1
|
Núñez-Serrano A, García-Reyes RB, Solís-Pereira S, García-González A. Production and immobilization of pectinases from Penicillium crustosum in magnetic core-shell nanostructures for juice clarification. Int J Biol Macromol 2024; 263:130268. [PMID: 38387627 DOI: 10.1016/j.ijbiomac.2024.130268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Global market of food enzymes is held by pectinases, mostly sourced from filamentous fungi via submerged fermentation. Given the one-time use nature of enzymes to clarify juices and wines, there is a crucial need to explore alternatives for enzyme immobilization, enabling their reuse in food applications. In this research, an isolated fungal strain (Penicillium crustosum OR889307) was evaluated as a new potential pectinase producer in submerged fermentation. Additionally, the enzyme was immobilized in magnetic core-shell nanostructures for juice clarification. Findings revealed that Penicillium crustosum exhibited enzymatic activities higher than other Penicillium species, and pectinase production was enhanced with lemon peel as a cosubstrate in submerged fermentation. The enzyme production (548.93 U/mL) was optimized by response surface methodology, determining the optimal conditions at 35 °C and pH 6.0. Subsequently, the enzyme was covalently immobilized on synthesized magnetic core-shell nanoparticles. The immobilized enzyme exhibited superior stability at higher temperatures (50 °C) and acidic conditions (pH 4.5). Finally, the immobilized pectinases decreased 30 % the orange juice turbidity and maintained 84 % of the enzymatic activity after five consecutive cycles. In conclusion, Penicillium crustosum is a proven pectinase producer and these enzymes immobilized on functionalized nanoparticles improve the stability and reusability of pectinase for juice clarification.
Collapse
Affiliation(s)
- Arely Núñez-Serrano
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Refugio Bernardo García-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Sara Solís-Pereira
- Tecnológico Nacional de México/I.T.Mérida. Unidad de Posgrado e Investigación. Av. Tecnológico Km 5 S/N C.P. 97118, Mérida, Yucatán, México
| | - Alcione García-González
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
2
|
Cellulose-degrading enzymes: key players in biorefinery development. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Meleiro LP, Carli S, Fonseca-Maldonado R, da Silva Torricillas M, Zimbardi ALRL, Ward RJ, Jorge JA, Furriel RPM. Overexpression of a Cellobiose-Glucose-Halotolerant Endoglucanase from Scytalidium thermophilum. Appl Biochem Biotechnol 2017; 185:316-333. [PMID: 29150773 DOI: 10.1007/s12010-017-2660-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 11/28/2022]
Abstract
Enzyme reaction products and by-products from pretreatment steps can inhibit endoglucanases and are major factors limiting the efficiency of enzymatic lignocellulosic biomass hydrolysis. The gene encoding the endoglucanase from Scytalidium thermophilum (egst) was cloned and expressed as a soluble protein in Pichia pastoris GS115. The recombinant enzyme (Egst) was monomeric (66 kDa) and showed an estimated carbohydrate content of 53.3% (w/w). The optimum temperature and pH of catalysis were 60-70 °C and pH of 5.5, respectively. The enzyme was highly stable at pH 3.0-8.0 with a half-life in water of 100 min at 65 °C. The Egst presented good halotolerance, retaining 84.1 and 71.4% of the control activity in the presence of 0.5 and 2.0 mol L-1 NaCl, respectively. Hydrolysis of medium viscosity carboxymethylcellulose (CMC) by Egst was stimulated 1.77-, 1.84-, 1.64-, and 1.8-fold by dithiothreitol, β-mercaptoethanol, cysteine, and manganese at 10, 10, 10, and 5 mmol L-1 concentration, respectively. The enzyme hydrolyzed CMC with maximal velocity and an apparent affinity constant of 432.10 ± 16.76 and 10.5 ± 2.53 mg mL-1, respectively. Furthermore, the Egst was tolerant to reaction products and able to act on pretreated fractions sugarcane bagasse demonstrating excellent properties for application in the hydrolysis of lignocellulosic biomass.
Collapse
Affiliation(s)
- Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Marcela da Silva Torricillas
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Lucia Ribeiro Latorre Zimbardi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Atílio Jorge
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosa Prazeres Melo Furriel
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|