1
|
Liu F, Chen S, Chen X, Yong B, He B. Identification of chitinase from Bacillus velezensis strain S161 and its antifungal activity against Penicillium digitatum. Protein Expr Purif 2024; 223:106562. [PMID: 39094814 DOI: 10.1016/j.pep.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Previous studies have demonstrated the presence of chitinase in Bacillus velezensis through extensive genomic sequencing and experimental analyses. However, the detailed structure, functional roles, and antifungal activity of these chitinases remain poorly characterized. In this study, genomic screening identified three genes-chiA, chiB, and lpmo10-associated with chitinase degradation in B. velezensis S161. These genes encode chitinases ChiA and ChiB, and lytic polysaccharide monooxygenase LPMO10. Both ChiA and ChiB contain two CBM50 binding domains and one catalytic domain, whereas LPMO10 includes a signal peptide and a single catalytic domain. The chitinases ChiA, its truncated variant ChiA2, and ChiB were heterologously expressed in Escherichia coli. The purified enzymes efficiently degraded colloidal chitin and inhibited the spore germination of Penicillium digitatum. Notably, even after losing one CBM50 domain, the resultant enzyme, consisting of the remaining CBM50 domain and the catalytic domain, maintained its colloidal chitin hydrolysis and antifungal activity, indicating commendable stability. These results underscore the role of B. velezensis chitinases in suppressing plant pathogenic fungi and provide a solid foundation for developing and applying chitinase-based biocontrol strategies.
Collapse
Affiliation(s)
- Feng Liu
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Song Chen
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Xingbang Chen
- Sichuan Vocational and Technical College, Suining, 629000, China
| | - Bin Yong
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China.
| | - Bing He
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China.
| |
Collapse
|
2
|
Chen X, Pang L, Yang W, Tian H, Yi Y, Xia B. Enhanced degradation of insoluble chitin: Engineering high-efficiency chitinase fusion enzymes for sustainable applications. BIORESOURCE TECHNOLOGY 2024; 412:131401. [PMID: 39218366 DOI: 10.1016/j.biortech.2024.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
N-acetyl-D-glucosamine and its dimer are degradation products of chitin waste with great potential in therapeutic and agricultural applications. However, the hydrolysis of insoluble chitin by chitinases remains a major bottleneck. This study investigated the biochemical properties and catalytic mechanisms of PoChi chitinase obtained from Penicillium oxalicum with a focus on enhancing its efficiency during the degradation of insoluble chitin. Recombinant plasmids were engineered to incorporate chitin-binding (ChBD) and/or fibronectin III (FnIII) domains. Notably, PoChi-FnIII-ChBD exhibited the highest substrate affinity (Km = 2.7 mg/mL) and a specific activity of 15.4 U/mg, which surpasses those of previously reported chitinases. These findings highlight the potential of engineered chitinases in advancing industrial biotechnology applications and offer a promising approach to more sustainable chitin waste management.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Li Pang
- College of Horticulture, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Wentao Yang
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Hong Tian
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Youjin Yi
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China.
| |
Collapse
|
3
|
Han J, Ullah M, Andoh V, Khan MN, Feng Y, Guo Z, Chen H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23082-23096. [PMID: 39388625 DOI: 10.1021/acs.jafc.4c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.
Collapse
Affiliation(s)
- Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, P. R. China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| |
Collapse
|
4
|
Guo HZ, Wang D, Yang HT, Wu YL, Li YC, Xia GH, Zhang XY. Heterologous Expression and Characterization of a pH-Stable Chitinase from Micromonospora aurantiaca with a Potential Application in Chitin Degradation. Mar Drugs 2024; 22:287. [PMID: 38921598 PMCID: PMC11204758 DOI: 10.3390/md22060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0-10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production.
Collapse
Affiliation(s)
- Han-Zhong Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Dou Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Hui-Ting Yang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Yu-Le Wu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Yong-Cheng Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Guang-Hua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xue-Ying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Sharma A, Arya SK, Singh J, Kapoor B, Bhatti JS, Suttee A, Singh G. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Biotechnol Genet Eng Rev 2024; 40:310-340. [PMID: 36856523 DOI: 10.1080/02648725.2023.2183593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Chitinases are multifunctional biocatalysts for the pest control and useful in modern biotechnology and pharmaceutical industries. Chemical-based fungicides and insecticides have caused more severe effects on environment and human health. Many pathogenic fungal species and insects became resistant to the chemical pesticides. The resistant fungi emerged as a multidrug resistant also and less susceptible insects are not possible to control adequately. Chitinases have an immense potential to be exploited as a biopesticide against fungi and insects. The direct use of chitinase in liquid formulation or whole microbial enzyme producing cells, both act as antagonistically against the pests. Chitinase can disintegrate the fungal cell wall and insect integument that holds the chitin as a vital structural component. Moreover, chitinase is applied for the synthesis of pharmaceutically important chitooligosaccharides. Chitinase producing microbes have the huge potential to utilize against the waste management of sea food remains like shells of crustaceans. Chitinase is valuable for the synthesis of protoplasts from industrially important fungi, further it act as the biocontrol agent of malaria and dengue fever causing larvae of mosquitoes. Chitinases also have been successfully used in wine and single cell protein producing industries. Present review is illustrating the updated information on the state of the art of different applications of chitinases in agriculture and biotechnology industry. It also bestows the understanding to the readers about the areas of extensively studied and the field where there is still much left to be done.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | | | - Jatinder Singh
- Department of Horticulture, SAGR, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Han S, Xue Y, Yan Q, Jiang Z, Yang S. Development of a two-enzyme system in Aspergillus niger for efficient production of N-acetyl-β-D-glucosamine from powdery chitin. BIORESOURCE TECHNOLOGY 2024; 393:130024. [PMID: 37972902 DOI: 10.1016/j.biortech.2023.130024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
A chitinase (PbChi70) from Paenibacillus barengoltzii was engineered by directed evolution to enhance its hydrolysis efficiency towards powder chitin. Through two rounds of screening, a mutant (mPbChi70) with a maximum specific activity of 73.21 U/mg was obtained, which is by far the highest value ever reported. The mutant gene was further transformed into Aspergillus niger FBL-B (ΔglaA) which could secrete high level of endogenously β-N-acetylglucosaminidase (GlcNAcase), thus a two-enzyme expression system was constructed. The highest chitinase activity of 61.33 U/mL with GlcNAcase activity of 353.1 U/mL was obtained in a 5-L fermentor by high-cell density fermentation. The chitin-degrading enzyme cocktail was used for the bioconversion of GlcNAc from powder chitin directly, and the highest conversion ratio reached high up to 71.9 % (w/w) with GlcNAc purity ≥95 % (w/w). This study may provide an excellent chitinase as well as a double enzyme cocktail system for efficient biological conversion of chitin materials.
Collapse
Affiliation(s)
- Susu Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yibin Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
8
|
Karaoğlan M. Alternative secretory signal sequences for recombinant protein production in Pichia pastoris. Enzyme Microb Technol 2023; 168:110256. [PMID: 37196384 DOI: 10.1016/j.enzmictec.2023.110256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Extracellular protein production is primarily preferred to facilitate the downstream processes in recombinant protein production. Secretion of recombinant proteins is mediated by the processing of signal peptides in their N-terminal portion by the secretory mechanism of host expression systems. These molecular elements involved in secretion are functionally interchangeable between different species and secretion sequence screening is one of the widely used approaches to improve extracellular protein production. In this study, α-mating and protein internal repeats (PIR) secretion sequences isolated from different yeasts (Kluyveromyces lactis, Kluyveromyces marxianus and Hansenula polymorpha) were tested in Pichia pastoris for the production of two different proteins (α-amylase and xylanase) and compared with the well-known secretory signals, S. cerevisiae α-mating factor (Sc-MF) and P. pastoris protein internal repeats PIR (PpPIR). The results obtained showed the potential of signal sequences tested. Among the tested peptides, the highest yields were achieved with H. polymorpha protein internal repeats (HpPIR) and K. lactis α-mating factor (Kl-MF) for xylanase and K. marxianus protein internal repeats (KmPIR) and K. lactis α-mating factor (Kl-MF) for amylase. In further studies, these sequences can be evaluated as alternatives in the production of different proteins in P. pastoris and in the production of recombinant proteins in different expression systems.
Collapse
Affiliation(s)
- Mert Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
| |
Collapse
|
9
|
Ding Z, Li T, Chen M, Fang Y, Hou X, Yang G, Lu J, Ye Q, Zhu R, He F, Xia M, Liu S. Purification and characterization of a chitinase from Aeromonas media CZW001 as a biocatalyst for producing chitinpentaose and chitinhexaose. Biotechnol Appl Biochem 2023; 70:281-289. [PMID: 35578780 DOI: 10.1002/bab.2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 11/07/2022]
Abstract
Developing chitinase suitable for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its benefits in environmental protection. In this study, chitinase from Aeromonas media CZW001 (AmChi) was purified and characterized. The molecular weight of AmChi was approximately 40 kDa. AmChi exhibited maximum catalytic activity at pH 8.0 with an optimum temperature of 55°C and showed broad stability between 15 and 65°C and between pH 5.0 and 9.0. AmChi was activated by Mg2+ , Na+ , and K+ and inhibited by Hg+ , Co2+ , Fe2+ , Ca2+ , Ag+ , Zn2+ , and EDTA. The main products of AmChi on colloidal chitin were chitinhexaose and chitinpentaose. AmChi had better substrate specificity for powdered chitin than colloidal chitin and had a higher catalytic efficiency toward (GlcNAc)5 than colloidal chitin. AmChi inhibited fungal growth in a dose-dependent manner. These results suggest that AmChi could be used for the enzymatic degradation of chitin to produce chitinhexaose and chitinpentaose, which have several industrial applications.
Collapse
Affiliation(s)
- Zhiwen Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
| | - Tian Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
| | - Meng Chen
- Lianyungang Inspection and Testing Center for Food and Drug Control, Lianyungang, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Gaung Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jing Lu
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Qinwen Ye
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Rongjun Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Fuxiang He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Mengjie Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
10
|
Taokaew S, Kriangkrai W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. BIOLOGY 2023; 12:87. [PMID: 36671779 PMCID: PMC9855443 DOI: 10.3390/biology12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
Chito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation. This review provides updated information about research on new chitinase derived from various sources, including bacteria, fungi, plants, and animals, employed for the efficient production of COSs. The route to industrialization of these chitinases and COS products is also described.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
11
|
Dahiya D, Pilli A, Chirra PRR, Sreeramula V, Mogili NV, Ayothiraman S. Morphological and structural characterization of chitin as a substrate for the screening, production, and molecular characterization of chitinase by Bacillus velezensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86550-86561. [PMID: 35895172 DOI: 10.1007/s11356-022-22166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The processing of shellfishery industrial wastes is gaining much interest in recent times due to the presence of valuable components. Chitin is one of the valuable components and is insoluble in most common solvents including water. In this study, a novel gram-positive bacterial strain capable of solubilizing chitin was screened from a prawn shell dumping yard. The chitinolytic activity of the isolated strain was observed through the zone of hydrolysis plate assay. The hyper-producing isolate was identified as Bacillus velezensis through the 16S rRNA sequencing technique. The structural and morphological characterization of raw and colloidal chitin preparation was carried out using FTIR, XRD, and SEM analysis. The residual protein and mineral content, degree of polymerization, and degree of acetylation were reported for both raw and colloidal chitin preparations. There was a linear increase in the chitinase activity with an increase in the colloidal chitin concentration. The maximum activity of chitinase was observed as 38.98 U/mL for the initial colloidal chitin concentration of 1.5%. Supplement of additional carbon sources, viz., glucose and maltose, did not improve the production of chitinase and resulted in a diauxic growth pattern. The maximum chitinase activity was observed to be 33.10 and 30.28 U/mL in the colloidal chitin-containing medium with and without glucose as a secondary carbon source, respectively. Interestingly, the addition of complex nitrogen sources has increased the production of chitinase. A 1.95- and 2.14-fold increase in the enzyme activity was observed with peptone and yeast extract, respectively. The chitinase was confirmed using SDS-PAGE, native PAGE, and zymograms. The optimum pH and temperature for chitinase enzyme activity were found to be 7.0 and 44 °C, respectively.
Collapse
Affiliation(s)
- Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Akhil Pilli
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Pratap Raja Reddy Chirra
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Vinay Sreeramula
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Nitish Venkateswarlu Mogili
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101.
| |
Collapse
|
12
|
Bacterial chitinases: genetics, engineering and applications. World J Microbiol Biotechnol 2022; 38:252. [DOI: 10.1007/s11274-022-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
13
|
Niu J, Yan R, Shen J, Zhu X, Meng F, Lu Z, Lu F. Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. Int J Mol Sci 2022; 23:ijms23126588. [PMID: 35743032 PMCID: PMC9224341 DOI: 10.3390/ijms23126588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +86-25-8439-5963
| |
Collapse
|
14
|
Whole-genome sequencing and functional analysis of a novel chitin-degrading strain Rhodococcus sp. 11-3. J Biosci Bioeng 2022; 134:167-173. [PMID: 35644796 DOI: 10.1016/j.jbiosc.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Chitin is the second most abundant polysaccharide in nature. Therefore, how to utilize the resource is an important issue. Rhodococcus sp. 11-3 is a strain with high chitin deacetylase (CDA) activity. In the present study, we used a combined Illumina and PacBio sequencing strategy to assemble the whole genome sequence of this strain. The genome of Rhodococcus sp. 11-3 was 5,627,661 bp in size and contained 5983 coding genes, of which 5983, 4040, 4648, 4914, 4174, 2350, and 173 genes were annotated in the Non-Redundant Protein Database (NR), Swiss-Prot, Pfam, Clusters of Orthologous Groups of proteins (COG), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-active enzymes (CAZymes) databases, respectively. The genome was annotated to a chitin deacetylase gene (RhoCDA) and a chitinase gene (RhoChi). They were not very similar to the previously reported chitin deacetylase and chitinase. This made it possible to investigate the genes associated with chitin degradation and would provide an important reference for subsequent gene cloning, functional research, development and application. Therefore, the Rhodococcus sp. 11-3 strain has great potential in the development of chitin resources.
Collapse
|
15
|
Identification and Characterization of Three Chitinases with Potential in Direct Conversion of Crystalline Chitin into N,N′-diacetylchitobiose. Mar Drugs 2022; 20:md20030165. [PMID: 35323464 PMCID: PMC8950537 DOI: 10.3390/md20030165] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N’-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45–50 °C and pH optima of 7.0–7.5. They are all stable at 40 °C and in the pH range of 5.0–11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2.
Collapse
|
16
|
Poria V, Rana A, Kumari A, Grewal J, Pranaw K, Singh S. Current Perspectives on Chitinolytic Enzymes and Their Agro-Industrial Applications. BIOLOGY 2021; 10:1319. [PMID: 34943233 PMCID: PMC8698876 DOI: 10.3390/biology10121319] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Chitinases are a large and diversified category of enzymes that break down chitin, the world's second most prevalent polymer after cellulose. GH18 is the most studied family of chitinases, even though chitinolytic enzymes come from a variety of glycosyl hydrolase (GH) families. Most of the distinct GH families, as well as the unique structural and catalytic features of various chitinolytic enzymes, have been thoroughly explored to demonstrate their use in the development of tailor-made chitinases by protein engineering. Although chitin-degrading enzymes may be found in plants and other organisms, such as arthropods, mollusks, protozoans, and nematodes, microbial chitinases are a promising and sustainable option for industrial production. Despite this, the inducible nature, low titer, high production expenses, and susceptibility to severe environments are barriers to upscaling microbial chitinase production. The goal of this study is to address all of the elements that influence microbial fermentation for chitinase production, as well as the purifying procedures for attaining high-quality yield and purity.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| | - Anuj Rana
- Department of Microbiology (COBS & H), CCS Haryana Agricultural University, Hisar 125004, India;
| | - Arti Kumari
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| | - Jasneet Grewal
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland; (J.G.); (K.P.)
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland; (J.G.); (K.P.)
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| |
Collapse
|
17
|
Heterologous Expression of a Thermostable Chitinase from Myxococcus xanthus and Its Application for High Yield Production of Glucosamine from Shrimp Shell. Foods 2021; 10:foods10112808. [PMID: 34829089 PMCID: PMC8619855 DOI: 10.3390/foods10112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Glucosamine (GlcN) is a widely used food supplement. Hence, enormous attention has been concerned with enzymatic production of GlcN owing to its advantage over a chemical approach. In this study, a previously unstudied chitinase gene (MxChi) in the genome of Myxococcus xanthus was cloned, expressed in recombinant soluble form and purified to homogeneity. TLC-, UPLC-, and microplate-reader- based activity tests confirmed MxChi hydrolyzes colloidal chitin to chitobiose as sole product. The optimal catalytic pH and temperature of MxChi was identified as 7.0 and 55 °C, respectively. MxChi exhibited 80% activity after 72 h incubation at 37 °C. The site-directed mutagenesis revealed that the amino acids D323A, D325A, and E327A of MxChi were in the DXDXE catalytic motif of GH18. When coupled with β-N-acetylhexosaminidase (SnHex) and deacetylase (CmCBDA), the enzyme allowed one-pot extraction of GlcN from colloidal chitin and shrimp shell. The optimal condition was 37 °C, pH 8.0, and 1/3/16.5 (MxChi/SnHex/CmCBDA), conducted by orthogonal design for the enzymatic cascades. Under this condition, the yield of GlcN was 26.33 mg from 400 mg shrimp shell. Facile recombinant in E. coli, robust thermostability and pure product herein makes newly discovered chitinase a valuable candidate for the green recycling of chitin rich waste.
Collapse
|
18
|
Kumar M, Madhuprakash J, Balan V, Kumar Singh A, Vivekanand V, Pareek N. Chemoenzymatic production of chitooligosaccharides employing ionic liquids and Thermomyces lanuginosus chitinase. BIORESOURCE TECHNOLOGY 2021; 337:125399. [PMID: 34147005 DOI: 10.1016/j.biortech.2021.125399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study a two-step chemoenzymatic method for production of short chain chitooligosaccharides. Chitin was chemically pretreated using sulphuric acid, sodium hydroxide and two different ionic liquids, 1-Ethyl-3-methylimidazolium bromide and Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate under mild processing conditions. Pretreated chitin was further hydrolyzed employing purified chitinase from Thermomyces lanuginosus ITCC 8895. Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate treated chitin appeared amorphous and resulted in generation of 1.10 ± 0.89 mg ml-1 of (GlcNAc)2 and 1.07 ± 0.92 mg ml-1 of (GlcNAc)3. Further derivation of optimum conditions through two-factor-9 run experiments resulted in to 1.5 and 1.3 fold increments in (GlcNAc)2 and (GlcNAc)3 production, respectively. 0.1 g of both (GlcNAc)2 and (GlcNAc)3 has been purified from the Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate pretreated chitin (1 g) employing cation exchange chromatography. The present study will lay the foundation for development of a green sustainable solution for cost effective upcycling of coastal residual resources to chito-bioactives.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad 500046, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Amit Kumar Singh
- Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
19
|
Numan M, Bukhari SA, Rehman MU, Mustafa G, Sadia B. Phylogenetic analyses, protein modeling and active site prediction of two pathogenesis related (PR2 and PR3) genes from bread wheat. PLoS One 2021; 16:e0257392. [PMID: 34506613 PMCID: PMC8432781 DOI: 10.1371/journal.pone.0257392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Wheat is a major staple food and has been extensively grown around the globe. Sessile nature of plants has exposed them to a lot of biotic and abiotic stresses including fungal pathogen attack. Puccinia graminis f.sp. tritici causes stem rust in the wheat crop and leads to 70% decrease in its production. Pathogenesis-related (PR) proteins provide plants with defense against different fungal pathogens as these proteins have antifungal activities. This study was designed to screen Pakistani wheat varieties for PR2 and PR3 proteins and their in silico characterization. PR2 and PR3 genes were screened and isolated by PCR amplification from wheat variety Chenab-70 and Frontana, respectively. The nucleotide sequences of PR2 and PR3 genes were deposited in GenBank with accession numbers MT303867 and MZ766118, respectively. Physicochemical properties, secondary and tertiary structure predictions, and molecular docking of protein sequences of PR2 and PR3 were performed using different bioinformatics tools and software. PR2 and PR3 genes were identified to encode β-1,3-glucanase and chitinase proteins, respectively. Molecular docking of both PR2 and PR3 proteins with beta-glucan and chitin (i.e. their respective ligands) showed crucial amino acid residues involved in molecular interactions. Conclusively, molecular docking analysis of β-1,3-glucanase and chitinase proteins revealed crucial amino acid residues which are involved in ligand binding and important interactions which might have important role in plant defense against fungal pathogens. Moreover, the active residues in the active sties of these proteins can be identified through mutational studies and resulting information might help understanding how these proteins are involved in plant defense mechanisms.
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
- * E-mail:
| | - Mahmood-ur- Rehman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
20
|
Jafari H, Delporte C, Bernaerts KV, De Leener G, Luhmer M, Nie L, Shavandi A. Development of marine oligosaccharides for potential wound healing biomaterials engineering. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Gomaa EZ. Microbial chitinases: properties, enhancement and potential applications. PROTOPLASMA 2021; 258:695-710. [PMID: 33483852 DOI: 10.1007/s00709-021-01612-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Chitinases are a category of hydrolytic enzymes that catalyze chitin and are formed by a wide variety of microorganisms. In nature, microbial chitinases are primarily responsible for chitin decomposition and play a vital role in the balance of carbon and nitrogen ratio in the ecosystem. The physicochemical attributes and the source of chitinase are the main bases that determine their functional characteristics and hydrolyzed products. Several chitinases have been reported and characterized, and they obtain a wider consideration for their utilization in a large number of uses such as in agriculture, food, environment, medicine and pharmaceutical companies. The antifungal and insecticidal impacts of several chitinases have been extensively studied, aiming to protect crops from phytopathogenic fungi and insects. Chitooligosaccharides synthesized by chitin degradation have been shown to improve human health through their antimicrobial, antioxidant, anti-inflammatory and antitumor properties. This review aims at investigating chitinase production, properties and their potential applications in various biotechnological fields.
Collapse
Affiliation(s)
- Eman Zakaria Gomaa
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
22
|
Xie XH, Fu X, Yan XY, Peng WF, Kang LX. A Broad-Specificity Chitinase from Penicillium oxalicum k10 Exhibits Antifungal Activity and Biodegradation Properties of Chitin. Mar Drugs 2021; 19:md19070356. [PMID: 34201595 PMCID: PMC8307900 DOI: 10.3390/md19070356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Penicillium oxalicum k10 isolated from soil revealed the hydrolyzing ability of shrimp chitin and antifungal activity against Sclerotinia sclerotiorum. The k10 chitinase was produced from a powder chitin-containing medium and purified by ammonium sulfate precipitation and column chromatography. The purified chitinase showed maximal activity toward colloidal chitin at pH 5 and 40 °C. The enzymatic activity was enhanced by potassium and zinc, and it was inhibited by silver, iron, and copper. The chitinase could convert colloidal chitin to N-acetylglucosamine (GlcNAc), (GlcNAc)2, and (GlcNAc)3, showing that this enzyme had endocleavage and exocleavage activities. In addition, the chitinase prevented the mycelial growth of the phytopathogenic fungi S. sclerotiorum and Mucor circinelloides. These results indicate that k10 is a potential candidate for producing chitinase that could be useful for generating chitooligosaccharides from chitinous waste and functions as a fungicide.
Collapse
Affiliation(s)
| | | | | | | | - Li-Xin Kang
- Correspondence: ; Tel.: +86-27-88661237-8024
| |
Collapse
|
23
|
Su H, Gao L, Sun J, Mao X. Engineering a carbohydrate binding module to enhance chitinase catalytic efficiency on insoluble chitinous substrate. Food Chem 2021; 355:129462. [PMID: 33848938 DOI: 10.1016/j.foodchem.2021.129462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
Development of a high-performance chitinase for efficient biotransformation of insoluble chitinous substrate would be highly valuable in industry. In this study, the chitin-binding domains (ChBDs) of chitinase SaChiA4 were successfully modified to improve the enzymatic activity. The engineered substitution variant R-SaChiA4, which had the exogenous ChBD of chitinase ChiA1 from Bacillus circulans WL-12 (ChBDChiA1) substituted for its original ChBDChiA4, increased its activity by nearly 54% (28.0 U/mg) towards chitin powder, and by 49% towards colloidal chitin, compared with the wild-type. The substrate-binding assay demonstrated that the ChBD could enhance the capacity of enzymatic hydrolysis by promoting substrate affinity, and molecular dynamics simulations indicated that this could be due to hydrophobic interactions in different substrate binding modes. This work advances the understanding of the role of the ChBD, and provides a step towards the achievement of industrial-scale hydrolysis and utilization of insoluble chitin.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
24
|
Du C, Zhao X, Song W, He N, Jiang S, Zhou Y, Zhang G. Combined strategies to improve the expression of acidic mammalian chitinase in Pichia pastoris for the production of N, N'-diacetylchitobiose. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Singh RV, Sambyal K, Negi A, Sonwani S, Mahajan R. Chitinases production: A robust enzyme and its industrial applications. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1883004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Anjali Negi
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Shubham Sonwani
- Department of Biosciences, Christian Eminent College, Indore, India
| | - Ritika Mahajan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
26
|
Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation. Braz J Microbiol 2020; 51:1897-1908. [PMID: 32737868 DOI: 10.1007/s42770-020-00334-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
The chitinases have extensive biotechnological potential but have been little exploited commercially due to the low number of good chitinolytic microorganisms. The purpose of this study was to identify a chitinolytic fungal and optimize its production using solid state fermentation (SSF) and agroindustry substrate, to evaluate different chitin sources for chitinase production, to evaluate different solvents for the extraction of enzymes produced during fermentation process, and to determine the nematicide effect of enzymatic extract and biological control of Meloidogyne javanica and Meloidogyne incognita nematodes. The fungus was previously isolated from bedbugs of Tibraca limbativentris Stal (Hemiptera: Pentatomidae) and selected among 51 isolated fungal as the largest producer of chitinolytic enzymes in SSF. The isolate UFSMQ40 has been identified as Trichoderma koningiopsis by the amplification of tef1 gene fragments. The greatest chitinase production (10.76 U gds-1) occurred with wheat bran substrate at 55% moisture, 15% colloidal chitin, 100% of corn steep liquor, and two discs of inoculum at 30 °C for 72 h. Considering the enzymatic inducers, the best chitinase production by the isolated fungus was achieved using chitin in colloidal, powder, and flakes. The usage of 1:15 g/mL of sodium citrate-phosphate buffer was the best ratio for chitinase extraction of SSF. The Trichoderma koningiopsis UFSMQ40 showed high mortality of M. javanica and M. incognita when applied to treatments with enzymatic filtrated and the suspension of conidia.
Collapse
|
27
|
Biochemical and molecular characterization of an acido-thermostable endo-chitinase from Bacillus altitudinis KA15 for industrial degradation of chitinous waste. Carbohydr Res 2020; 495:108089. [PMID: 32807357 DOI: 10.1016/j.carres.2020.108089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022]
Abstract
This paper reports the isolation and identification of an acido-thermostable chitinase (ChiA-Ba43) which was purified, from the culture liquid of Bacillus altitudinis strain KA15, and characterized. Purification of ChiA-Ba43 produced a 69.6-fold increase in the specific activity (120,000 U/mg) of the chitinase, with a yield of 51% using colloidal chitin as substrate. ChiA-Ba43 was found to be a monomeric protein with a molecular mass of 43,190.05 Da as determined by MALDI-TOF/MS. N-terminal sequence of the first 27 amino-acids (aa) of ChiA-Ba43 displayed homology to chitinases from other Bacillus species. Interestingly, ChiA-Ba43 exhibited optimum pH and temperature of 4-5.5 and 85 °C, respectively. Thin-layer chromatography (TLC) showed that the final hydrolyzed products of the enzyme from chitin-oligosaccharides and colloidal chitin are a mixture of (GlcNAc)2, (GlcNAc)3, (GlcNAc)4, and (GlcNAc)5, which indicates that ChiA-Ba43 possesses an endo-acting function. More interestingly, compared to ChiA-Mt45, ChiA-Hh59, Chitodextrinase®, N-acetyl-β-glucosaminidase®, and ChiA-65, ChiA-Ba43 demonstrated a high level of catalytic efficiency and outstanding tolerance towards various organic solvents. The chiA-Ba43 gene (1332 bp) encoding ChiA-Ba43 (409 aa) was cloned, sequenced, and expressed in Escherichia coli strain HB101. The biochemical properties of the recombinant chitinase (rChiA-Ba43) were equivalent to those of the natively expressed enzyme. These properties make ChiA-Ba43 an ideal candidate for industrial bioconversion of chitinous waste.
Collapse
|
28
|
Kumar M, Rajput M, Soni T, Vivekanand V, Pareek N. Chemoenzymatic Production and Engineering of Chitooligosaccharides and N-acetyl Glucosamine for Refining Biological Activities. Front Chem 2020; 8:469. [PMID: 32671017 PMCID: PMC7329927 DOI: 10.3389/fchem.2020.00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
Chitooligosaccharides (COS) and N-acetyl glucosamine (GlcNAc) are currently of enormous relevance to pharmaceutical, nutraceutical, cosmetics, food, and agriculture industries due to their wide range of biological activities, which include antimicrobial, antitumor, antioxidant, anticoagulant, wound healing, immunoregulatory, and hypocholesterolemic effects. A range of methods have been developed for the synthesis of COS with a specific degree of polymerization along with high production titres. In this respect, chemical, enzymatic, and microbial means, along with modern genetic manipulation techniques, have been extensively explored; however no method has been able to competently produce defined COS and GlcNAc in a mono-system approach. Henceforth, the chitin research has turned toward increased exploration of chemoenzymatic processes for COS and GlcNAc generation. Recent developments in the area of green chemicals, mainly ionic liquids, proved vital for the specified COS and GlcNAc synthesis with better yield and purity. Moreover, engineering of COS and GlcNAc to generate novel derivatives viz. carboxylated, sulfated, phenolic acid conjugated, amino derived COS, etc., further improved their biological activities. Consequently, chemoenzymatic synthesis and engineering of COS and GlcNAc emerged as a useful approach to lead the biologically-active compound-based biomedical research to an advanced prospect in the forthcoming era.
Collapse
Affiliation(s)
- Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Meenakshi Rajput
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
29
|
Pang B, Zhou L, Cui W, Liu Z, Zhou Z. Production of a Thermostable Pullulanase in
Bacillus subtilis
by Optimization of the Expression Elements. STARCH-STARKE 2020. [DOI: 10.1002/star.202000018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bo Pang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|
30
|
Affes S, Maalej H, Aranaz I, Acosta N, Heras Á, Nasri M. Enzymatic production of low-Mw chitosan-derivatives: Characterization and biological activities evaluation. Int J Biol Macromol 2020; 144:279-288. [DOI: 10.1016/j.ijbiomac.2019.12.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/30/2022]
|
31
|
Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 2019; 35:144. [PMID: 31493195 DOI: 10.1007/s11274-019-2721-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl D-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.
Collapse
Affiliation(s)
- Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|