1
|
Singh R, Shahul R, Kumar V, Yadav AK, Mehta PK. Microbial amidases: Characterization, advances and biotechnological applications. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:44-58. [PMID: 39811779 PMCID: PMC11732141 DOI: 10.1016/j.biotno.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The amidases (EC 3.5.1.4) are versatile hydrolase biocatalysts that have been the attention of academia and industries for stereo-selective synthesis and bioremediation. These are categorized based on the amino acid sequence and substrate specificity. Notably, the Signature amidase family is distinguished by a characteristic signature sequence, GGSS(S/G)GS, which encompasses highly conserved Ser-Ser-Lys catalytic residues, and the amidases belonging to this family typically demonstrate a broad substrate spectrum activity. The amidases classified within the nitrilase superfamily possess distinct Glu-Lys-Cys catalytic residues and exhibit activity towards small aliphatic substrates. Recent discoveries have underscored the potential role of amidases in the degradation of toxic amides present in polymers, insecticides, and food products. This expands the horizons for amidase-mediated biodegradation of amide-laden pollutants and fosters sustainable development alongside organic synthesis. The burgeoning global production facilities are expected to drive a heightened demand for this enzyme, attributable to its promising chemo-, regio-, and enantioselective hydrolysis capabilities for a variety of amides. Advances in protein engineering have enhanced the catalytic efficiency, structural stability, and substrate selectivity of amidases. Concurrently, the heterologous expression of amidase genes sourced from thermophiles has facilitated the development of highly stable amidases with significant industrial relevance. Beyond their biotransformation capabilities concerning amides, through amido-hydrolase and acyltransferase activities, recent investigations have illuminated the potential of amidase-mediated degradation of amide-containing pollutants in soil and aquatic environments. This review offers a comprehensive overview of recent advancements pertaining to microbial amidases (EC 3.5.1.4), focusing on aspects such as their distribution, gene mining methodologies, enzyme stability, protein engineering, reusability, and biocatalytic efficacy in organic synthesis and biodegradation.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Refana Shahul
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| | - Vijay Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India
| |
Collapse
|
2
|
Sun S, Guo J, Zhu Z, Zhou J. Microbial degradation mechanisms of the neonicotinoids acetamiprid and flonicamid and the associated toxicity assessments. Front Microbiol 2024; 15:1500401. [PMID: 39564486 PMCID: PMC11573777 DOI: 10.3389/fmicb.2024.1500401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Extensive use of the neonicotinoid insecticides acetamiprid (ACE) and flonicamid (FLO) in agriculture poses severe environmental and ecological risks. Microbial remediation is considered a feasible approach to address these issues. Many ACE-and FLO-degrading microorganisms have been isolated and characterized, but few reviews have concentrated on the underlying degradation mechanisms. In this review, we describe the microbial degradation pathways of ACE and FLO and assess the toxicity of ACE, FLO and their metabolites. Especially, we focus on the enzymes involved in degradation of ACE and FLO, including cytochrome P450s, nitrile hydratases, amidases, and nitrilases. Those studies reviewed here further our understanding of the enzymatic mechanisms of microbial degradation of ACE and FLO, and aid in the application of microbes to remediate environmental ACE and FLO contamination.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jingjing Guo
- School of Life Science and Environmental Engineering, Nanjing Normal University Zhongbei College, Zhenjiang, China
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
3
|
Yu XX, Chen KX, Yuan PP, Wang YH, Li HX, Zhao YX, Dai YJ. Asp-tRNA Asn/Glu-tRNA Gln amidotransferase A subunit-like amidase mediates the degradation of insecticide flonicamid by Variovorax boronicumulans CGMCC 4969. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172479. [PMID: 38621543 DOI: 10.1016/j.scitotenv.2024.172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The main metabolic product of the pyridinecarboxamide insecticide flonicamid, N-(4-trifluoromethylnicotinyl)glycinamide (TFNG-AM), has been shown to have very high mobility in soil, leading to its accumulation in the environment. Catabolic pathways of flonicamid have been widely reported, but few studies have focused on the metabolism of TFNG-AM. Here, the rapid transformation of TFNG-AM and production of the corresponding acid product N-(4-trifluoromethylnicotinoyl) glycine (TFNG) by the plant growth-promoting bacterium Variovorax boronicumulans CGMCC 4969 were investigated. With TFNG-AM at an initial concentration of 0.86 mmol/L, 90.70 % was transformed by V. boronicumulans CGMCC 4969 resting cells within 20 d, with a degradation half-life of 4.82 d. A novel amidase that potentially mediated this transformation process, called AmiD, was identified by bioinformatic analyses. The gene encoding amiD was cloned and expressed recombinantly in Escherichia coli, and the enzyme AmiD was characterized. Key amino acid residue Val154, which is associated with the catalytic activity and substrate specificity of signature family amidases, was identified for the first time by homology modeling, structural alignment, and site-directed mutagenesis analyses. When compared to wild-type recombinant AmiD, the mutant AmiD V154G demonstrated a 3.08-fold increase in activity toward TFNG-AM. The activity of AmiD V154G was greatly increased toward aromatic L-phenylalanine amides, heterocyclic TFNG-AM and IAM, and aliphatic asparagine, whereas it was dramatically lowered toward benzamide, phenylacetamide, nicotinamide, acetamide, acrylamide, and hexanamid. Quantitative PCR analysis revealed that AmiD may be a substrate-inducible enzyme in V. boronicumulans CGMCC 4969. The mechanism of transcriptional regulation of AmiD by a member of the AraC family of regulators encoded upstream of the amiD gene was preliminarily investigated. This study deepens our understanding of the mechanisms of metabolism of toxic amides in the environment, providing new ideas for microbial bioremediation.
Collapse
Affiliation(s)
- Xue-Xiu Yu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Pan-Pan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yu-He Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Hua-Xiao Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
4
|
Zhao YX, Guo L, Wang L, Jiang ND, Chen KX, Dai YJ. Biodegradation of the pyridinecarboxamide insecticide flonicamid by Microvirga flocculans and characterization of two novel amidases involved. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112384. [PMID: 34091185 DOI: 10.1016/j.ecoenv.2021.112384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO) is a new type of pyridinecarboxamide insecticide that exhibits particularly good efficacy in pest control. However, the extensive use of FLO in agricultural production poses environmental risks. Hence, its environmental behavior and degradation mechanism have received increasing attention. Microvirga flocculans CGMCC 1.16731 rapidly degrades FLO to produce the intermediate N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) and the end acid metabolite 4-(trifluoromethyl) nicotinol glycine (TFNG). This bioconversion is mediated by the nitrile hydratase/amidase system; however, the amidase that is responsible for the conversion of TFNG-AM to TFNG has not yet been reported. Here, gene cloning, overexpression in Escherichia coli and characterization of pure enzymes showed that two amidases-AmiA and AmiB-hydrolyzed TFNG-AM to TFNG. AmiA and AmiB showed only 20-30% identity to experimentally characterized amidase signature family members, and represent novel amidases. Compared with AmiA, AmiB was more sensitive to silver and copper ions but more resistant to organic solvents. Both enzymes demonstrated good pH tolerance and exhibited broad amide substrate specificity. Homology modeling suggested that residues Asp191 and Ser195 may strongly affect the catalytic activity of AmiA and AmiB, respectively. The present study furthers our understanding of the enzymatic mechanisms of biodegradation of nitrile-containing insecticides and may aid in the development of a bioremediation agent for FLO.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
5
|
Xi L, Tan W, Li J, Qu J, Liu J. Cloning and characterization of a novel thermostable amidase, Xam, from Xinfangfangia sp. DLY26. Biotechnol Lett 2021; 43:1395-1402. [PMID: 33811594 DOI: 10.1007/s10529-021-03124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Identification and characterization of a novel thermostable amidase (Xam) with wide pH tolerance and broad-spectrum substrate specificity. RESULTS Xam was identified from non-thermophilic Xinfangfangia sp. DLY26 and its acyl transfer activity was investigated. Recombinant Xam was optimally active at 60 °C and pH 9.0. The enzyme had a half life of 18 h at 55 °C and maintained more than 60 % of its maximum activity in the range of pH 3.0-11.0. Additionally, Xam exhibited broad substrate specificity towards aliphatic, aromatic, and heterocyclic amides. CONCLUSIONS These unique properties make Xam a promising biocatalyst for production of important hydroxamic acids at elevated temperatures.
Collapse
Affiliation(s)
- Lijun Xi
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wenfei Tan
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jing Li
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianbo Qu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianguo Liu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
6
|
Du Q, Zhang X, Pan X, Zhang H, Yang YS, Liu J, Jiao Q. A novel strategy for efficient chemoenzymatic synthesis of D-glutamine using recombinant Escherichia coli cells. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Tan W, Liu J, Li Z, Xu Z, Xin W, Xi L. Cloning, expression and biochemical characterization of a novel amidase from Thauera sinica K11. Protein Expr Purif 2020; 177:105751. [PMID: 32931916 DOI: 10.1016/j.pep.2020.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022]
Abstract
A novel amidase (TAM) was identified and cloned from the genome of Thauera sinica K11. The recombinant protein was purified to homogeneity by one-step affinity chromatography for up to 26.4-fold with a yield of 38.1%. Gel filtration chromatography and SDS-PAGE revealed that the enzyme was a tetramer with a subunit of approximately 37.5 kDa. The amidase exhibited the maximum acyl transfer activity at 45 °C and pH 7.0, and it was highly stable over a wide pH range of 6.0-11.0. Inhibition of enzyme activity was observed in the presence of metal ions, thiol reagents and organic solvents. TAM showed a broad substrate spectrum toward aliphatic, aromatic and heterocyclic amides. For linear aliphatic monoamides, the acyl transfer activity of TAM was decreased with the extension of the carbon chain length, and thus the highest activity of 228.2 U/mg was obtained when formamide was used as substrate. This distinct selectivity of amidase to linear aliphatic monoamides expanded the findings of signature amidases to substrate specificity.
Collapse
Affiliation(s)
- Wenfei Tan
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianguo Liu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Ziyi Li
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhenzhen Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wen Xin
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lijun Xi
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
8
|
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnol Adv 2020; 43:107574. [PMID: 32512219 DOI: 10.1016/j.biotechadv.2020.107574] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Amidases (EC 3. 5. 1. X) are versatile biocatalysts for synthesis of chiral carboxylic acids, α-amino acids and amides due to their hydrolytic and acyl transfer activity towards the C-N linkages. They have been extensively exploited and studied during the past years for their high specific activity and excellent enantioselectivity involved in various biotechnological applications in pharmaceutical and agrochemical industries. Additionally, they have attracted considerable attentions in biodegradation and bioremediation owing to environmental pressures. Motivated by industrial demands, crystallographic investigations and catalytic mechanisms of amidases based on structural biology have witnessed a dramatic promotion in the last two decades. The protein structures showed that different types of amidases have their typical stuctural elements, such as the conserved AS domains in signature amidases and the typical architecture of metal-associated active sites in acetamidase/formamidase family amidases. This review provides an overview of recent research advances in various amidases, with a focus on their structural basis of phylogenetics, substrate specificities and catalytic mechanisms as well as their biotechnological applications. As more crystal structures of amidases are determined, the structure/function relationships of these enzymes will also be further elucidated, which will facilitate molecular engineering and design of amidases to meet industrial requirements.
Collapse
Affiliation(s)
- Zheming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changfeng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhaoyu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
9
|
Structure-Based Engineering of Amidase from Pantoea sp. for Efficient 2-Chloronicotinic Acid Biosynthesis. Appl Environ Microbiol 2019; 85:AEM.02471-18. [PMID: 30578259 DOI: 10.1128/aem.02471-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/08/2018] [Indexed: 11/20/2022] Open
Abstract
2-Chloronicotinic acid is a key intermediate of pharmaceuticals and pesticides. Amidase-catalyzed hydrolysis provides a promising enzymatic method for 2-chloronicotinic acid production from 2-chloronicotinamide. However, biocatalytic hydrolysis of 2-chloronicotinamide is difficult due to the strong steric and electronic effect caused by 2-position chlorine substituent of the pyridine ring. In this study, an amidase from a Pantoea sp. (Pa-Ami) was designed and engineered to have improved catalytic properties. Single mutant G175A and double mutant G175A/A305T strains exhibited 3.2- and 3.7-fold improvements in their specific activity for 2-chloronicotinamide, and the catalytic efficiency was significantly increased, with k cat/Km values 3.1 and 10.0 times higher than that of the wild type, respectively. Structure-function analysis revealed that the distance between Oγ of Ser177 (involved in the catalytic triad) and the carbonyl carbon of 2-chloronicotinamide was shortened in the G175A mutant, making the nucleophilic attack on the Oγ of Ser177 easier by virtue of proper orientation. In addition, the A305T mutation contributed to a suitable tunnel formation to facilitate the substrate entry and product release, resulting in improved catalytic efficiency. With the G175A/A305T double mutant as a biocatalyst, a maximum of 1,220 mM 2-chloronicotinic acid was produced with a 94% conversion, and the space-time yield reached as high as 575 gproduct liter-1 day-1 These results provide not only a novel robust biocatalyst for the production of 2-chloronicotinic acid but also new insights into amidase structure-function relationships.IMPORTANCE In recent years, the demand for 2-chloronicotinic acid has been greatly increased. To date, several chemical methods have been used for the synthesis of 2-chloronicotinic acid, but all include tedious steps and/or drastic reaction conditions, resulting in both economic and environmental issues. It is requisite to develop an efficient and green synthesis route. We recently screened Pa-Ami and demonstrated its potential for synthesis of 2-chloronicotinic acid from 2-chloronicotinamide. However, chlorine substitution on the pyridine ring of nicotinamide significantly affected the activity of Pa-Ami. Especially for 2-chloronicotinamide, the enzyme activity and catalytic efficiency were relatively low. In this study, based on structure-function analysis, we succeeded in engineering the amidase by structure-guided saturation mutagenesis. The engineered Pa-Ami exhibited quite high catalytic activity toward 2-chloronicotinamide and could serve as a promising biocatalyst for the biosynthesis of 2-chloronicotinic acid.
Collapse
|
10
|
Martínez-Rodríguez S, Conejero-Muriel M, Gavira JA. A novel cysteine carbamoyl-switch is responsible for the inhibition of formamidase, a nitrilase superfamily member. Arch Biochem Biophys 2019; 662:151-159. [PMID: 30528776 DOI: 10.1016/j.abb.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022]
Abstract
Formamidases (EC 3.5.1.49) and amidases (EC 3.5.1.4) are paralogous cysteine-dependent enzymes which catalyze the conversion of amide substrates to ammonia and the corresponding carboxylic acid. Both enzymes have been suggested as an alternative pathway for ammonia production during urea shortage. Urea was proved key in the transcriptional regulation of formamidases/amidases, connecting urea level to amide metabolism. In addition, different amidases have also been shown to be inhibited by urea, pointing to urea-regulation at the enzymatic level. Although amidases have been widely studied due to its biotechnological application in the hydrolysis of aliphatic amides, up to date, only two formamidases have been extensively characterized, belonging to Helicobacter pylori (HpyAmiF) and Bacillus cereus (BceAmiF). In this work, we report the first structure of an acyl-intermediate of BceAmiF. We also report the inhibition of BceAmiF by urea, together with mass spectrometry studies confirming the S-carbamoylation of BceAmiF after urea treatment. X-ray studies of urea-soaked BceAmiF crystals showed short- and long-range rearrangements affecting oligomerization interfaces. Since cysteine-based switches are known to occur in the regulation of different metabolic and signaling pathways, our results suggest a novel S-carbamoylation-switch for the regulation of BceAmiF. This finding could relate to previous observations of unexplained modifications in the catalytic cysteine of different nitrilase superfamily members and therefore extending this regulation mechanism to the whole nitrilase superfamily.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada (Campus de Melilla), 52071, Melilla, Spain; Laboratorio de Estudios Cristalográficos, CSIC-UGR, 18100, Granada, Spain.
| | | | | |
Collapse
|
11
|
Zheng RC, Jin JQ, Wu ZM, Tang XL, Jin LQ, Zheng YG. Biocatalytic hydrolysis of chlorinated nicotinamides by a superior AS family amidase and its application in enzymatic production of 2-chloronicotinic acid. Bioorg Chem 2018; 76:81-87. [DOI: 10.1016/j.bioorg.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
|
12
|
Ismailsab M, T. R. M, Reddy PV, M. S, Nayak AS, Karegoudar TB. Biotransformation of aromatic and heterocyclic amides by amidase of whole cells of Rhodococcus sp. MTB5: Biocatalytic characterization and substrate specificity. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1282467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mukram Ismailsab
- Department of Biochemistry, Gulbarga University, Kalaburagi, India
| | - Monisha T. R.
- Department of Biochemistry, Gulbarga University, Kalaburagi, India
| | - Pooja V. Reddy
- Department of Biochemistry, Gulbarga University, Kalaburagi, India
| | - Santoshkumar M.
- Department of Biochemistry, Gulbarga University, Kalaburagi, India
| | - Anand S. Nayak
- Department of Biochemistry, Gulbarga University, Kalaburagi, India
| | | |
Collapse
|
13
|
Identification and characterization of a novel amidase signature family amidase from Parvibaculum lavamentivorans ZJB14001. Protein Expr Purif 2017; 129:60-68. [DOI: 10.1016/j.pep.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
14
|
Identification and characterization of a thermostable and cobalt-dependent amidase from Burkholderia phytofirmans ZJB-15079 for efficient synthesis of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid. Appl Microbiol Biotechnol 2016; 101:1953-1964. [DOI: 10.1007/s00253-016-7921-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
15
|
Ruan LT, Zheng RC, Zheng YG. A novel amidase from Brevibacterium epidermidis ZJB-07021: gene cloning, refolding and application in butyrylhydroxamic acid synthesis. ACTA ACUST UNITED AC 2016; 43:1071-83. [DOI: 10.1007/s10295-016-1786-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Abstract
A novel amidase gene (bami) was cloned from Brevibacterium epidermidis ZJB-07021 by combination of degenerate PCR and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). The deduced amino acid sequence showed low identity (≤55 %) with other reported amidases. The bami gene was overexpressed in Escherichia coli, and the resultant inclusion bodies were refolded and purified to homogeneity with a recovery of 22.6 %. Bami exhibited a broad substrate spectrum towards aliphatic, aromatic and heterocyclic amides, and showed the highest acyl transfer activity towards butyramide with specific activity of 1331.0 ± 24.0 U mg−1. Kinetic analysis demonstrated that purified Bami exhibited high catalytic efficiency (414.9 mM−1 s−1) for acyl transfer of butyramide, with turnover number (K cat) of 3569.0 s−1. Key parameters including pH, substrate/co-substrate concentration, reaction temperature and catalyst loading were investigated and the Bami showed maximum acyl transfer activity at 50 °C, pH 7.5. Enzymatic catalysis of 200 mM butyramide with 15 μg mL−1 purified Bami was completed in 15 min with a BHA yield of 88.1 % under optimized conditions. The results demonstrated the great potential of Bami for the production of a variety of hydroxamic acids.
Collapse
Affiliation(s)
- Li-Tao Ruan
- grid.469325.f 000000041761325X Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.469325.f 000000041761325X Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| | - Ren-Chao Zheng
- grid.469325.f 000000041761325X Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.469325.f 000000041761325X Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| | - Yu-Guo Zheng
- grid.469325.f 000000041761325X Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.469325.f 000000041761325X Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| |
Collapse
|