1
|
Lasala P, Matteucci RM, Volpicella SR, Honorio Franco J, Debellis D, Catalano F, Milella A, Grisorio R, Suranna GP, Agostiano A, Curri ML, Fanizza E, Grattieri M. Deciphering the Role of Inorganic Nanoparticles' Surface Functionalization on Biohybrid Microbial Photoelectrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58598-58608. [PMID: 39427261 PMCID: PMC11533150 DOI: 10.1021/acsami.4c12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Shedding light on the interaction between inorganic nanoparticles (NPs) and living microorganisms is at the basis of the development of biohybrid technologies with improved performance. Au NPs have been shown to be able to improve the extracellular electron transfer (EET) in intact bacterial cells interfaced with an electrode; however, detailed information on the role of NP-surface properties in their interaction with bacterial membranes is still lacking. Herein, we unveil how the surface functionalization of Au NPs influences their interaction with photosynthetic bacteria, focusing on cell morphology, growth kinetics, NPs localization, and electrocatalytic performance. We show that functionalization of Au NPs with cysteine in the zwitterionic form results in a uniform NPs distribution in purple bacteria, specifically locating the NPs within the outer-membrane/periplasmic space of bacterial cells. These biohybrid cells, when coupled with an electrode, exhibit enhanced EET and increased (photo)current generation, paving the way for the future development of rationally designed biohybrid electrochemical systems.
Collapse
Affiliation(s)
- Pierluigi Lasala
- Department
of Chemistry, University of Bari, Via Orabona 4, Bari 70125, Italy
- CNR-IPCF,
SS Bari, Via Orabona
4, Bari 70125, Italy
| | - Rosa Maria Matteucci
- CNR-IPCF,
SS Bari, Via Orabona
4, Bari 70125, Italy
- Polytechnic
University of Bari, Via
Orabona 4, Bari 70125, Italy
| | | | | | - Doriana Debellis
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego, 30, Genoa 16163, Italy
| | - Federico Catalano
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego, 30, Genoa 16163, Italy
| | - Antonella Milella
- Department
of Chemistry, University of Bari, Via Orabona 4, Bari 70125, Italy
| | - Roberto Grisorio
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, Bari 70125, Italy
| | - Gian Paolo Suranna
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, Bari 70125, Italy
- CNR-NANOTEC,
Institute of Nanotechnology, c/o Campus Ecoteckne, Via Monteroni, Lecce 73100, Italy
| | - Angela Agostiano
- Department
of Chemistry, University of Bari, Via Orabona 4, Bari 70125, Italy
- CNR-IPCF,
SS Bari, Via Orabona
4, Bari 70125, Italy
| | - Maria Lucia Curri
- Department
of Chemistry, University of Bari, Via Orabona 4, Bari 70125, Italy
- CNR-IPCF,
SS Bari, Via Orabona
4, Bari 70125, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), Bari Research Unit, Via Orabona 4, Bari 70125, Italy
| | - Elisabetta Fanizza
- Department
of Chemistry, University of Bari, Via Orabona 4, Bari 70125, Italy
- CNR-IPCF,
SS Bari, Via Orabona
4, Bari 70125, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), Bari Research Unit, Via Orabona 4, Bari 70125, Italy
| | - Matteo Grattieri
- Department
of Chemistry, University of Bari, Via Orabona 4, Bari 70125, Italy
- CNR-IPCF,
SS Bari, Via Orabona
4, Bari 70125, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), Bari Research Unit, Via Orabona 4, Bari 70125, Italy
| |
Collapse
|
2
|
Estrada-Osorio DV, Escalona-Villalpando RA, Gurrola MP, Chaparro-Sánchez R, Rodríguez-Morales JA, Arriaga LG, Ledesma-García J. Abiotic, Hybrid, and Biological Electrocatalytic Materials Applied in Microfluidic Fuel Cells: A Comprehensive Review. ACS MEASUREMENT SCIENCE AU 2024; 4:25-41. [PMID: 38404496 PMCID: PMC10885332 DOI: 10.1021/acsmeasuresciau.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 02/27/2024]
Abstract
This article provides an overview of the work reported in the past decade in the field of microfluidic fuel cells. To develop appropriate research, the most commonly used electrocatalytic materials were considered and a new classification was proposed based on their nature: abiotic, hybrid, or biological. This classification allowed the authors to discern the information collected. In this sense, the types of electrocatalysts used for the oxidation of the most common fuels in different environments, such as glucose, ethanol, methanol, glycerol, and lactate, were presented. There are several phenomena presented in this article. This information gives an overview of where research is heading in the field of materials for electrocatalysis, regardless of the fuel used in the microfluidic fuel cell: the synthesis of abiotic and biological materials to obtain hybrid materials that allow the use of the best properties of each material.
Collapse
Affiliation(s)
- D. V. Estrada-Osorio
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - Ricardo A. Escalona-Villalpando
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - M. P. Gurrola
- CONACYT-Tecnológico
Nacional de México/Instituto Tecnológico de Chetumal, Avenida Insurgentes 330, Chetumal, Quintana Roo 77013, México
- Tecnológico
Nacional de México/Instituto Tecnológico de Chetumal, Avenida Insurgentes 330, Chetumal, Quintana Roo 77013, México
| | - Ricardo Chaparro-Sánchez
- Facultad
de Informática, Universidad Autónoma
de Querétaro, Santiago de
Querétaro, Querétaro 76010, México
| | - J. A. Rodríguez-Morales
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - L. G. Arriaga
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo, Querétaro 76703, México
| | - J. Ledesma-García
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| |
Collapse
|
3
|
Nurwono G, O'Keeffe S, Liu N, Park JO. Sustainable metabolic engineering requires a perfect trifecta. Curr Opin Biotechnol 2023; 83:102983. [PMID: 37573625 PMCID: PMC10960266 DOI: 10.1016/j.copbio.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
The versatility of cellular metabolism in converting various substrates to products inspires sustainable alternatives to conventional chemical processes. Metabolism can be engineered to maximize the yield, rate, and titer of product generation. However, the numerous combinations of substrate, product, and organism make metabolic engineering projects difficult to navigate. A perfect trifecta of substrate, product, and organism is prerequisite for an environmentally and economically sustainable metabolic engineering endeavor. As a step toward this endeavor, we propose a reverse engineering strategy that starts with product selection, followed by substrate and organism pairing. While a large bioproduct space has been explored, the top-ten compounds have been synthesized mainly using glucose and model organisms. Unconventional feedstocks (e.g. hemicellulosic sugars and CO2) and non-model organisms are increasingly gaining traction for advanced bioproduct synthesis due to their specialized metabolic modes. Judicious selection of the substrate-organism-product combination will illuminate the untapped territory of sustainable metabolic engineering.
Collapse
Affiliation(s)
| | - Samantha O'Keeffe
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Nian Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Garbini GL, Barra Caracciolo A, Grenni P. Electroactive Bacteria in Natural Ecosystems and Their Applications in Microbial Fuel Cells for Bioremediation: A Review. Microorganisms 2023; 11:1255. [PMID: 37317229 DOI: 10.3390/microorganisms11051255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Electroactive bacteria (EAB) are natural microorganisms (mainly Bacteria and Archaea) living in various habitats (e.g., water, soil, sediment), including extreme ones, which can interact electrically each other and/or with their extracellular environments. There has been an increased interest in recent years in EAB because they can generate an electrical current in microbial fuel cells (MFCs). MFCs rely on microorganisms able to oxidize organic matter and transfer electrons to an anode. The latter electrons flow, through an external circuit, to a cathode where they react with protons and oxygen. Any source of biodegradable organic matter can be used by EAB for power generation. The plasticity of electroactive bacteria in exploiting different carbon sources makes MFCs a green technology for renewable bioelectricity generation from wastewater rich in organic carbon. This paper reports the most recent applications of this promising technology for water, wastewater, soil, and sediment recovery. The performance of MFCs in terms of electrical measurements (e.g., electric power), the extracellular electron transfer mechanisms by EAB, and MFC studies aimed at heavy metal and organic contaminant bioremediationF are all described and discussed.
Collapse
Affiliation(s)
- Gian Luigi Garbini
- Department of Ecology and Biological Sciences, Tuscia University, 01100 Viterbo, Italy
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
| | - Paola Grenni
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
5
|
Schneider G, Pásztor D, Szabó P, Kőrösi L, Kishan NS, Raju PARK, Calay RK. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms 2023; 11:781. [PMID: 36985354 PMCID: PMC10058994 DOI: 10.3390/microorganisms11030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
To develop efficient microbial fuel cell systems for green energy production using different waste products, establishing characterised bacterial consortia is necessary. In this study, bacteria with electrogenic potentials were isolated from mud samples and examined to determine biofilm-formation capacities and macromolecule degradation. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identifications have revealed that isolates represented 18 known and 4 unknown genuses. They all had the capacities to reduce the Reactive Black 5 stain in the agar medium, and 48 of them were positive in the wolfram nanorod reduction assay. The isolates formed biofilm to different extents on the surfaces of both adhesive and non-adhesive 96-well polystyrene plates and glass. Scanning electron microscopy images revealed the different adhesion potentials of isolates to the surface of carbon tissue fibres. Eight of them (15%) were able to form massive amounts of biofilm in three days at 23 °C. A total of 70% of the isolates produced proteases, while lipase and amylase production was lower, at 38% and 27% respectively. All of the macromolecule-degrading enzymes were produced by 11 isolates, and two isolates of them had the capacity to form a strong biofilm on the carbon tissue one of the most used anodic materials in MFC systems. This study discusses the potential of the isolates for future MFC development applications.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Dorina Pásztor
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Péter Szabó
- Department of Geology and Meteorology, Faculty of Sciences, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, Pázmány P. u. 4, H-7634 Pécs, Hungary
| | - Nandyala Siva Kishan
- Centre for Research and Development, SRKR Engineering College, SRKR Marg, China Amiram, Bhimavaram 534204, India
| | | | - Rajnish Kaur Calay
- Institute for Building Energy and Materials Technology, Narvik Campus, UiT Norway’s Arctic University, 8514 Narvik, Norway
| |
Collapse
|
6
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Buzzanca D, Alessandria V, Botta C, Seif Zadeh N, Ferrocino I, Houf K, Cocolin L, Rantsiou K. Transcriptome Analysis of Arcobacter butzleri Infection in a Mucus-Producing Human Intestinal In Vitro Model. Microbiol Spectr 2023; 11:e0207122. [PMID: 36622176 PMCID: PMC9927503 DOI: 10.1128/spectrum.02071-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arcobacter butzleri is a foodborne pathogen belonging to the Arcobacteraceae family. This Gram-negative bacterium is found in water, food, and various organisms, including farm animals, clams, and fish. Moreover, A. butzleri has been isolated from human stool samples, where it was associated with gastrointestinal symptoms such as diarrhea. The present study focused on the transcriptome analysis of three A. butzleri strains isolated from human stools and displaying variable virulence potential in vitro. We used a mucus-producing human intestinal in vitro model (Caco-2/HT29-MTX-E12) to study the colonization and invasion abilities of the three A. butzleri strains. The ability of all three A. butzleri strains to colonize our in vitro model system was subsequently confirmed. Moreover, transcriptomics showed the upregulation of putative virulence genes. Among these genes, tonB, exbB, and exbD, which belong to the same operon, were upregulated in strain LMG 11119, which also had the greatest colonization ability. Moreover, genes not currently considered A. butzleri virulence genes were differentially expressed during cell model colonization. The main functions of these genes were linked to organic acid metabolism and iron transport and particularly to the function of the TonB complex. IMPORTANCE Recent advancements in the genomic characterization of A. butzleri revealed putative virulence genes and highlighted the possible pathogenic mechanisms used by this foodborne pathogen. It is therefore possible to study the transcriptomes of these bacteria to explore possible virulence mechanisms under conditions that mimic the infection process. The transcriptome and colonization/invasion analyses that we performed in this study enabled the evaluation of A. butzleri-mediated infection of the mucus-producing human intestinal in vitro model. We confirmed the upregulation of previously proposed virulence genes in the A. butzleri strains. In addition, we identified the differential expression of a number of other genes, which are not currently thought to be associated with virulence, in three A. butzleri strains during infection of mucus-producing human epithelial cells. Changes in the concentration of acetic acid and the upregulation of genes associated with organic acid metabolism during host-pathogen contact were also observed. These findings highlight the importance of previously unreported genes in the virulence mechanisms of A. butzleri.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Negin Seif Zadeh
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Al-Sahari M, Al-Gheethi AA, Radin Mohamed RMS, Yashni G, Vo DVN, Ismail N. Microbial fuel cell systems; developments, designs, efficiencies, and trends: A comparative study between the conventional and innovative systems. CHEMOSPHERE 2022; 298:134244. [PMID: 35278440 DOI: 10.1016/j.chemosphere.2022.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The microbial fuel cell (MFC) technology has appeared in the late 20th century and received considerable attention over the last decade due to its multiple and unique potential in converting the substrates into electricity and valuable productions. Extensive efforts have been paid to improve the MFCs performance, leading to the publication of a massive amount of research that developed various aspects of these systems. Most of these improvements have focused on optimization parameters, which is currently inappropriate to provide an innovational developing vision for MFC systems. The convergent results in most of the previous conventional studies (12,643 studies according to the WOS database) have reduced the value of MFCs by drawing an incomplete image for the performance of the systems. Therefore, this paper aimed to provide a comprehensive comparison between the highly reliable studies that innovatively developed the MFC systems and the conventional MFCs studies. The current paper discusses the novel MFCs development history, designs, efficiency, and challenges compared to conventional MFCs. The discussion has displayed the high efficiency of the novel MFCs in removing over 90% of substrates and generating power of 800 mW m-2. The paper also analyzed the literature trends, history and suggested recommendations for future studies. This is the first paper highlighting the substantial differences between the innovative and conventional MFC systems, nominating it to be a vital reference for novel MFCs studies in the future.
Collapse
Affiliation(s)
- Mohammed Al-Sahari
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Adel Ali Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - G Yashni
- School of Applied Sciences, Faculty of Engineering, Science and Technology, Nilai University, Malaysia.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Norli Ismail
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia
| |
Collapse
|
9
|
Dong F, Simoska O, Gaffney E, Minteer SD. Applying synthetic biology strategies to bioelectrochemical systems. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Fangyuan Dong
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | - Olja Simoska
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | - Erin Gaffney
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | | |
Collapse
|