1
|
Biko OD, Viljoen-Bloom M, van Zyl WH. Medium optimization for enhanced production of recombinant lignin peroxidase in Pichia pastoris. Biotechnol Lett 2023; 45:105-113. [PMID: 36400875 DOI: 10.1007/s10529-022-03321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Different cultivation conditions and parameters were evaluated to improve the production and secretion of a recombinant Phanerochaete chrysosporium lipH8 gene in Komagataella phaffii (Pichia pastoris). RESULTS The recombinant lipH8 gene with its native secretion signal was successfully cloned and expressed in Komagataella phaffii (Pichia pastoris) under the control of the alcohol oxidase 1 promoter (PAOX1). The results revealed that co-feeding with sorbitol and methanol increased rLiP secretion by 5.9-fold compared to the control conditions. The addition of 1 mM FeSO4 increased LiP activity a further 6.0-fold during the induction phase. Moreover, the combination of several optimal conditions and parameters yielded an extracellular rLiP activity of 20.05 U l-1, which is more than ten-fold higher relative to standard growth conditions (BMM10 medium, pH 6 and 30 °C). CONCLUSION Extracellular activity of a recombinant LiP expressed in P. pastoris increased more than ten-fold when co-feeding sorbitol and methanol as carbon sources, together with urea as nitrogen source, FeSO4 supplementation, lower pH and lower cultivation temperature.
Collapse
Affiliation(s)
- Odwa D Biko
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
2
|
Miao T, Basit A, Liu J, Zheng F, Rahim K, Lou H, Jiang W. Improved Production of Xylanase in Pichia pastoris and Its Application in Xylose Production From Xylan. Front Bioeng Biotechnol 2021; 9:690702. [PMID: 34513809 PMCID: PMC8429496 DOI: 10.3389/fbioe.2021.690702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Xylanases with high specific activity has been focused with great interest as a useful enzyme in biomass utilization. The production of recombinant GH11 xylanase (MYCTH_56237) from Myceliophthora thermophila has been improved through N-terminal signal peptide engineering in P. pastoris. The production of newly recombinant xylanase (termed Mtxyn11C) was improved from 442.53 to 490.7 U/mL, through a replacement of α-factor signal peptide with the native xylanase signal peptide segment (MVSVKAVLLLGAAGTTLA) in P. pastoris. Scaling up of Mtxyn11C production in a 7.5 L fermentor was improved to the maximal production rate of 2503 U/mL. In this study, the degradation efficiency of Mtxyn11C was further examined. Analysis of the hydrolytic mode of action towards the birchwood xylan (BWX) revealed that Mtxyn11C was clearly more effective than commercial xylanase and degrades xylan into xylooligosaccharides (xylobiose, xylotriose, xylotetraose). More importantly, Mtxyn11C in combination with a single multifunctional xylanolytic enzyme, improved the hydrolysis of BWX into single xylose by 40%. Altogether, this study provided strategies for improved production of xylanase together with rapid conversion of xylose from BWX, which provides sustainable, cost-effective and environmental friendly approaches to produce xylose/XOSs for biomass energy or biofuels production.
Collapse
Affiliation(s)
- Ting Miao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Junquan Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
de Sá Magalhães S, Keshavarz-Moore E. Pichia pastoris ( Komagataella phaffii) as a Cost-Effective Tool for Vaccine Production for Low- and Middle-Income Countries (LMICs). Bioengineering (Basel) 2021; 8:119. [PMID: 34562941 PMCID: PMC8468848 DOI: 10.3390/bioengineering8090119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/26/2023] Open
Abstract
Vaccination is of paramount importance to global health. With the advent of the more recent pandemics, the urgency to expand the range has become even more evident. However, the potential limited availability and affordability of vaccines to resource low- and middle-income countries has created a need for solutions that will ensure cost-effective vaccine production methods for these countries. Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) is one of the most promising candidates for expression of heterologous proteins in vaccines development. It combines the speed and ease of highly efficient prokaryotic platforms with some key capabilities of mammalian systems, potentially reducing manufacturing costs. This review will examine the latest developments in P. pastoris from cell engineering and design to industrial production systems with focus on vaccine development and with reference to specific key case studies.
Collapse
Affiliation(s)
| | - Eli Keshavarz-Moore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| |
Collapse
|
4
|
Jeong HB, Kim HK. Increased mRNA Stability and Expression Level of Croceibacter atlanticus Lipase Gene Developed through Molecular Evolution Process. J Microbiol Biotechnol 2021; 31:882-889. [PMID: 34024893 PMCID: PMC9706013 DOI: 10.4014/jmb.2103.03011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
In order to use an enzyme industrially, it is necessary to increase the activity of the enzyme and optimize the reaction characteristics through molecular evolution techniques. We used the error-prone PCR method to improve the reaction characteristics of LipCA lipase discovered in Antarctic Croceibacter atlanticus. Recombinant Escherichia coli colonies showing large halo zones were selected in tributyrin-containing medium. The lipase activity of one mutant strain (M3-1) was significantly increased, compared to the wild-type (WT) strain. M3-1 strain produced about three times more lipase enzyme than did WT strain. After confirming the nucleotide sequence of the M3-1 gene to be different from that of the WT gene by four bases (73, 381, 756, and 822), the secondary structures of WT and M3-1 mRNA were predicted and compared by RNAfold web program. Compared to the mean free energy (MFE) of WT mRNA, that of M3-1 mRNA was lowered by 4.4 kcal/mol, and the MFE value was significantly lowered by mutations of bases 73 and 756. Site-directed mutagenesis was performed to find out which of the four base mutations actually affected the enzyme expression level. Among them, one mutant enzyme production decreased as WT enzyme production when the base 73 was changed (T→C). These results show that one base change at position 73 can significantly affect protein expression level, and demonstrate that changing the mRNA sequence can increase the stability of mRNA, and can increase the production of foreign protein in E. coli.
Collapse
Affiliation(s)
- Han Byeol Jeong
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyung Kwoun Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4890 Fax: +82-2-2164-4865 E-mail:
| |
Collapse
|
5
|
Adina SR, Suwanto A, Meryandini A, Puspitasari E. Expression of novel acidic lipase from Micrococcus luteus in Pichia pastoris and its application in transesterification. J Genet Eng Biotechnol 2021; 19:55. [PMID: 33826047 PMCID: PMC8026790 DOI: 10.1186/s43141-021-00155-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/26/2021] [Indexed: 01/26/2023]
Abstract
Background Lipases are promising biocatalysts for industrial applications and attract attention to be explored. A novel acidic lipase has been isolated from the lipolytic bacteria Micrococcus luteus EMP48-D (LipEMP48-D) screened from tempeh. The lipase gene had previously been overexpressed in Escherichia coli BL21, but the expression level obtained was relatively low. Here, to improve the expression level, the lipase gene was cloned to Pichia pastoris. We eliminated the native signal sequence of M. luteus and replaced it with α-mating factor (α-MF) signal sequence. We also optimized and synthesized the lipase gene based on codon preference in P. pastoris. Results LipEMP48-D lipase was expressed as an extracellular protein. Codon optimization has been conducted for 20 codons, with the codon adaption index reaching 0.995. The highest extracellular lipase activity obtained reached 145.4 ± 4.8 U/mg under AOX1 promoter in P. pastoris KM71 strain, which was 9.7-fold higher than the previous activity in E. coli. LipEMP48-D showed the highest specific activity at pH 5.0 and stable within the pH range 3.0–5.0 at 40 °C. LipEMP48-D also has the capability of hydrolyzing various long-chain triglycerides, particularly olive oil (100%) followed by sunflower oil (88.5%). LipEMP48-D exhibited high tolerance for various polar organic solvents with low log P, such as isopropanol (115.7%) and butanol (114.6%). The metal ions (Na+, K+, Ca2+, Mg2+, Mn+) decreased enzyme activity up to 43.1%, while Fe2+ increased relative activity of enzymes up to 200%. The conversion of free fatty acid (FFA) into fatty acid methyl ester (FAME) was low around 2.95%. Conclusions This study was the first to report overexpression of Micrococcus lipase in yeast. The extracellular expression of this acidic lipase could be potential for biocatalyst in industrial fields, especially organic synthesis, food industry, and production of biodiesel.
Collapse
Affiliation(s)
- Selfela Restu Adina
- Graduate School of Microbiology, Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia
| | - Antonius Suwanto
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia.
| | - Anja Meryandini
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia
| | - Esti Puspitasari
- Department of Biotechnology Research and Development, PT Wilmar Benih Indonesia, Bekasi, 17530, Indonesia
| |
Collapse
|
6
|
Shi L, Yang F, Xu Y, Wang S. Expression of Drosophila melanogaster acetylcholinesterase ( DmAChE) gene splice variants in Pichia pastoris and evaluation of its sensitivity to organophosphorus pesticides. J Zhejiang Univ Sci B 2021; 22:204-213. [PMID: 33719225 DOI: 10.1631/jzus.b2000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acetylcholinesterase (AChE) is a key enzyme used to detect organophosphorus pesticide residues by the enzyme inhibition method. An accidental discovery of a mutant strain with AChE activity was made in our laboratory during the process of AChE expression by Pichia pastoris. The pPIC9K-Drosophilamelanogaster acetylcholinesterase (DmAChE)-like expression vector was constructed by codon optimization of this mutant strain, which was transformed into P. pastoris GS115, and positive clones were selected on yeast peptone dextrose (YPD) plate with G418 at 4.0 mg/mL. The GS115-pPIC9K-DmAChE-like strain was subjected to 0.5% methanol induction expression for 120 h, with a protein band at 4.3 kDa found by the tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) pattern of the fermentation supernatant. After preliminary purification by ammonium sulfate precipitation, the enzyme activity was detected to be 76.9 U/(mL⋅min). In addition, the pesticide sensitivity test proved that DmAChE-like is selective and sensitive to organophosphorus pesticides.
Collapse
Affiliation(s)
- Liujia Shi
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Fangfang Yang
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yanyan Xu
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Shoufeng Wang
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
| |
Collapse
|
7
|
Co-Expression of a Thermally Stable and Methanol-Resistant Lipase and Its Chaperone from Burkholderia cepacia G63 in Escherichia coli. Appl Biochem Biotechnol 2020; 193:717-729. [PMID: 33184764 DOI: 10.1007/s12010-020-03453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/08/2020] [Indexed: 12/30/2022]
Abstract
Biodiesel biosynthesis with enzymatic transesterification is considered green, sustainable, and environmentally friendly method. Lipase from Burkholderia cepacia G63 has excellent catalytic properties in biodiesel production. Lipase chaperones promote secretion and folding of enzymes, thereby enhancing enzymatic activity. In the current study, heterologous co-expression of lipase (lipA) and chaperone (lipB) was achieved in Escherichia coli through codon optimization. The enzymatic activity of purified and renatured lipAB was 2080.23 ± 19.18 U/g at 50 °C and pH 8.0. Moreover, lipAB showed increased resistance to pH and temperature changes, and lipAB retained stable catalytic properties after treatment with metal ions, organic solvents, and surfactants, namely Mg2+, methanol, and Triton-100X. Besides, using recombinant lipase lipAB as catalysts, biodiesel was synthesized using rapeseed oil under 50 °C for 72 h with a yield of 90.23%. Thus, the current study confirmed that co-expression of lipase and its chaperone is an effective strategy to enhance enzyme activity and improve the biochemical profile, meanwhile, showing that lipAB is a promising biocatalyst for biodiesel production.
Collapse
|
8
|
Fan X, Qiu H, Han W, Wang Y, Xu D, Zhang X, Bhattacharya D, Ye N. Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. SCIENCE ADVANCES 2020; 6:eaba0111. [PMID: 32494685 PMCID: PMC7190310 DOI: 10.1126/sciadv.aba0111] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/03/2020] [Indexed: 05/17/2023]
Abstract
The extent and role of horizontal gene transfer (HGT) in phytoplankton and, more broadly, eukaryotic evolution remain controversial topics. Recent studies substantiate the importance of HGT in modifying or expanding functions such as metal or reactive species detoxification and buttressing halotolerance. Yet, the potential of HGT to significantly alter the fate of species in a major eukaryotic assemblage remains to be established. We provide such an example for the ecologically important lineages encompassed by cryptophytes, rhizarians, alveolates, stramenopiles, and haptophytes ("CRASH" taxa). We describe robust evidence of prokaryotic HGTs in these taxa affecting functions such as polysaccharide biosynthesis. Numbers of HGTs range from 0.16 to 1.44% of CRASH species gene inventories, comparable to the ca. 1% prokaryote-derived HGTs found in the genomes of extremophilic red algae. Our results substantially expand the impact of HGT in eukaryotes and define a set of general principles for prokaryotic gene fixation in phytoplankton genomes.
Collapse
Affiliation(s)
- Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Qiu
- Independent scholar, 121 Goucher Terrace, Gaithersburg, MD 20877, USA
| | - Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, 59 Dudley Road, Foran Hall 102, New Brunswick, NJ 08901, USA
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Li H, Zhang T, Li J, Li H, Xu Y, Yu J. Expression of Zea mays transglutaminase in Pichia pastoris under different promoters and its impact on properties of acidified milk protein concentrate gel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4518-4523. [PMID: 30868593 DOI: 10.1002/jsfa.9688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Transglutaminase (TGase) catalyzes post-translational modification of proteins by γ-glutamyl-ϵ-lysine chain links, covalent conjugation of polyamines, and deamidation. Zea mays TGase (TGZ) is a plant TGase with potential application prospects in the food industry. In this study, two promoter types, PFLD1 and PTEF1 , were compared to improve the expression of TGZ, and the cross-linking effect of recombinant TGZ on the properties of acid-induced milk protein concentrate (MPC) gel was assessed. RESULTS A higher expression of TGZ was obtained under the induction of PFLD1 with a production of 635 U L-1 . After purification using chromatography, TGZ activity was 0.4 U mg-1 . The results indicated that TGZ treatment has effectively improved the textural properties of MPC gel at strength level and water-holding capacity. Optimal texture of MPC gel was achieved after TGZ treatment using 2 U g-1 TGZ for 2 h at 35 °C and pH 7. CONCLUSION Comparative analysis of the promoters has greatly contributed to the production of TGZ in the industrial field. Furthermore, the modification of MPC gel texture by TGZ indicated that this recombinant enzyme has a practical value in dairy product, especially in yoghurt industry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongbo Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tianqi Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
10
|
Optimized Expression and Characterization of a Novel Fully Human Bispecific Single-Chain Diabody Targeting Vascular Endothelial Growth Factor165 and Programmed Death-1 in Pichia pastoris and Evaluation of Antitumor Activity In Vivo. Int J Mol Sci 2018; 19:ijms19102900. [PMID: 30257416 PMCID: PMC6213929 DOI: 10.3390/ijms19102900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Bispecific antibodies, which can bind to two different epitopes on the same or different antigens simultaneously, have recently emerged as attractive candidates for study in various diseases. Our present study successfully constructs and expresses a fully human, bispecific, single-chain diabody (BsDb) that can bind to vascular endothelial growth factor 165 (VEGF165) and programmed death-1 (PD-1) in Pichia pastoris. Under the optimal expression conditions (methanol concentration, 1%; pH, 4.0; inoculum density, OD600 = 4, and the induction time, 96 h), the maximum production level of this BsDb is achieved at approximately 20 mg/L. The recombinant BsDb is purified in one step using nickel-nitrilotriacetic acid (Ni-NTA) column chromatography with a purity of more than 95%. Indirect enzyme-linked immune sorbent assay (ELISA) and sandwich ELISA analyses show that purified BsDb can bind specifically to VEGF165 and PD-1 simultaneously with affinities of 124.78 nM and 25.07 nM, respectively. Additionally, the BsDb not only effectively inhibits VEGF165-stimulated proliferation, migration, and tube formation in primary human umbilical vein endothelial cells (HUVECs), but also significantly improves proliferation and INF-γ production of activated T cells by blocking PD-1/PD-L1 co-stimulation. Furthermore, the BsDb displays potent antitumor activity in mice bearing HT29 xenograft tumors by inhibiting tumor angiogenesis and activating immune responses in the tumor microenvironment. Based on these results, we have prepared a potential bispecific antibody drug that can co-target both VEGF165 and PD-1 for the first time. This work provides a stable foundation for the development of new strategies by the combination of an angiogenesis inhibition and immune checkpoint blockade for cancer therapy.
Collapse
|
11
|
Al-Hawash AB, Zhang X, Ma F. Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol Adv 2017; 36:182-195. [PMID: 29129652 DOI: 10.1016/j.biotechadv.2017.11.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Pichia pastoris has been recognized as one of the most industrially important hosts for heterologous protein production. Despite its high protein productivity, the optimization of P. pastoris cultivation is still imperative due to strain- and product-specific challenges such as promoter strength, methanol utilization type and oxygen demand. To address the issues, strategies involving genetic and process engineering have been employed. Optimization of codon usage and gene dosage, as well as engineering of promoters, protein secretion pathways and methanol metabolic pathways have proved beneficial to innate protein expression levels. Large-scale production of proteins via high cell density fermentation additionally relies on the optimization of process parameters including methanol feed rate, induction temperature and specific growth rate. Recent progress related to the enhanced production of proteins in P. pastoris via various genetic engineering and cultivation strategies are reviewed. Insight into the regulation of the P. pastoris alcohol oxidase 1 (AOX1) promoter and the development of methanol-free systems are highlighted. Novel cultivation strategies such as mixed substrate feeding are discussed. Recent advances regarding substrate and product monitoring techniques are also summarized. Application of P. pastoris to the production of biodiesel and other value-added products via metabolic engineering are also reviewed. P. pastoris is becoming an indispensable platform through the use of these combined engineering strategies.
Collapse
|
13
|
Enhanced expression of lipase I from Galactomyces geotrichum by codon optimisation in Pichia pastoris. Protein Expr Purif 2017; 138:34-45. [DOI: 10.1016/j.pep.2017.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
|
14
|
Villada JC, Brustolini OJB, Batista da Silveira W. Integrated analysis of individual codon contribution to protein biosynthesis reveals a new approach to improving the basis of rational gene design. DNA Res 2017; 24:419-434. [PMID: 28449100 PMCID: PMC5737324 DOI: 10.1093/dnares/dsx014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/21/2023] Open
Abstract
Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent-non-optimal cluster and enrichment at the 5'-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation.
Collapse
Affiliation(s)
- Juan C. Villada
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | | |
Collapse
|
15
|
Cripwell RA, Rose SH, van Zyl WH. Expression and comparison of codon optimised Aspergillus tubingensis amylase variants in Saccharomyces cerevisiae. FEMS Yeast Res 2017. [DOI: 10.1093/femsyr/fox040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
16
|
Yang JK, Zhang JW, Mao L, You X, Chen GJ. Genetic modification and optimization of endo-inulinase for the enzymatic production of oligofructose from inulin. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Chen GJ, Yang JK, Peng XB, He JR. High-level secretory expression of Aspergillus exo-inulinase and its use in the preparation of fructose syrup from inulin. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Huang M, Gao Y, Zhou X, Zhang Y, Cai M. Regulating unfolded protein response activator HAC1p for production of thermostable raw-starch hydrolyzing α-amylase in Pichia pastoris. Bioprocess Biosyst Eng 2016; 40:341-350. [DOI: 10.1007/s00449-016-1701-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
19
|
Ye Q, Sun Y, Wu Y, Gao Y, Li Z, Li W, Zhang C. Pichia pastoris Production of Tat-NGB and Its Neuroprotection on Rat Pheochromocytoma Cells. Mol Biotechnol 2015; 58:22-9. [DOI: 10.1007/s12033-015-9898-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|