1
|
Wang Y, Sun R, Chen P, Wang F. Catalytic Synthesis of (S)-CHBE by Directional Coupling and Immobilization of Carbonyl Reductase and Glucose Dehydrogenase. Biomolecules 2024; 14:504. [PMID: 38672520 PMCID: PMC11048691 DOI: 10.3390/biom14040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) is an important chiral intermediate in the synthesis of the cholesterol-lowering drug atorvastatin. Studying the use of SpyTag/SpyCatcher and SnoopTag/SnoopCatcher systems for the asymmetric reduction reaction and directed coupling coenzyme regeneration is practical for efficiently synthesizing (S)-CHBE. In this study, Spy and Snoop systems were used to construct a double-enzyme directed fixation system of carbonyl reductase (BsCR) and glucose dehydrogenase (BsGDH) for converting 4-chloroacetoacetate (COBE) to (S)-CHBE and achieving coenzyme regeneration. We discussed the enzymatic properties of the immobilized enzyme and the optimal catalytic conditions and reusability of the double-enzyme immobilization system. Compared to the free enzyme, the immobilized enzyme showed an improved optimal pH and temperature, maintaining higher relative activity across a wider range. The double-enzyme immobilization system was applied to catalyze the asymmetric reduction reaction of COBE, and the yield of (S)-CHBE reached 60.1% at 30 °C and pH 8.0. In addition, the double-enzyme immobilization system possessed better operational stability than the free enzyme, and maintained about 50% of the initial yield after six cycles. In summary, we show a simple and effective strategy for self-assembling SpyCatcher/SnoopCatcher and SpyTag/SnoopTag fusion proteins, which inspires building more cascade systems at the interface. It provides a new method for facilitating the rapid construction of in vitro immobilized multi-enzyme complexes from crude cell lysate.
Collapse
Affiliation(s)
- Yadong Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.W.); (R.S.); (P.C.)
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ruiqi Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.W.); (R.S.); (P.C.)
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Peng Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.W.); (R.S.); (P.C.)
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.W.); (R.S.); (P.C.)
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
2
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
3
|
Surface display of (R)-carbonyl reductase on Escherichia coli as biocatalyst for recycling biotransformation of 2-hydroxyacetophenone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Xiao Z, Guo S, Lu W. Asymmetric reduction of 4-trimethylsilyl-3-butyn-2-one to (R)-4-trimethylsilyl-3-butyn-2-ol catalyzed by a novel strain lyophilized Acetobacter sp. CCTCC M209061 in an aqueous/ionic liquid biphasic system. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Wang N, Xu Y, Peng C, Wang X, Wei Y, Li K, Wang S, Xu A, Gao J. Identification of a newly isolated Rhodotorula mucilaginosa NQ1 and its development for the synthesis of bulky carbonyl compounds by whole-cell bioreduction. Lett Appl Microbiol 2020; 72:399-407. [PMID: 33217003 DOI: 10.1111/lam.13431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 11/29/2022]
Abstract
A strain NQ1, which showed efficient asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to enantiopure (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol ((S)-BTPE), which is the key intermediate for the synthesis of a receptor antagonist and antidepressant, was isolated from a soil sample. Based on its morphological and internal transcribed spacer sequence, the strain NQ1 was identified to be Rhodotorula mucilaginosa NQ1. Some key reaction parameters involved in the bioreduction catalyzed by whole cells of R. mucilaginosa NQ1 were subsequently optimized, and the optimized conditions for the synthesis of (S)-BTPE were determined to be as follows: 5·0 ml phosphate buffer (200 mmol l-1 , pH 7·0), 80 mmol l-1 of BTAP, 250 g (wet weight) l-1 of resting cell, 35 g l-1 of glucose and a reaction for 18 h at 30°C and 180 rev min-1 . The strain NQ1 exhibited a best yield of 99% and an excellent enantiomeric excess of 99% for the preparation of (S)-BTPE under the above optimal conditions, and could also asymmetrically reduce a variety of bulky prochiral carbonyl compounds to their corresponding optical hydroxyl compound with excellent enantioselectivity. These results indicated that R. mucilaginosa NQ1 had a good capacity to reduce BTAP to its corresponding (S)-BTPE, and might be a new potential biocatalyst for the production of valuable chiral hydroxyl compounds in industry.
Collapse
Affiliation(s)
- N Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China.,Hunan key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, People's Republic of China
| | - Y Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - C Peng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - X Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Y Wei
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - K Li
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - S Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - A Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - J Gao
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| |
Collapse
|
6
|
Bu CY, Yan YX, Zou LH, Zheng ZJ, Ouyang J. One-pot biosynthesis of furfuryl alcohol and lactic acid via a glucose coupled biphasic system using single Bacillus coagulans NL01. BIORESOURCE TECHNOLOGY 2020; 313:123705. [PMID: 32593878 DOI: 10.1016/j.biortech.2020.123705] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 05/12/2023]
Abstract
Furfuryl alcohol is an important reduction product from biomass derived furfural. This study developed one-pot biosynthesis of furfuryl alcohol and lactic acid by a glucose coupled biphasic system using single Bacillus coagulans NL01. Water/dioctyl phthalate is chosen as biphasic system to alleviate the toxicity of furfural and furfuryl alcohol. Under the optimal conditions, the high-concentration conversion (208 mM) of furfural was successfully converted in 6 h reaction with 98% furfural conversion and 88% furfuryl alcohol selectivity. Notably, glucose as co-substrate could be effectively converted to lactic acid in this biphasic system. About 264 mM furfuryl alcohol and 64.2 g/L lactic acid were simultaneously produced from 310 mM furfural and 71.3 g/L glucose within 8.5 h by a fed-batch strategy. The developed approach can not only increase the produced furfuryl alcohol concentration but also reduce the cost of overall approach by lactic acid co-production, indicating its potential for industrial applications.
Collapse
Affiliation(s)
- Chong-Yang Bu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yu-Xiu Yan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Li-Hua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhao-Juan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
7
|
Enzymatic synthesis of an orlistat intermediate using a mutant short-chain dehydrogenase from Novosphingobium aromaticivorans. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Yajuan Z, Yajuan D, Lingli Z, Zhoukun L, Zhongli C, Yan H. Characterization of a novel aldo-keto reductase with anti-Prelog stereospecificity from Corallococcus sp. EGB. Int J Biol Macromol 2020; 146:36-44. [DOI: 10.1016/j.ijbiomac.2019.12.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 11/26/2022]
|
9
|
Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140322. [DOI: 10.1016/j.bbapap.2019.140322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
|
10
|
An J, Nie Y, Xu Y. Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions. Crit Rev Biotechnol 2019; 39:366-379. [DOI: 10.1080/07388551.2019.1566205] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jianhong An
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Brewing Microbiology, Applied Enzymology at Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Brewing Microbiology, Applied Enzymology at Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
12
|
Chong G, Di J, Ma C, Wang D, Wang C, Wang L, Zhang P, Zhu J, He Y. Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment. BIORESOURCE TECHNOLOGY 2018; 261:196-205. [PMID: 29660661 DOI: 10.1016/j.biortech.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, biomass-hydrolysate was used for enhancing the bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE). Firstly, dilute alkalic salt pretreatment was attempted to pretreat bamboo shoot shell (BSS). It was found that enzymatic in situ hydrolysis of 20-50 g/L BSS pretreated with dilute alkalic salts (0.4% Na2CO3, 0.032% Na2S) at 7.5% sulfidity by autoclaving at 110 °C for 40 min gave sugar yields at 59.9%-73.5%. Moreover, linear relationships were corrected on solid recovery-total delignification-sugar yield. In BSS-hydrolysates, xylose and glucose could promote the reductase activity of recombinant E. coli CCZU-A13. Compared with glucose, hydrolysate could increase the reductase activity by 1.35-folds. Furthermore, the cyclohexane-hydrolysate (10:90, v/v) biphasic media containing ethylene diamine tetraacetic acid (EDTA, 40 mM) and l-glutamine (150 mM) was built for the effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (94.6% yield) from 500 mM COBE. In conclusion, this strategy has high potential for the effective biosynthesis of (R)-CHBE (>99% e.e.).
Collapse
Affiliation(s)
- Ganggang Chong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Junhua Di
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Cuiluan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Dajing Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Chu Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Lingling Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Pengqi Zhang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Jun Zhu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Yucai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
13
|
Alsafadi D, Alsalman S, Paradisi F. Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols. Org Biomol Chem 2018; 15:9169-9175. [PMID: 29067382 DOI: 10.1039/c7ob02299a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol. The efficiency of HvADH2 for the conversion of aromatic ketones was markedly influenced by the steric and electronic factors as well as the solubility of ketones in the reaction medium. Furthermore, carbonyl stretching band frequencies ν (C[double bond, length as m-dash]O) have been measured for different ketones to understand the effect of electron withdrawing or donating properties of the ketone substituents on the reaction rate catalyzed by HvADH2. Good correlation was observed between ν (C[double bond, length as m-dash]O) of methyl aryl-ketones and the reaction rate catalyzed by HvADH2. The enzyme catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that HvADH2 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.
Collapse
|
14
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
15
|
Yang B, Wang H, Song W, Chen X, Liu J, Luo Q, Liu L. Engineering of the Conformational Dynamics of Lipase To Increase Enantioselectivity. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Yang
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hongjiang Wang
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
An NADPH-dependent Lactobacillus composti short-chain dehydrogenase/reductase: characterization and application to (R)-1-phenylethanol synthesis. World J Microbiol Biotechnol 2017. [DOI: 10.1007/s11274-017-2311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Bastida A, Blanco RM, Zárate SG, García-Junceda E, Guisán JM. Highly improved enzymatic peptide synthesis by using biphasic reactors. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1326484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. Bastida
- Instituto de Química Orgánica General, CSIC, Madrid, Spain
| | - R. M. Blanco
- Instituto de Catálisis y petroleoquímica, Universidad Autónoma de Madrid, CSIC, Madrid, Spain
| | - S. G. Zárate
- Facultad de Tecnología-Carrera de Ingeníeria Química, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Sucre, Bolivia
| | | | - J. M. Guisán
- Instituto de Catálisis y petroleoquímica, Universidad Autónoma de Madrid, CSIC, Madrid, Spain
| |
Collapse
|