1
|
Kouzounis D, Nguyen KA, Klostermann CE, Soares N, Kabel MA, Schols HA. The action of endo-xylanase and endo-glucanase on cereal cell wall polysaccharides and its implications for starch digestion kinetics in an in vitro poultry model. Carbohydr Polym 2024; 331:121861. [PMID: 38388057 DOI: 10.1016/j.carbpol.2024.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Endo-xylanase and endo-glucanase are supplemented to poultry diets in order to improve nutrient digestion and non-starch polysaccharide (NSP) fermentation. Here, the action of these enzymes on alcohol insoluble solids (AIS) from wheat and maize grains as well as its implications for starch digestion in milled grains were evaluated in vitro, under conditions mimicking the poultry digestive tract. For wheat AIS, GH11 endo-xylanase depolymerized soluble arabinoxylan (AX) during the gizzard phase, and proceeded to release insoluble AX under small intestine conditions. At the end of the in vitro digestion (480 min), the endo-xylanase, combined with a GH7 endo-β-1,4-glucanase, released 30.5 % of total AX and 18.1 % of total glucan in the form of arabinoxylo- and gluco-oligosaccharides, as detected by HPAEC-PAD and MALDI-TOF-MS. For maize AIS, the combined enzyme action released 2.2 % and 7.0 % of total AX and glucan, respectively. Analogous in vitro digestion experiments of whole grains demonstrated that the enzymatic release of oligomers coincided with altered grain microstructure, as examined by SEM. In the present study, cell wall hydrolysis did not affect in vitro starch digestion kinetics for cereal grains. This study contributes to understanding the action of feed enzymes on cereal NSP under conditions mimicking the poultry digestive tract.
Collapse
Affiliation(s)
- Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Khoa A Nguyen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Cynthia E Klostermann
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | | | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
2
|
Yang Y, Zhang C, Lu H, Wu Q, Wu Y, Li W, Li X. Improvement of thermostability and catalytic efficiency of xylanase from Myceliophthora thermophilar by N-terminal and C-terminal truncation. Front Microbiol 2024; 15:1385329. [PMID: 38659990 PMCID: PMC11039872 DOI: 10.3389/fmicb.2024.1385329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Extracting xylanase from thermophilic filamentous fungi is a feasible way to obtain xylanase with good thermal stability. Methods The transcriptomic data of Myceliophthora thermophilic destructive ATCC42464 were differentially expressed and enriched. By comparing the sequences of Mtxylan2 and more than 10 xylanases, the N-terminal and C-terminal of Mtxylan2 were truncated, and three mutants 28N, 28C and 28NC were constructed. Results and discussion GH11 xylan Mtxylan2 was identified by transcriptomic analysis, the specific enzyme activity of Mtxylan2 was 104.67 U/mg, and the optimal temperature was 65°C. Molecular modification of Mtxylan2 showed that the catalytic activity of the mutants was enhanced. Among them, the catalytic activity of 28C was increased by 9.3 times, the optimal temperature was increased by 5°C, and the residual enzyme activity remained above 80% after 30 min at 50-65°C, indicating that redundant C-terminal truncation can improve the thermal stability and catalytic performance of GH11 xylanase.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengnan Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Hongyun Lu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - QiuHua Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yanfang Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
3
|
Jermendi É, Fernández-Lainez C, Beukema M, López-Velázquez G, van den Berg MA, de Vos P, Schols HA. TLR 2/1 interaction of pectin depends on its chemical structure and conformation. Carbohydr Polym 2023; 303:120444. [PMID: 36657837 DOI: 10.1016/j.carbpol.2022.120444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Citrus pectins have demonstrated health benefits through direct interaction with Toll-like receptor 2. Methyl-ester distribution patterns over the homogalacturonan were found to contribute to such immunomodulatory activity, therefore molecular interactions with TLR2 were studied. Molecular-docking analysis was performed using four GalA-heptamers, GalA7Me0, GalA7Me1,6, GalA7Me1,7 and GalA7Me2,5. The molecular relations were measured in various possible conformations. Furthermore, commercial citrus pectins were characterized by enzymatic fingerprinting using polygalacturonase and pectin-lyase to determine their methyl-ester distribution patterns. The response of 12 structurally different pectic polymers on TLR2 binding and the molecular docking with four pectic oligomers clearly demonstrated interactions with human-TLR2 in a structure-dependent way, where blocks of (non)methyl-esterified GalA were shown to inhibit TLR2/1 dimerization. Our results may be used to understand the immunomodulatory effects of certain pectins via TLR2. Knowledge of how pectins with certain methyl-ester distribution patterns bind to TLRs may lead to tailored pectins to prevent inflammation.
Collapse
Affiliation(s)
- Éva Jermendi
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Cynthia Fernández-Lainez
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands; Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Av. Imán 1, piso 9, col. Insurgentes Cuicuilco 04530, Ciudad de México, Mexico.
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Av. Imán 1, piso 5, col. Insurgentes Cuicuilco 04530, Ciudad de México, Mexico.
| | - Marco A van den Berg
- DSM Food & Beverages, Alexander Fleminglaan 1, 2613, AX, Delft, the Netherlands.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Kouzounis D, Jonathan MC, Soares N, Kabel MA, Schols HA. In vivo formation of arabinoxylo-oligosaccharides by dietary endo-xylanase alters arabinoxylan utilization in broilers. Carbohydr Polym 2022; 291:119527. [DOI: 10.1016/j.carbpol.2022.119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
|
5
|
Morgan T, Custódio FA, Tavares MP, Pereira OL, Guimarães VM, de Oliveira Mendes TA. Genome sequencing and evolutionary analysis of a new endophytic Trichoderma species isolated from orchid roots with reduced repertoire of protein-coding genes. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Pandeirada CO, Speranza S, Bakx E, Westphal Y, Janssen HG, Schols HA. Partial acid-hydrolysis of TEMPO-oxidized arabinoxylans generates arabinoxylan-structure resembling oligosaccharides. Carbohydr Polym 2022; 276:118795. [PMID: 34823802 DOI: 10.1016/j.carbpol.2021.118795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/09/2023]
Abstract
Arabinoxylans (AXs) display biological activities that depend on their chemical structures. To structurally characterize and distinguish AXs using a non-enzymatic approach, various TEMPO-oxidized AXs were partially acid-hydrolysed to obtain diagnostic oligosaccharides (OS). Arabinurono-xylo-oligomer alditols (AUXOS-A) with degree of polymerization 2-5, comprising one and two arabinuronic acid (AraA) substituents were identified in the UHPLC-PGC-MS profiles of three TEMPO-oxidized AXs, namely wheat (ox-WAX), partially-debranched WAX (ox-pD-WAX), and rye (ox-RAX). Characterization of these AUXOS-A highlighted that single-substitution of the Xyl unit preferably occurs at position O-3 for these samples, and that ox-WAX has both more single substituted and more double-substituted xylose residues in its backbone than the other AXs. Characteristic UHPLC-PGC-MS OS profiles, differing in OS abundance and composition, were obtained for each AX. Thus, partial acid-hydrolysis of TEMPO-oxidized AXs with analysis of the released OS by UHPLC-PGC-MS is a promising novel non-enzymatic approach to distinguish AXs and obtain insights into their structures.
Collapse
Affiliation(s)
- Carolina O Pandeirada
- Wageningen University & Research, Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Sofia Speranza
- Wageningen University & Research, Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Edwin Bakx
- Wageningen University & Research, Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Yvonne Westphal
- Unilever Foods Innovation Centre - Hive, Bronland 14, 6708 WH Wageningen, the Netherlands
| | - Hans-Gerd Janssen
- Unilever Foods Innovation Centre - Hive, Bronland 14, 6708 WH Wageningen, the Netherlands; Wageningen University & Research, Laboratory of Organic Chemistry, P.O. Box 8026, 6700 EG Wageningen, the Netherlands
| | - Henk A Schols
- Wageningen University & Research, Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
7
|
Zhang S, Zhao S, Shang W, Yan Z, Wu X, Li Y, Chen G, Liu X, Wang L. Synergistic mechanism of GH11 xylanases with different action modes from Aspergillus niger An76. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:118. [PMID: 33971954 PMCID: PMC8112042 DOI: 10.1186/s13068-021-01967-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Xylan is the most abundant hemicellulose polysaccharide in nature, which can be converted into high value-added products. However, its recalcitrance to breakdown requires the synergistic action of multiple enzymes. Aspergillus niger, possessing numerous xylan degrading isozyme-encoding genes, are highly effective xylan degraders in xylan-rich habitats. Therefore, it is necessary to explore gene transcription, the mode of action and cooperation mechanism of different xylanase isozymes to further understand the efficient xylan-degradation by A. niger. RESULTS Aspergillus niger An76 encoded a comprehensive set of xylan-degrading enzymes, including five endo-xylanases (one GH10 and four GH11). Quantitative transcriptional analysis showed that three xylanase genes (xynA, xynB and xynC) were up-regulated by xylan substrates, and the order and amount of enzyme secretion differed. Specifically, GH11 xylanases XynA and XynB were initially secreted successively, followed by GH10 xylanase XynC. Biochemical analyses displayed that three GH11 xylanases (XynA, XynB and XynD) showed differences in catalytic performance and product profiles, possibly because of intricate hydrogen bonding between substrates and functional residues in the active site architectures impacted their binding capacity. Among these, XynB had the best performance in the degradation of xylan and XynE had no catalytic activity. Furthermore, XynA and XynB showed synergistic effects during xylan degradation. CONCLUSIONS The sequential secretion and different action modes of GH11 xylanases were essential for the efficient xylan degradation by A. niger An76. The elucidation of the degradation mechanisms of these xylanase isozymes further improved our understanding of GH-encoding genes amplification in filamentous fungi and may guide the design of the optimal enzyme cocktails in industrial applications.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| | - Sha Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
- School of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Weihao Shang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| | - Zijuan Yan
- School of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 Shandong China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 Shandong China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
| |
Collapse
|
8
|
Biochemical characterization and enhanced production of endoxylanase from thermophilic mould Myceliophthora thermophila. Bioprocess Biosyst Eng 2021; 44:1539-1555. [PMID: 33765291 DOI: 10.1007/s00449-021-02539-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/13/2021] [Indexed: 10/21/2022]
Abstract
Endoxylanase production from M. thermophila BJTLRMDU3 using rice straw was enhanced to 2.53-fold after optimization in solid state fermentation (SSF). Endoxylanase was purified to homogeneity employing ammonium sulfate precipitation followed by gel filtration chromatography and had a molecular mass of ~ 25 kDa estimated by SDS-PAGE. Optimal endoxylanase activity was recorded at pH 5.0 and 60 °C. Purified enzyme showed complete tolerance to n-hexane, but activity was slightly inhibited by other organic solvents. Among surfactants, Tweens (20, 60, and 80) and Triton X 100 slightly enhanced the enzyme activity. The Vmax and Km values for purified endoxylanase were 6.29 µmol/min/mg protein and 5.4 mg/ml, respectively. Endoxylanase released 79.08 and 42.95% higher reducing sugars and soluble proteins, respectively, which control after 48 h at 60 °C from poultry feed. Synergistic effect of endoxylanase (100 U/g) and phytase (15 U/g) on poultry feed released higher amount of reducing sugars (58.58 mg/feed), soluble proteins (42.48 mg/g feed), and inorganic phosphate (28.34 mg/feed) in contrast to control having 23.55, 16.98, and 10.46 mg/feed of reducing sugars, soluble proteins, and inorganic phosphate, respectively, at 60 °C supplemented with endoxylanase only.
Collapse
|
9
|
Yang Y, Yang J, Wang R, Liu J, Zhang Y, Liu L, Wang F, Yuan H. Cooperation of hydrolysis modes among xylanases reveals the mechanism of hemicellulose hydrolysis by Penicillium chrysogenum P33. Microb Cell Fact 2019; 18:159. [PMID: 31542050 PMCID: PMC6754857 DOI: 10.1186/s12934-019-1212-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Xylanases randomly cleave the internal β-1,4-glycosidic bonds in the xylan backbone and are grouped into different families in the carbohydrate-active enzyme (CAZy) database. Although multiple xylanases are detected in single strains of many filamentous fungi, no study has been reported on the composition, synergistic effect, and mode of action in a complete set of xylanases secreted by the same microorganism. Results All three xylanases secreted by Penicillium chrysogenum P33 were expressed and characterized. The enzymes Xyl1 and Xyl3 belong to the GH10 family and Xyl3 contains a CBM1 domain at its C-terminal, whereas Xyl2 belongs to the GH11 family. The optimal temperature/pH values were 35 °C/6.0, 50 °C/5.0 and 55 °C/6.0 for Xyl1, Xyl2, and Xyl3, respectively. The three xylanases exhibited synergistic effects, with the maximum synergy observed between Xyl3 and Xyl2, which are from different families. The synergy between xylanases could also improve the hydrolysis of cellulase (C), with the maximum amount of reducing sugars (5.68 mg/mL) observed using the combination of C + Xyl2 + Xyl3. Although the enzymatic activity of Xyl1 toward xylan was low, it was shown to be capable of hydrolyzing xylooligosaccharides into xylose. Xyl2 was shown to hydrolyze xylan to long-chain xylooligosaccharides, whereas Xyl3 hydrolyzed xylan to xylooligosaccharides with a lower degree of polymerization. Conclusions Synergistic effect exists among different xylanases, and it was higher between xylanases from different families. The cooperation of hydrolysis modes comprised the primary mechanism for the observed synergy between different xylanases. This study demonstrated, for the first time, that the hydrolysates of GH11 xylanases can be further hydrolyzed by GH10 xylanases, but not vice versa.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruonan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiawen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fengqin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Cloning, Purification, and Characterization of Recombinant Thermostable β-Xylanase Tnap_0700 from Thermotoga naphthophila. Appl Biochem Biotechnol 2019; 189:1274-1290. [DOI: 10.1007/s12010-019-03068-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023]
|
11
|
Heterologous expression, purification and biochemical characterization of a new xylanase from Myceliophthora heterothallica F.2.1.4. Int J Biol Macromol 2019; 131:798-805. [PMID: 30905755 DOI: 10.1016/j.ijbiomac.2019.03.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
Myceliophthora heterothallica is a thermophilic fungus potentially relevant for the production of enzymes involved in the degradation of plant biomass. A xylanase encoding gene of this species was identified by means of RT-PCR using primers designed based on a xylanase coding sequence (GH11) of the fungus M. thermophila. The obtained gene was ligated to the vector pET28a(+) and the construct was transformed into Escherichia coli cells. The recombinant xylanase (r-ec-XylMh) was heterologously expressed, and the highest activity was observed at 55 °C and pH 6. The enzyme stability was greater than 70% between pH 4.5 and 9.5 and the inclusion of glycerol (50%) resulted in a significant increase in thermostability. Under these conditions, the enzyme retained more than 50% residual activity when incubated at 65 °C for 1 h, and approximately 30% activity when incubated at 70 °C for the same period. The tested cations did not increase xylanolytic activity, and the enzyme indicated significant tolerance to several phenolic compounds after 24 h, as well as high specificity for xylan, with no activity for other substrates such as CMC (carboxymethylcellulose), Avicel, pNPX (p-nitrophenyl-β-D-xylopyranoside) and pNPA (p-nitrophenyl-α-L-arabinofuranoside), and is thus, of potential relevance in pulp bleaching.
Collapse
|
12
|
Katsimpouras C, Dedes G, Thomaidis NS, Topakas E. A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:120. [PMID: 31110561 PMCID: PMC6511221 DOI: 10.1186/s13068-019-1455-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/29/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND The main representatives of hemicellulose are xylans, usually decorated β-1,4-linked d-xylose polymers, which are hydrolyzed by xylanases. The efficient utilization and complete hydrolysis of xylans necessitate the understanding of the mode of action of xylan degrading enzymes. The glycoside hydrolase family 30 (GH30) xylanases comprise a less studied group of such enzymes, and differences regarding the substrate recognition have been reported between fungal and bacterial GH30 xylanases. Besides their role in the utilization of lignocellulosic biomass for bioenergy, such enzymes could be used for the tailored production of prebiotic xylooligosaccharides (XOS) due to their substrate specificity. RESULTS The expression of a putative GH30_7 xylanase from the fungus Thermothelomyces thermophila (synonyms Myceliophthora thermophila, Sporotrichum thermophile) in Pichia pastoris resulted in the production and isolation of a novel xylanase with unique catalytic properties. The novel enzyme designated TtXyn30A, exhibited an endo- mode of action similar to that of bacterial GH30 xylanases that require 4-O-methyl-d-glucuronic acid (MeGlcA) decorations, in contrast to most characterized fungal ones. However, TtXyn30A also exhibited an exo-acting catalytic behavior by releasing the disaccharide xylobiose from the non-reducing end of XOS. The hydrolysis products from beechwood glucuronoxylan were MeGlcA substituted XOS, and xylobiose. The major uronic XOS (UXOS) were the aldotriuronic and aldotetrauronic acid after longer incubation indicating the ability of TtXyn30A to cleave linear parts of xylan and UXOS as well. CONCLUSIONS Hereby, we reported the heterologous production and biochemical characterization of a novel fungal GH30 xylanase exhibiting endo- and exo-xylanase activity. To date, considering its novel catalytic properties, TtXyn30A shows differences with most characterized fungal and bacterial GH30 xylanases. The discovered xylobiohydrolase mode of action offers new insights into fungal enzymatic systems that are employed for the utilization of lignocellulosic biomass. The recombinant xylanase could be used for the production of X2 and UXOS from glucuronoxylan, which in turn would be utilized as prebiotics carrying manifold health benefits.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Grigorios Dedes
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
13
|
Xylanase from Aspergillus tamarii shows different kinetic parameters and substrate specificity in the presence of ferulic acid. Enzyme Microb Technol 2019; 120:16-22. [DOI: 10.1016/j.enzmictec.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/20/2022]
|
14
|
Basit A, Liu J, Miao T, Zheng F, Rahim K, Lou H, Jiang W. Characterization of Two Endo-β-1, 4-Xylanases from Myceliophthora thermophila and Their Saccharification Efficiencies, Synergistic with Commercial Cellulase. Front Microbiol 2018; 9:233. [PMID: 29491860 PMCID: PMC5817056 DOI: 10.3389/fmicb.2018.00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/30/2018] [Indexed: 01/11/2023] Open
Abstract
The xylanases with high specific activity and resistance to harsh conditions are of high practical value for biomass utilization. In the present study, two new GH11 xylanase genes, MYCTH_56237 and MYCTH_49824, have been cloned from thermophilic fungus Myceliophthora thermophila and expressed in Pichia pastoris. The specific activities of purified xylanases reach approximately 1,533.7 and 1,412.5 U/mg, respectively. Based on multiple template-based homology modeling, the structures of their catalytic domains are predicted. Enzyme activity was more effective in 7.5 L fermentor, yielding 2,010.4 and 2,004.2 U/mL, respectively. Both enzymes exhibit optimal activity at 60°C with pH of 6.0 and 7.0, respectively. Their activities are not affected by EDTA and an array of metal ions. The kinetic constants have been determined for MYCTH_56237 (Km = 8.80 mg/mL, Vmax = 2,380 U/mg) and MYCTH_49824 (Km = 5.67 mg/mL, Vmax = 1,750 U/mg). More importantly, both xylanases significantly cooperate with the commercial cellulase Celluclast 1.5 L in terms of the saccharification efficiency. All these biochemical properties of the xylanases offer practical potential for future applications.
Collapse
Affiliation(s)
- Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Basit A, Liu J, Rahim K, Jiang W, Lou H. Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 2018; 38:989-1002. [DOI: 10.1080/07388551.2018.1425662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Heinen PR, Bauermeister A, Ribeiro LF, Messias JM, Almeida PZ, Moraes LAB, Vargas-Rechia CG, de Oliveira AHC, Ward RJ, Filho EXF, Kadowaki MK, Jorge JA, Polizeli MLTM. GH11 xylanase from Aspergillus tamarii Kita: Purification by one-step chromatography and xylooligosaccharides hydrolysis monitored in real-time by mass spectrometry. Int J Biol Macromol 2017; 108:291-299. [PMID: 29191425 DOI: 10.1016/j.ijbiomac.2017.11.150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/12/2023]
Abstract
The present study describes the one-step purification and biochemical characterization of an endo-1,4-β-xylanase from Aspergillus tamarii Kita. Extracellular xylanase was purified to homogeneity 7.43-fold through CM-cellulose. Enzyme molecular weight and pI were estimated to be 19.5kDa and 8.5, respectively. The highest activity of the xylanase was obtained at 60°C and it was active over a broad pH range (4.0-9.0), with maximal activity at pH 5.5. The enzyme was thermostable at 50°C, retaining more than 70% of its initial activity for 480min. The K0.5 and Vmax values on beechwood xylan were 8.13mg/mL and 1,330.20μmol/min/mg of protein, respectively. The ions Ba2+ and Ni2+, and the compounds β-mercaptoethanol and DTT enhanced xylanase activity, while the heavy metals (Co2+, Cu2+, Hg+, Pb2+ and Zn2+) strongly inhibited the enzyme, at 5mM. Enzymatic hydrolysis of xylooligosaccharides monitored in real-time by mass spectrometer showed that the shortest xylooligosaccharide more efficiently hydrolyzed by A. tamarii Kita xylanase corresponded to xylopentaose. In agreement, HPLC analyzes did not detect xylopentaose among the hydrolysis products of xylan. Therefore, this novel GH11 endo-xylanase displays a series of physicochemical properties favorable to its application in the food, feed, pharmaceutical and paper industries.
Collapse
Affiliation(s)
- P R Heinen
- Departamento de Bioquímica e Imunologia - Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo, Brazil
| | - A Bauermeister
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - L F Ribeiro
- Department of Chemical and Biomolecular Engineering - Johns Hopkins University, USA
| | - J M Messias
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - P Z Almeida
- Departamento de Bioquímica e Imunologia - Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo, Brazil
| | - L A B Moraes
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Brazil
| | - C G Vargas-Rechia
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - A H C de Oliveira
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Brazil
| | - R J Ward
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Brazil
| | - E X F Filho
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - M K Kadowaki
- Centro de Ciências Médicas e Farmacêuticas - UNIOESTE - Cascavel, Paraná, Brazil
| | - J A Jorge
- Departamento de Biologia - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Brazil
| | - M L T M Polizeli
- Departamento de Biologia - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Brazil.
| |
Collapse
|
17
|
Purification and characterization of low molecular weight extreme alkaline xylanase from the thermophilic fungus Myceliophthora thermophila BF1-7. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger. Biotechnol Lett 2016; 38:1739-45. [DOI: 10.1007/s10529-016-2149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
19
|
Tian L, Gruppen H, Schols HA. Characterization of (Glucurono)arabinoxylans from Oats Using Enzymatic Fingerprinting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10822-10830. [PMID: 26636262 DOI: 10.1021/acs.jafc.5b04419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell wall material from whole oat grains was sequentially extracted to study the structural characteristics of individual arabinoxylan (AX) populations. Araf was singly substituted at both O-3 (mainly) and O-2 positions of Xylp, and no disubstitution of Xylp with Araf residues was found in oat AXs. Both highly substituted and sparsely substituted segments were found in AXs in Ba(OH)2 extracts, whereas AXs in 1 and 6 M NaOH extracts were rarely branched and easily aggregated. Both O-2-linked GlcA and 4-O-MeGlcA residues were present in oat AXs. A series of AX oligomers with galactose as a substituent was detected for the first time in oats. The present study suggested that the distribution of Araf was contiguous in oat AXs, different from the homogeneous distribution of Araf in wheat and barley AXs, which might result in different fermentation patterns in humans and animals.
Collapse
Affiliation(s)
- Lingmin Tian
- Laboratory of Food Chemistry, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
20
|
Heterologous Expression and Characterization of a GH3 β-Glucosidase from Thermophilic Fungi Myceliophthora thermophila in Pichia pastoris. Appl Biochem Biotechnol 2015; 177:511-27. [PMID: 26234435 DOI: 10.1007/s12010-015-1759-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 07/14/2015] [Indexed: 01/06/2023]
Abstract
A novel β-glucosidase of glycoside hydrolase (GH) family 3 from Myceliophthora thermophila (mtbgl3b) was successfully expressed in Pichia pastoris. The full-length gene consists of 2613 bp nucleotides encoding a protein of 870 amino acids. MtBgl3b showed maximum activity at pH 5.0 and remained more than 70 % relative activity at 3.5-6.0. The enzyme displayed the highest activity at 60 °C and kept about 90 % relative activity for 50-65 °C; besides, the enzyme showed psychrophilic trait and remains 51 % relative activity at 40 °C. MtBgl3b exhibited good stability over a wide pH range of 3.0-10.0 and was thermostable at 60 and 65 °C. The enzyme displayed highest activity towards p-nitrophenyl-β-D-glucopyranoside (pNPG), followed by p-nitrophenyl-D-cellobioside (pNPC), cellotetraose, cellotriose, cellobiose, and gentiobiose. When using 10 % cellobiose (w/v) as the substrate, the enzyme showed transglycosylation activity to produce the cellotriose. The kinetic parametric of K m and V max were 2.78 mM and 927.9 μM mg(-1) min(-1), respectively. Finally, the reaction mode of the enzyme and the substrates were analyzed by molecular docking approach.
Collapse
|
21
|
Analysis of enzymes of the hemicellulose complex from Geobacillus stearothermophilus 22 VKPM B-11678 isolated from Garga hot spring, Russia. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Singh B. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 2014; 36:59-69. [PMID: 25025273 DOI: 10.3109/07388551.2014.923985] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.
Collapse
Affiliation(s)
- Bijender Singh
- a Laboratory of Bioprocess Technology, Department of Microbiology , Maharshi Dayanand University , Rohtak-124001 , Haryana , India
| |
Collapse
|
23
|
Karnaouri A, Topakas E, Antonopoulou I, Christakopoulos P. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Front Microbiol 2014; 5:281. [PMID: 24995002 PMCID: PMC4061905 DOI: 10.3389/fmicb.2014.00281] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/22/2014] [Indexed: 01/08/2023] Open
Abstract
The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Cellulolytic fungi represent a promising group of organisms, as they have evolved complex systems for adaptation to their natural habitat. The filamentous fungus Myceliophthora thermophila constitutes an exceptionally powerful cellulolytic microorganism that synthesizes a complete set of enzymes necessary for the breakdown of plant cell wall. The genome of this fungus has been recently sequenced and annotated, allowing systematic examination and identification of enzymes required for the degradation of lignocellulosic biomass. The genomic analysis revealed the existence of an expanded enzymatic repertoire including numerous cellulases, hemicellulases, and enzymes with auxiliary activities, covering the most of the recognized CAZy families. Most of them were predicted to possess a secretion signal and undergo through post-translational glycosylation modifications. These data offer a better understanding of activities embedded in fungal lignocellulose decomposition mechanisms and suggest that M. thermophila could be made usable as an industrial production host for cellulolytic and hemicellulolytic enzymes.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens Athens, Greece ; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Evangelos Topakas
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens Athens, Greece
| | - Io Antonopoulou
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| |
Collapse
|
24
|
Lafond M, Guais O, Maestracci M, Bonnin E, Giardina T. Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans. Appl Microbiol Biotechnol 2014; 98:6339-52. [DOI: 10.1007/s00253-014-5606-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/12/2022]
|