterization and relationship on the growth ofAspergillus parasiticus. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1213317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Lopez-Moya F, Lopez-Llorca LV. Omics for Investigating Chitosan as an Antifungal and Gene Modulator. J Fungi (Basel) 2016; 2:jof2010011. [PMID: 29376928 PMCID: PMC5753092 DOI: 10.3390/jof2010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/02/2023] Open
Abstract
Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| |
Collapse
|
14
|
Escudero N, Ferreira SR, Lopez-Moya F, Naranjo-Ortiz MA, Marin-Ortiz AI, Thornton CR, Lopez-Llorca LV. Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 2016; 120:572-585. [PMID: 27020158 DOI: 10.1016/j.funbio.2015.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Pochonia chlamydosporia (Pc), a nematophagous fungus and root endophyte, uses appressoria and extracellular enzymes, principally proteases, to infect the eggs of plant parasitic nematodes (PPN). Unlike other fungi, Pc is resistant to chitosan, a deacetylated form of chitin, used in agriculture as a biopesticide to control plant pathogens. In the present work, we show that chitosan increases Meloidogyne javanica egg parasitism by P. chlamydosporia. Using antibodies specific to the Pc enzymes VCP1 (a subtilisin), and SCP1 (a serine carboxypeptidase), we demonstrate chitosan elicitation of the fungal proteases during the parasitic process. Chitosan increases VCP1 immuno-labelling in the cell wall of Pc conidia, hyphal tips of germinating spores, and in appressoria on infected M. javanica eggs. These results support the role of proteases in egg parasitism by the fungus and their activation by chitosan. Phylogenetic analysis of the Pc genome reveals a large diversity of subtilisins (S8) and serine carboxypeptidases (S10). The VCP1 group in the S8 tree shows evidence of gene duplication indicating recent adaptations to nutrient sources. Our results demonstrate that chitosan enhances Pc infectivity of nematode eggs through increased proteolytic activities and appressoria formation and might be used to improve the efficacy of M. javanica biocontrol.
Collapse
Affiliation(s)
- Nuria Escudero
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, E-03080, Alicante, Spain.
| | - Sebastião R Ferreira
- Laboratory of Immunology and Genomic of Parasites, Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, E-03080, Alicante, Spain
| | | | - Ana I Marin-Ortiz
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, E-03080, Alicante, Spain
| | - Christopher R Thornton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, E-03080, Alicante, Spain
| |
Collapse
|
15
|
Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides. PLoS One 2014; 9:e93192. [PMID: 24770723 PMCID: PMC4000203 DOI: 10.1371/journal.pone.0093192] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/28/2014] [Indexed: 01/08/2023] Open
Abstract
Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15-40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases.
Collapse
|
16
|
Cheng SW, Wang YF, Hong B. Statistical optimization of medium compositions for chitosanase production by a newly isolated Streptomyces albus. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2012. [DOI: 10.1590/s0104-66322012000400002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Ward E, Kerry BR, Manzanilla-López RH, Mutua G, Devonshire J, Kimenju J, Hirsch PR. The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol. PLoS One 2012; 7:e35657. [PMID: 22558192 PMCID: PMC3338732 DOI: 10.1371/journal.pone.0035657] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/22/2012] [Indexed: 12/27/2022] Open
Abstract
The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances.
Collapse
Affiliation(s)
- Elaine Ward
- Plant Pathology and Microbiology Department, Rothamsted Research, Harpenden, Herts, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|