1
|
Wang Q, Liu M, Huang J, Han C, Jiang Y, Deng H, Liu K, Zhong W. Organic manure rather than chemical fertilization improved dark CO 2 fixation by regulating associated microbial functional traits in upland red soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176337. [PMID: 39304154 DOI: 10.1016/j.scitotenv.2024.176337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Dark microbial fixation of CO2 is an indispensable process for soil carbon sequestration. However, the whole genetic information involved in dark CO2 fixation and its influence on dark CO2 fixation rates under diversified fertilization regimes were largely unclear. Here, revealed by 13C-CO2 labeling, dark CO2 fixation rates in upland red soils ranged from 0.029 mg kg-1 d-1 to 0.092 mg kg-1 d-1, and it was 75.49 % higher (P < 0.05) in organic manure (OM) soil but 44.2 % decline (P < 0.05) in chemical nitrogen fertilizer (N) soil compared to unfertilized (CK) soil. In addition, the normalized abundance and Chao1 index of dark CO2 fixation genes (KO level) were significantly different between OM and N soils, showing the highest and lowest, respectively. And they were positively (P < 0.05) correlated with dark CO2 fixation rate. Besides, among the identified CO2 fixation pathways in this study, the DC/4-HB cycle (M00374) was enriched in OM soil, yet the 3-HP cycle (M00376) was enriched in N soil, and their relative abundances were positively and negatively correlated (P < 0.05) with dark CO2 fixation rate, respectively. The PLS-SEM analysis revealed that dark CO2 fixation-related functional traits (i.e. normalized abundance, Chao1 index and gene composition) were directly and positively associated with dark CO2 fixation rate, and organic manure could exert a positive effect on soil dark CO2 fixation rate through enhancing soil properties (e.g., pH and soil organic carbon) and further altering associated microbial functional traits. These results have implications for explaining and predicting the soil CO2 fixation process from the perspective of microbial functional potential.
Collapse
Affiliation(s)
- Qian Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Mengmeng Liu
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingshi Huang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Cheng Han
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing 210023, China.
| | - Yunbin Jiang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing 210023, China
| | - Huan Deng
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Kailou Liu
- Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 331717, China
| | - Wenhui Zhong
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing 210023, China
| |
Collapse
|
2
|
Liu FT, Yang S, Yang Z, Zhou P, Peng T, Yin J, Ye Z, Shan H, Yu Y, Li R. An Altered Microbiota in the Lower and Upper Female Reproductive Tract of Women with Recurrent Spontaneous Abortion. Microbiol Spectr 2022; 10:e0046222. [PMID: 35604131 PMCID: PMC9241707 DOI: 10.1128/spectrum.00462-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a complex multifactorial disease. Recently, the microbiota of the female reproductive tract, as an emerging factor in RSA, has gradually attracted the attention of many clinical researchers. Here, we reported that the microbiota of the lower and upper female reproductive tracts from patients with RSA showed no significant differences in alpha diversity compared to that of controls. Beta diversity was significantly higher in the RSA group than in the control group in the vaginal microbiota (P = 0.036), cervical microbiota (P = 0.010) and microbiota from uterine lavage fluid (P = 0.001). In addition, dramatic decreases in gamma interferon and interleukin-6 cytokine levels were observed in the RSA group. In conclusion, our data suggested altered microbial biodiversity in the vagina, cervix and uterine lavage fluid in the RSA group. Alterations in the microbiota in the uterine cavity could be associated with altered cytokine levels, which might be a risk factor for RSA pathogenesis. Moreover, the microbiota composition differed markedly from the lower genital tract to the uterine cavity, and the microbiota in the uterine cavity also distinctly varied between endometrial tissue and uterine lavage fluid in the RSA group. Hence, sampling with these two methods simultaneously allowed a more comprehensive perspective of microbial colonization in the uterine cavity. IMPORTANCE As an obstacle to pregnancy, recurrent spontaneous abortion (RSA) can be caused by a variety of factors, and a current understanding of the etiology of RSA is still lacking; half of cases have an unknown cause. A substantial fraction of patients show no improvement after treatment. Since the microbiota of the female reproductive tract has been proposed as an emerging factor in RSA patients, further investigation is needed to provide guidance for clinical therapy. In general, this is the first report describing the distinct alterations of the vaginal, cervical, and uterine microbiota in RSA, not just that in the vagina. Furthermore, another major strength of this study derived from the further in-depth investigation and analysis of the characteristics of the microbiota colonizing the upper female genital tract in RSA, which provided a more comprehensive view for investigating the uterine microbiota.
Collapse
Affiliation(s)
- Fen-Ting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Zi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Tianliu Peng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Jingwen Yin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Zhenhong Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Hongying Shan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Wu S, Xi X, Fu X, Hu JJ, Zhang S, Wang L. Mixed electron donors synergistically enhance CO 2 fixation of non-photosynthetic microorganism communities through optimizing community structure to promote cbb gene transcription. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16368-16379. [PMID: 33387320 DOI: 10.1007/s11356-020-12201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Studies have shown that mixed electron donors (MEDs) can enhance the CO2-fixing efficiency of non-photosynthetic microbial communities (NPMCs), even up to the level of fixation observed when H2 is used as an electron donor. However, this promotion effect is not stable because its mechanism remains unclear. To elucidate the mechanisms involved, allowing further regulation and optimization of the MED system for improving the CO2-fixing efficiency of NPMCs consistently, cbb gene transcription level and efficiency, extracellular free organic carbon (EFOC) content as well as microbial structure of NPMCs under MED and other electron donor systems were investigated. MEDs synergistically promoted CO2 fixation efficiency of NPMCs, even producing levels seen when H2 was used as the electron donor. Subsequent experiments revealed that the cbb gene abundance and transcription level in the MED system were high compared with those in other single-electron donor systems; the concentration of EFOC per unit cell was relatively lower than that in any other electron donor system; and the system developed a large number of dominant heterotrophic bacteria such as Enterobacteriaceae and Vibrionaceae. Data analysis revealed a high negative correlation between EFOC concentration per unit cell and cbb gene abundance as well as gene transcription level. These results implied that MEDs can promote a complex microbial community structure enriched with high-efficiency heterotrophic bacteria, which can effectively reduce excessive EFOC generated by NPMCs in the CO2 fixation process, promoting overall cbb gene abundance and transcription level within the NPMC and thus enhancing CO2 fixation.
Collapse
Affiliation(s)
- Song Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xuefei Xi
- Shanghai Academy of Environmental Sciences, Shanghai, 200032, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jia-Jun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Saiwei Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Zhang S, Wang L, Fu X, Tsang YF, Maiti K. A continuous flow membrane bio-reactor releases the feedback inhibition of self-generated free organic carbon on cbb gene transcription of a typical chemoautotrophic bacterium to improve its CO 2 fixation efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143186. [PMID: 33131832 DOI: 10.1016/j.scitotenv.2020.143186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Since the free organic carbon (FOC) generated by chemoautotrophic bacterium self has a feedback inhibition effect on its growth and carbon fixation, a continuous flow membrane bio-reactor was designed to remove extracellular FOC (EFOC) and release its inhibition effect. The promotion effect of membrane reactor on growth and carbon fixation of typical chemoautotrophic bacterium and its mechanism were studied. The accumulated apparent carbon fixation yield in membrane reactor was 3.24 times that in the control reactor. The EFOC per unit bacteria and cbb gene transcription level in membrane reactor were about 0.41 times and 11.18 times that in control reactor in late stage, respectively. Membrane reactor separated out EFOC, especially the small molecules, which facilitated the release of intracellular FOC, thereby releasing the inhibition of FOC on cbb gene transcription, thus promoting growth and carbon fixation of the typical chemoautotrophic bacterium. This study lays a foundation for enhancing carbon fixation by chemoautotrophic bacteria and expands the application field of membrane reactor.
Collapse
Affiliation(s)
- Saiwei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China; Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong SAR, China
| | - Kanchan Maiti
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|