1
|
Lauriola C, Di Muzio L, Paolicelli P, Casadei MA, Sergi C, Tirillò J, Carriero VC, Adrover A. Experimental and Modelling Study of Controlled Release from Dextran-Based Cryogels. Pharmaceutics 2024; 16:1256. [PMID: 39458587 PMCID: PMC11510673 DOI: 10.3390/pharmaceutics16101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this work, five different dextran-based cryogels for controlled drug release are investigated. Vitamin B12 was used as a model drug for in vitro release tests. Two different drug-loading procedures were adopted, leading to very different drug release curves. Indeed, a fast Fickian release was observed when freeze-dried samples of DEX40PEG360MA and DEX40PEG500MA were infused with the drug after cryogel formation. On the contrary, a slowed highly non-Fickian behavior arises when the drug is loaded before the low-temperature crosslinking step, leading to the cryogel formation. The non-Fickian drug release, observed for all the five different dextran-based cryogels investigated, is actually due to the cryoconcentration phenomenon, modeled with a two-step release process. The proposed transport model accurately predicts experimental release curves characterized by a long lag time, confirming that dextran-based cryogels are suitable for controlled release.
Collapse
Affiliation(s)
- Carolina Lauriola
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Laura Di Muzio
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Patrizia Paolicelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Maria Antonietta Casadei
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Claudia Sergi
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Jacopo Tirillò
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| | - Vito Cosimo Carriero
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy; (L.D.M.); (P.P.); (M.A.C.); (V.C.C.)
| | - Alessandra Adrover
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Univerisità di Roma, 00184 Rome, Italy; (C.L.); (C.S.); (J.T.)
| |
Collapse
|
2
|
Su CR, Yu SS, Zhao JM, Yang J, Dong LY, Wang XH. Fabrication of micron-sized boronate-decorated polyethyleneimine-grafted magnetic agarose beads for specific enrichment of ribonucleic acid. J Chromatogr A 2024; 1731:465198. [PMID: 39059303 DOI: 10.1016/j.chroma.2024.465198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Exploiting high-performance magnetic beads for specific enrichment of ribonucleic acid (RNA) has important significance in the biomedical research field. Herein, a simple strategy was proposed for fabricating boronate-decorated polyethyleneimine-grafted magnetic agarose beads (BPMAB), which can selectively isolate cis-diol-containing substances through boronate affinity. The size of the basic magnetic agarose beads was controlled through the emulsification of the water-in-oil emulsion with a high-speed shear machine, which enhanced the specific surface area of BPMAB. Subsequently, to modify more boronic acid ligands, branched PEI with excellent hydrophilicity and numerous reaction sites was grafted. 2,4-Difluoro-3-formylphenyl boronic acid (2,4-DFPBA) was covalently immobilized for selectively capturing cis-diol-containing substances under physiological condition (pH 7.4). The BPMAB with a diameter range from 1.86 μm to 11.60 μm possessed clearly spherical structure, and excellent magnetic responsiveness and suspension ability in aqueous solution. β-Nicotinamide adenine dinucleotide (β-NAD), a short-chain cis-diol carrying agent, was selected as a target molecule for evaluating the adsorption property of BPMAB and the maximum adsorption capacity of BPMAB for β-NAD could reach 205.11 mg g-1. In addition, the BPMAB as adsorbent was used to selectively enrich RNA from mammalian cells. The maximum adsorption capacity of BPMAB for RNA was 140.50 mg g-1. Under optimized conditions, the BPMAB-based MSPE successfully enriched the high-quality total RNA with 28S to 18S ribosomal RNA ratios ranging from 2.06 to 2.16. According to the PCR analysis of GADPH gene, the extracted total RNA was successfully reverse transcribed into cDNA. Therefore, we believe that the BPMAB-based MSPE could be applicable for the specific enrichment of RNA from complex biological systems.
Collapse
Affiliation(s)
- Chen-Ri Su
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Meng Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
3
|
Ribeiro J, Luís MÂ, Rodrigues B, Santos FM, Mesquita J, Boto R, Tomaz CT. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids. Gels 2024; 10:198. [PMID: 38534616 DOI: 10.3390/gels10030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The increasing demand for highly pure biopharmaceuticals has put significant pressure on the biotechnological industry to innovate in production and purification processes. Nucleic acid purification, crucial for gene therapy and vaccine production, presents challenges due to the unique physical and chemical properties of these molecules. Meeting regulatory standards necessitates large quantities of biotherapeutic agents of high purity. While conventional chromatography offers versatility and efficiency, it suffers from drawbacks like low flow rates and binding capacity, as well as high mass transfer resistance. Recent advancements in continuous beds, including monoliths and cryogel-based systems, have emerged as promising solutions to overcome these limitations. This review explores and evaluates the latest progress in chromatography utilizing monolithic and cryogenic supports for nucleic acid purification.
Collapse
Affiliation(s)
- João Ribeiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marco  Luís
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Bruno Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Renato Boto
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
4
|
Baydemir Peşint G, Eren Yüngeviş B, Perçin Demirçelik I. Enhanced invertase binding from baker's yeast via cryogels included boronic acids. World J Microbiol Biotechnol 2023; 39:267. [PMID: 37528302 DOI: 10.1007/s11274-023-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/08/2023] [Indexed: 08/03/2023]
Abstract
Invertase, an industrially significant glycoenzyme, was purified from baker's yeast using poly (2-Hydroxyethyl methacrylate) [PHema-Pba] cryogels functionalized with boronic acid. At subzero temperatures, PHema-Pba cryogels were synthesized and characterized using swelling tests, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The surface area of the PHema-Pba cryogels was 14 m2/g with a swelling ratio of 88.3% and macroporosity of 72%. The interconnected macropores of PHema-Pba cryogels were shown via scanning electron microscopy. Invertase binding capacity of PHema-Pba cryogel was evaluated by binding studies in different pH, temperature, and interaction time conditions and the maximum Invertase binding of PHema-Pba cryogel was found as 15.2 mg/g. and 23.7 fold Invertase purification was achieved from baker's yeast using PHema-Pba cryogels. The results show that PHema-Pba cryogels have high Invertase binding capacity and may be used as an alternative method for enzyme purification via boronate affinity systems.
Collapse
Affiliation(s)
- Gözde Baydemir Peşint
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| | - Burcu Eren Yüngeviş
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | | |
Collapse
|
5
|
Shakya AK. Functionalized cryogel monoliths for fast and selective separation of nucleic acids directly from crude lysate. Biomed Chromatogr 2022; 36:e5333. [DOI: 10.1002/bmc.5333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
|
6
|
Zhang B, Wang C, Du Y, Paxton R, He X. A 'smart' aptamer-functionalized continuous label-free cell catch-transport-release system. J Mater Chem B 2021; 9:7196-7204. [PMID: 34291267 DOI: 10.1039/d1tb00739d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Label-free cell sorting devices are of great significance for biomedical research and clinical therapeutics. However, current platforms for label-free cell sorting cannot achieve continuity and selectivity simultaneously, resulting in complex steps and limited reliability. Here, an immunoaffinity-based cell catch-transport-release thermo-chemo-mechanical coupling hydrogel (iCatch) device is reported. It contains a temperature-responsive hydrogel that can generate spatial movement synergically with the reversible binding of affinity handle modified. The functionalized hydrogel is embedded inside a biphasic microfluidic platform to enable cell transportation between the flows. The cell sorting capability and biocompatibility of the iCatch device were validated with CCRF-CEM cells as a proof-of-concept, and CCRF-CEM-specific aptamers with thermo-responsive affinity as well as a hydrogel with temperature-dependent volume were employed accordingly. A cell catching efficiency of ∼40% and a recovery rate of ∼70% were achieved. The iCatch device provides a high-throughput (∼900 cells mm-1 s-1) platform for cell sorting and is ultimately valuable for downstream biomedical applications.
Collapse
Affiliation(s)
- Bozhen Zhang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Canran Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Rebecca Paxton
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
8
|
Future Primary School Teachers’ Digital Competence in Teaching Science through the Use of Social Media. SUSTAINABILITY 2021. [DOI: 10.3390/su13052816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The digital revolution has transformed the ways of doing, acting, and training in the university field. For this reason, as an objective of this work, social media was used to generate and share knowledge related to sustainability, classification of living beings, and the functioning of the human body. The information was collected through questionnaires, that were completed before and after the intervention program, as well as the work carried out by the students. The participants were 131 students enrolled on the Primary Education degree course of the University of Murcia. The students were well aware of social media, although initially not their educational use. This perception changed when having to make concrete proposals with Instagram and Pinterest, since students valued the wide potential of the use of these networks in teaching. As a result of this intervention, 266 images were generated on Pinterest related to the classification of living beings and 67 about the devices and systems of the human body. Additionally, in terms of the activity on Instagram, 213 publications were created, reaching 1454 followers and 7885 likes. In addition, the participants recognized social media as a source of resources for education, and therefore teachers must explore all the possibilities they offer.
Collapse
|
9
|
Shiekh PA, Andrabi SM, Singh A, Majumder S, Kumar A. Designing cryogels through cryostructuring of polymeric matrices for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Zheng H, Hajizadeh S, Gong H, Lin H, Ye L. Preparation of Boronic Acid-Functionalized Cryogels Using Modular and Clickable Building Blocks for Bacterial Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:135-145. [PMID: 33371673 PMCID: PMC7871328 DOI: 10.1021/acs.jafc.0c06052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Composite cryogels containing boronic acid ligands are synthesized for effective separation and isolation of bacteria. The large and interconnected pores in cryogels enable fast binding and release of microbial cells. To control bacterial binding, an alkyne-tagged boronic acid ligand is conjugated to azide-functionalized cryogel via the Cu(I)-catalyzed azide-alkyne cycloaddition reaction. The boronic acid-functionalized cryogel binds Gram-positive and Gram-negative bacteria through reversible boronate ester bonds, which can be controlled by pH and simple monosaccharides. To increase the capacity of affinity separation, a new approach is used to couple the alkyne-tagged phenylboronic acid to cryogel via an intermediate polymer layer that provides multiple immobilization sites. The morphology and chemical composition of the composite cryogel are characterized systematically. The capability of the composite cryogel for the separation of Gram-positive and Gram-negative bacteria is investigated. The binding capacities of the composite cryogel for Escherichia coli and Staphylococcus epidermidis are 2.15 × 109 and 3.36 × 109 cfu/g, respectively. The bacterial binding of the composite cryogel can be controlled by adjusting pH. The results suggest that the composite cryogel may be used as affinity medium for rapid separation and isolation of bacteria from complex samples.
Collapse
Affiliation(s)
- Hongwei Zheng
- Division
of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
- Food
Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Solmaz Hajizadeh
- Division
of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Haiyue Gong
- Division
of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Hong Lin
- Food
Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Lei Ye
- Division
of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
11
|
Morey M, Srivastava A, Pandit A. Glucose-Responsive Gene Delivery at Physiological pH through Tertiary-Amine Stabilized Boronate-PVA Particles Synthesized by One-Pot Reaction. Pharmaceutics 2021; 13:pharmaceutics13010062. [PMID: 33418878 PMCID: PMC7825127 DOI: 10.3390/pharmaceutics13010062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 01/12/2023] Open
Abstract
We report a physiologically stable and cytocompatible glucose-responsive nonviral gene delivery system made up of boronate functionalized polymeric material. Herein, we utilize boronate cis-diol interactions to develop a glucose-responsive submicron particle (SMP) system. The stability of the boronate interaction at a physiological pH was achieved by copolymerization of dimethyl aminoethyl methacrylate (DMAEMA) with acrylamidophenylboronic acid (AAPBA) and the formation of a complex with polyvinylalcohol (PVA) which is governed by cis-diol interactions. The shift in hydrodynamic diameter of SMPs was observed and correlated with increasing glucose concentrations at a physiological pH. Optimal transfection was observed for a 5 µg dose of the gaussia luciferase reporter gene in NIH3T3 cells without any adverse effect on cellular viability. The destabilization of the AAPBA–PVA complex by interacting with glucose allowed the release of encapsulated bovine serum albumin (BSA) in a glucose-responsive manner. In total, 95% of BSA was released from SMPs at a 50 mM glucose concentration after 72 h. A two-fold increase in transfection was observed in 50 mM glucose compared to that of 10 mM glucose.
Collapse
|
12
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
13
|
A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv Colloid Interface Sci 2020; 276:102088. [PMID: 31887574 DOI: 10.1016/j.cis.2019.102088] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023]
Abstract
The physical and chemical attributes of cryogels, such as the macroporosity, elasticity, water permeability and ease of chemical modification have attracted strong research interest in a variety of areas, such as water purification, catalysis, regenerative medicine, biotechnology, bioremediation and biosensors. Cryogels have shown high removal efficiency and selectivity for heavy metals, nutrients, and toxic dyes from aqueous solutions but there are challenges when scaling up from lab to commercial scale applications. This paper represents an overview of the most recent advances in the use of cryogels for the removal of heavy metals from water and attempts to fill the gap in the literature by deepening the understanding on the mechanisms involved, which strongly depend on the initial monomer composition and post-modification agent precursors used in synthesis. The review also describes the advantages of cryogels over other adsorbents and covers synthesis and characterization methods such as SEM/EDS, TEM, FTIR, zeta potential measurements, porosimetry, swelling and mechanical properties.
Collapse
|
14
|
Mourão CA, Marcuz C, Haupt K, Bueno SMA. Polyacrylamide-alginate (PAAm-Alg) and phospho-L-tyrosine-linked PAAm-Alg monolithic cryogels: Purification of IgG from human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1129:121783. [DOI: 10.1016/j.jchromb.2019.121783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023]
|
15
|
Development of boronic acid-functionalized mesoporous silica-coated core/shell magnetic microspheres with large pores for endotoxin removal. J Chromatogr A 2019; 1602:91-99. [PMID: 31229248 DOI: 10.1016/j.chroma.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 02/01/2023]
Abstract
Endotoxins are found almost everywhere and possess high toxicity in vivo and in vitro. Here we design a novel boronate affinity material, called boronic acid-functionalized mesoporous silica-coated core/shell magnetic microspheres (Fe3O4@nSiO2@mSiO2-BA) with large pores (pore size > 20 nm) based on the chemical structure and physical properties of endotoxins, for facile and highly efficient removal of endotoxins. Dual modes for endotoxin removal were proposed and confirmed in this work: the endotoxin aggregates with size < 20 nm were bound with boronic acid ligands chemically modified on the inner and outer surface of the large pores of Fe3O4@nSiO2@mSiO2-BA microspheres; while the larger endotoxin micelles (size >20 nm) were absorbed on the outer surface of the prepared material based on boronate affinity. Transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption/desorption isotherms and Fourier transform infrared (FT-IR) spectroscopy confirm that Fe3O4@nSiO2@mSiO2-BA microspheres possess core/shell structure, uniform diameter (520 nm), high surface area (205.57 m2/g), large mesopores (21.8 nm) and boronic acid ligands. The purification procedures of Fe3O4@nSiO2@mSiO2-BA microspheres for endotoxin were optimized, and 50 mM NH4HCO3 (pH 8.0) and 0.05 M fructose were selected as loading/washing, elution buffers, respectively. The binding capacity of Fe3O4@nSiO2@mSiO2-BA microspheres for endotoxin was calculated to be 60.84 EU/g under the optimized conditions. Finally, the established analytical method was applied to remove endotoxins from plasmid DNA. After endotoxin removal, the endotoxin content in plasmid DNA was reduced from 0.0026 to 0.0006 EU/mL for two-fold concentration, and from 0.0088 to 0.0022 EU/mL for five-fold concentration after binding, respectively. Additional advantages of the prepared boronate affinity material include excellent stability, reusability/repeatability, and low cost. Boronate affinity materials with large pores could thus prove to be powerful adsorbents for endotoxin removal and the potential applications in the aspects of biological research, pharmaceutical industry, and life health.
Collapse
|
16
|
Zhai M, Ma F, Li J, Wan B, Yu N. Preparation and properties of cryogel based on poly(hydroxypropyl methacrylate). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1401-1425. [PMID: 29667520 DOI: 10.1080/09205063.2018.1464263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel supermacroporous poly(hydroxypropyl methacrylate) (p(HPMA)) cryogel was synthesized by cryogelation method at -16 °C. In this synthesis process, HPMA was used as a monomer, and N,N'-methylenebisacrylamide (MBAAm) was used as cross-linker; the reaction was carried out in the presence of redox initiator pair N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS). The effect of monomer concentration, cross-linker content, cooling rate, and dioxane co-solvent were determined with respect to the pore structure, mechanical behavior, swelling degree, and porosity of cryogel. The ESEM images indicate that the pore wall structure of cryogels was rough; moreover, small holes were present in the pore walls of cryogels. The result of compression test indicates that cryogels can be compressed by at least 80% without any breakdown. The result of swelling kinetics indicates that cryogels attain swelling equilibrium in 10 s. Furthermore, p(HPMA)-Cu2+ cryogel was prepared by loading Cu2+ ions on functionalized poly(hydroxypropyl methacrylate)-iminodiacetic acid (p(HPMA)-IDA) cryogel. We investigated the adsorption of bovine serum albumin (BSA) on cryogels. The results indicate that compared to Freundlich isotherm, Langmuir isotherm could more suitably describe the adsorption process of BSA on cryogels. Meanwhile, the adsorption capacity of p(HPMA)-Cu2+ cryogel was significantly greater than that of p(HPMA) cryogel. The maximum adsorption capacity of BSA on p(HPMA)-Cu2+ cryogel, which was treated with 1 M Cu2+ ions, was as high as 196.87 mg/g cryogel (equivalent to 20.48 mg/mL cryogel) at 25 °C and pH = 7.8; therefore, the maximum adsorption capacity of BSA on p(HPMA)-Cu2+ cryogel was 4.35 times higher than that of p(HPMA) cryogel. Thus, the adsorption capacity of cryogels was strongly influenced by Cu2+ concentration, moreover, temperature changes clearly affected the adsorption capacity of p(HPMA)-Cu2+cryogel. The adsorption capacity at 25 °C was twice as that at 15 °C. By calculating Gibbs free energy change (∆G) of adsorption, we found that the adsorption process was spontaneous; moreover, adsorption process occurred better at higher temperature.
Collapse
Affiliation(s)
- Mengfan Zhai
- a School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Feng Ma
- a School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Junying Li
- a School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Binbin Wan
- a School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Ning Yu
- a School of Chemistry and Pharmaceutical Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , China
| |
Collapse
|
17
|
RNA purification from Escherichia coli cells using boronated nanoparticles. Colloids Surf B Biointerfaces 2018; 162:146-153. [DOI: 10.1016/j.colsurfb.2017.11.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/22/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022]
|
18
|
Fontan RDCI, Bonomo RCF, Gonçalves GRF, Minim VPR, Minim LA. Alternatives for characterizing macroporous polyacrylamide monolithic ion exchanger columns. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Luis Antonio Minim
- Food Technology Department; Federal University of Viçosa; Viçosa MG 36570-000 Brazil
| |
Collapse
|
19
|
Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 2017; 62:29-41. [PMID: 28851666 DOI: 10.1016/j.actbio.2017.08.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023]
Abstract
The extracellular matrix is fundamental in providing an appropriate environment for cell interaction and signaling to occur. Replicating such a matrix is advantageous in the support of tissue ingrowth and regeneration through the field of tissue engineering. While scaffolds can be fabricated in many ways, cryogels have recently become a popular approach due to their macroporous structure and durability. Produced through the crosslinking of gel precursors followed by a subsequent controlled freeze/thaw cycle, the resulting cryogel provides a unique, sponge-like structure. Therefore, cryogels have proven advantageous for many tissue engineering applications including roles in bioreactor systems, cell separation, and scaffolding. Specifically, the matrix has been demonstrated to encourage the production of various molecules, such as antibodies, and has also been used for cryopreservation. Cryogels can pose as a bioreactor for the expansion of cell lines, as well as a vehicle for cell separation. Lastly, this matrix has shown excellent potential as a tissue engineered scaffold, encouraging regrowth at numerous damaged tissue sites in vivo. This review will briefly discuss the fabrication of cryogels, with an emphasis placed on their application in various facets of tissue engineering to provide an overview of this unique scaffold's past and future roles. STATEMENT OF SIGNIFICANCE Cryogels are unique scaffolds produced through the controlled freezing and thawing of a polymer solution. There is an ever-growing body of literature that demonstrates their applicability in the realm of tissue engineering as extracellular matrix analogue scaffolds; with extensive information having been provided regarding the fabrication, porosity, and mechanical integrity of the scaffolds. Additionally, cryogels have been reviewed with respect to their role in bioseparation and as cellular incubators. This all-inclusive view of the roles that cryogels can play is critical to advancing the technology and expanding its niche within biomaterials and tissue engineering research. To the best of the authors' knowledge, this is the first comprehensive review of cryogel applications in tissue engineering that includes specific looks at their growing roles as extracellular matrix analogues, incubators, and in bioseparation processes.
Collapse
|
20
|
Köse K, Erol K, Özgür E, Uzun L, Denizli A. PolyAdenine cryogels for fast and effective RNA purification. Colloids Surf B Biointerfaces 2016; 146:678-86. [PMID: 27434154 DOI: 10.1016/j.colsurfb.2016.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/24/2016] [Accepted: 07/02/2016] [Indexed: 11/26/2022]
Abstract
Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity.
Collapse
Affiliation(s)
- Kazım Köse
- Hacettepe University, Department of Chemistry, Ankara, Turkey; Hitit University, Scientific Technical Research and Application Center, Çorum, Turkey
| | - Kadir Erol
- Hacettepe University, Department of Chemistry, Ankara, Turkey; Hitit University, Department of Chemistry, Çorum, Turkey
| | - Erdoğan Özgür
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| |
Collapse
|
21
|
Affinity approaches in RNAi-based therapeutics purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:45-56. [DOI: 10.1016/j.jchromb.2016.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
|
22
|
Andaç M, Galaev IY, Denizli A. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:69-80. [DOI: 10.1016/j.jchromb.2015.09.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
23
|
Shakya AK, Srivastava A, Kumar A. Polymeric Cryogel‐Based Boronate Affinity Chromatography for Separation of Ribonucleic Acid from Bacterial Extracts. ACTA ACUST UNITED AC 2015; 63:10.16.1-10.16.10. [DOI: 10.1002/0471142700.nc1016s63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Akshay Srivastava
- Network of Excellence for Functional Biomaterials, National University of Ireland Galway Republic of Ireland
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur Kanpur (U.P) India
| |
Collapse
|
24
|
WANG J, WANG QM, TIAN LL, YANG C, YU SH, YANG C. Research Progress of the Molecularly Imprinted Cryogel. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60878-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Brooks WLA, Sumerlin BS. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem Rev 2015; 116:1375-97. [DOI: 10.1021/acs.chemrev.5b00300] [Citation(s) in RCA: 552] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
26
|
Separation of lactoperoxidase from bovine whey milk by cation exchange composite cryogel embedded macroporous cellulose beads. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Kara A, Demirbel E, Tekin N, Osman B, Beşirli N. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:612-623. [PMID: 25666882 DOI: 10.1016/j.jhazmat.2014.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)-vinylphenyl boronic acid(VPBA)) [m-poly(EG-VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG-VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG-VPBA) microparticles were characterized by N2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG-VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin-Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG-VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic parameters (free energy change, ΔG(0) enthalpy change, ΔH(0); and entropy change, ΔS(0)) for the adsorption have been evaluated.
Collapse
Affiliation(s)
- Ali Kara
- Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa, Turkey.
| | - Emel Demirbel
- Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa, Turkey
| | - Nalan Tekin
- Kocaeli University, Faculty of Arts and Science, Department of Chemistry, 41380 Kocaeli, Turkey
| | - Bilgen Osman
- Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa, Turkey
| | - Necati Beşirli
- Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa, Turkey
| |
Collapse
|
28
|
Palai T, Kumar A, Bhattacharya PK. Kinetic studies and model development for the formation of galacto-oligosaccharides from lactose using synthesized thermo-responsive bioconjugate. Enzyme Microb Technol 2015; 70:42-9. [DOI: 10.1016/j.enzmictec.2014.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/04/2014] [Accepted: 12/20/2014] [Indexed: 01/13/2023]
|
29
|
Tabaklı B, Topçu AA, Döker S, Uzun L. Particle-Assisted Ion-Imprinted Cryogels for Selective CdII Ion Removal. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504312e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bekir Tabaklı
- Department
of Chemistry, Hacettepe University, Ankara, Turkey
| | - Aykut Arif Topçu
- Department
of Chemistry, Hacettepe University, Ankara, Turkey
- Department
of Biology, Kırıkkale University, Kırıkkale, Turkey
| | - Serhat Döker
- Department
of Chemistry, Çankırı Karatekin University, Çankırı, Turkey
| | - Lokman Uzun
- Department
of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
30
|
Chromatographic adsorption of serum albumin and antibody proteins in cryogels with benzyl-quaternary amine ligands. J Chromatogr A 2015; 1381:173-83. [DOI: 10.1016/j.chroma.2014.11.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/05/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
|
31
|
Carvalho RJ, Woo J, Aires-Barros MR, Cramer SM, Azevedo AM. Phenylboronate chromatography selectively separates glycoproteins through the manipulation of electrostatic, charge transfer, andcis-diol interactions. Biotechnol J 2014; 9:1250-8. [DOI: 10.1002/biot.201400170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/22/2014] [Accepted: 08/07/2014] [Indexed: 12/31/2022]
|
32
|
Boronic acid functionalized polymeric microspheres for catecholamine isolation. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Palai T, Kumar A, Bhattacharya PK. Synthesis and characterization of thermo-responsive poly-N-isopropylacrylamide bioconjugates for application in the formation of galacto-oligosaccharides. Enzyme Microb Technol 2014; 55:40-9. [DOI: 10.1016/j.enzmictec.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
34
|
|
35
|
Shakya AK, Holmdahl R, Nandakumar KS, Kumar A. Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals. J Biomed Mater Res A 2013; 102:3409-18. [PMID: 24142798 DOI: 10.1002/jbm.a.35013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
Abstract
Biocompatibility and in vivo degradation are two important characteristics of cell scaffolds. We evaluated these properties for four different polymeric macroporous cryogels, polyvinylcaprolactam, polyvinyl alcohol-alginate-bioactive glass composite, polyhydroxyethylmethacrylate-gelatin (pHEMA-gelatin), and chitosan-agarose-gelatin in mice. All the cryogels were synthesized at subzero temperature and were implanted subcutaneously in C57Bl/10.Q inbred mice. Both local and systemic toxicities were negligible as determined by serum tumor necrosis factor α analysis and histology of surrounding tissues nearby the implants. Complete integration of cryogels into the surrounding tissues with neovascular formation was evident in all the mice. At the implantation site, massive infiltration of macrophages and few dendritic cells were observed but neutrophils and mast cells were clearly absent. Macrophage infiltrations were observed even inside the pores of cryogel implants. To ascertain whether oxidative radicals are involved in the cryogel degradation, we implanted these gels in mice deficient for reactive oxygen species (ROS) production. Rapid gel degradation was observed in the absence of ROS, and there was no significant difference in the biodegradation of these cryogels between ROS sufficient and deficient mice thereby excluding any major role for ROS in this process. Thus, we demonstrate the biocompatibility and ROS-independent biodegradable properties of cryogels that could be useful for tissue-specific tissue engineering applications.
Collapse
Affiliation(s)
- Akhilesh Kumar Shakya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Department of Biochemistry and Biophysics, Medical Inflammation Research, Karolinska Institute, Stockholm, 17177, Sweden
| | | | | | | |
Collapse
|
36
|
Characterization of chemically defined poly-N-isopropylacrylamide based copolymeric adjuvants. Vaccine 2013; 31:3519-27. [PMID: 23742996 DOI: 10.1016/j.vaccine.2013.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 02/01/2023]
Abstract
PNiPAAm is a thermo-responsive polymer with an adjuvant activity. To identify the minimal chemical structure present within PNiPAAm responsible for its adjuvant property, three different constituent polymers with specific functional groups were synthesized through free radical reaction and tested their adjuvant potential along with PNiPAAm. Among them, polymer with isopropyl attached to an amide showed maximal adjuvant activity in rodents followed by polymer with amide or ketone functional groups. However, secondary amine containing polymer did not show any adjuvant activity. In addition, to improve the adjuvant properties of PNiPAAm, we incorporated an affinity ligand, boronate. At first, we synthesized and characterized the dual responsive copolymers PNiPAAm-co-VPBA and PNiPAAm-co-VPBA-co-DMAEMA. Biocompatibility of these copolymers was confirmed both in vitro and in vivo. Mice injected with these copolymers mixed with collagen (CII) developed significant levels of anti-CII antibodies comprising of all the major IgG subclasses and an increased T cell activation. At the injection site, massive infiltration of immune cells was observed. However, only PNiPAAm-co-VPBA-co-DMAEMA-CII induced arthritis in mice after injection of 0.5M fructose confirming the importance of effective release of CII from the polymer for its adjuvant activity. Thus, a fine balance of hydrophobicity and hydrophilicity promotes adjuvant properties and continuous release of antigen, in this case CII, from polymer is essential for its adjuvant activity.
Collapse
|
37
|
Jain E, Kumar A. Disposable polymeric cryogel bioreactor matrix for therapeutic protein production. Nat Protoc 2013; 8:821-35. [PMID: 23558783 DOI: 10.1038/nprot.2013.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low cost and high efficiency make disposable bioreactors feasible for small-scale therapeutic development and initial clinical trials. We have developed a cryogel-based disposable bioreactor matrix, which has been used for production of protein therapeutics such as urokinase and monoclonal antibodies (mAbs). The protocol discusses the application of a cryogel bioreactor for mAb production. Cryogels composed of either polyacrylamide (PAAm) coupled to gelatin or semi-interpenetrating PAAm-chitosan are synthesized by free-radical polymerization at -12 °C. Hybridoma cells are immobilized over the cryogel bioreactor and incubated for 48 h. Medium is circulated thereafter at 0.2 ml min(-1) and bioreactors can be run continuously for 60 d. The cryogel-based packed-bed bioreactor can be formulated as a monolith or as beads; it also has an efficiency four times what can be obtained using a tissue-culture flask, a high surface-to-volume ratio and effective nutrient transport. After incubation, the bioreactor setup will take about 60 min using a pre-prepared sterilized cryogel.
Collapse
Affiliation(s)
- Era Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | | |
Collapse
|