1
|
Luo G, Huang Z, Zhu Y, Chen J, Hou X, Ni D, Xu W, Zhang W, Rao Y, Mu W. Crystal structure and structure-guided tunnel engineering in a bacterial β-1,4-galactosyltransferase. Int J Biol Macromol 2024; 279:135374. [PMID: 39265897 DOI: 10.1016/j.ijbiomac.2024.135374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Lacto-N-neotetraose (LNnT), a representative oligosaccharide found in human milk, has been previously examined for its beneficial traits. However, the LNnT titer is limited by the efficient glycosyltransferase pathway, particularly with respect to the catalysis of rate-limiting steps. As data on the crystal structure of the key enzyme required for synthesizing LNnT are lacking, the synthesis of LNnT remains an uncertainty. Here, for the first time we report the three-dimensional structure of a bacterial β-1,4-galactosyltransferase, Aaβ4GalT, and analyze the critical role played by residues in its catalytic efficacy. Guided by structural insights, we engineered this enzyme to enhance its catalytic efficiency using structure-guided tunnel engineering. The mutant enzyme L5 (K155M/H156D/F157W/K185M/Q216V) so produced, showed a 50-fold enhancement in catalytic activity. Crystal structure analysis revealed that the mechanism underlying the improvement in activity was of the swing door type. The closed conformation formed by dense hydrophobic packing with Q216V-K155M widened and permitted substrate entry. Our results show that altering the tunnel conformation helped appropriately accommodate the substrate for catalysis and provide a structural basis for the modification of other glycosyltransferases.
Collapse
Affiliation(s)
- Guocong Luo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaodong Hou
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Wan L, Zhu Y, Ke J, Zhang W, Mu W. Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli. Metab Eng 2024; 85:167-179. [PMID: 39163974 DOI: 10.1016/j.ymben.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Advancing the formation of artificial membraneless compartments with organizational complexity and diverse functionality remains a challenge. Typically, synthetic compartments or membraneless organelles are made up of intrinsically disordered proteins featuring low-complexity sequences or polypeptides with repeated distinctive short linear motifs. In order to expand the repertoire of tools available for the formation of synthetic membraneless compartments, here, a range of DIshevelled and aXin (DIX) or DIX-like domains undergoing head-to-tail polymerization were demonstrated to self-assemble into aggregates and generate synthetic compartments within E. coli cells. Then, synthetic complex compartments with diverse intracellular morphologies were generated by coexpressing different DIX domains. Further, we genetically incorporated a pair of interacting motifs, comprising a homo-dimeric domain and its anchoring peptide, into the DIX domain and cargo proteins, respectively, resulting in the alteration of both material properties and client recruitment of synthetic compartments. As a proof-of-concept, several human milk oligosaccharide biosynthesis pathways were chosen as model systems. The findings indicated that the recruitment of pathway sequential enzymes into synthetic compartments formed by DIX-DIX heterotypic interactions or by DIX domains embedded with specific interacting motifs efficiently boosted metabolic pathway flux and improved the production of desired chemicals. We propose that these synthetic compartment systems present a potent and adaptable toolkit for controlling metabolic flux and facilitating cellular engineering.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Wang N, Zhu Y, Wang L, Huang Z, Li Z, Xu W, Mu W. Highly-efficient in vivo production of lacto-N-fucopentaose V by a regio-specific α1,3/4-fucosyltransferase from Bacteroides fragilis NCTC 9343. Int J Biol Macromol 2024; 266:130955. [PMID: 38499120 DOI: 10.1016/j.ijbiomac.2024.130955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lacto-N-fucopentaose V (LNFP V) is a typical human milk pentasaccharide. Multi-enzymatic in vitro synthesis of LNFP V from lactose was reported, however, microbial cell factory approach to LNFP V production has not been reported yet. In this study, the biosynthetic pathway of LNFP V was examined in Escherichia coli. The previously constructed E. coli efficiently producing lacto-N-tetraose was used as the starting strain. GDP-fucose pathway module and a regio-specific glycosyltransferase with α1,3-fucosylation activity were introduced to realize the efficient synthesis of LNFP V. The α1,3/4-fucosyltransferase from Bacteroides fragilis was selected as the best enzyme for in vivo biosynthesis of LNFP V from nine candidates, with the highest titer and the lowest by-product accumulation. A beneficial variant K128D was obtained to further enhance LNFP V titer using computer-assisted site-directed mutagenesis. The final strain EW10 could produce 25.68 g/L LNFP V by fed-batch cultivation, with the productivity of 0.56 g/L·h.
Collapse
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
4
|
Wang J, Xiang Z, Liu D, Yan Q, Yang S, Jiang Z. Protein Engineering of a Novel β-Galactosidase from Thermus scotoductus for Efficient Synthesis of Lacto- N-Neotetraose from Chitin Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38613501 DOI: 10.1021/acs.jafc.4c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
A novel β-galactosidase (TsGal48) from Thermus scotoductus was cloned, and the enzyme was biochemically characterized. TsGal48 catalyzed the synthesis of lacto-N-neotetraose (LNnT) from lactose via the transglycosylation reaction with a maximal yield of 20%, which is the highest yield for the synthesis of LNnT so far. To further improve the yield of LNnT, TsGal48 was successfully engineered by directed evolution and site-saturation mutagenesis. A mutated β-galactosidase (mTsGal48) was selected and characterized. mTsGal48 produced LNnT with a yield of 27.7 g/L, which is 1.4-fold higher than that of TsGal48 (19.7 g/L). Then, a developed strategy for LNnT synthesis from chitin powder was provided in a 30 L bioreactor. The reaction process included chitin powder hydrolysis, lacto-N-triose II (LNT2) synthesis, and LNnT synthesis. The reaction time was reduced from 44 to 17 h in chitin powder hydrolysis and LNT2 synthesis. The content of LNnT was up to 25 g/L in the multienzyme system. The green and efficient route may be suitable for large-scale production of LNnT from chitin powder.
Collapse
Affiliation(s)
- Jianyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhixuan Xiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
5
|
Zhang M, Zhang K, Liu T, Wang L, Wu M, Gao S, Cai B, Zhang F, Su L, Wu J. High-Level Production of Lacto- N-neotetraose in Escherichia coli by Stepwise Optimization of the Biosynthetic Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16212-16220. [PMID: 37851455 DOI: 10.1021/acs.jafc.3c04856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Lacto-N-neotetraose (LNnT), an abundant human milk oligosaccharide (HMO), has been approved as a novel functional additive for infant formulas. Therefore, LNnT biosynthesis has attracted extensive attention. Here, a high LNnT-producing, low lacto-N-triose II (LNT II)-residue Escherichia coli strain was constructed. First, an initial LNnT-producing chassis strain was constructed by blocking lactose, UDP-N-acetylglucosamine, and UDP-galactose competitive consumption pathways and introducing β-1,3-N-acetylglucosaminyltransferase LgtA and β-1,4-galactosyltransferase LgtB. Subsequently, the supply of LNnT precursors was increased by enhancing UDP-N-acetylglucosamine and UDP-galactose synthesis, inactivating LNT II extracellular transporter SetA, and improving UTP synthesis. Then, modular engineering strategy was used to optimize LNnT biosynthetic pathway fluxes. Moreover, pathway fluxes were fine-tuned by modulating translation initiation strength of essential genes lgtB, prs, and lacY. Finally, LNnT production reached 6.70 g/L in a shake flask and 19.40 g/L in a 3 L bioreactor with 0.47 g/(L h) productivity, with 1.79 g/L LNT II residue, highest productivity level, and lowest LNT II residue thus far.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tongle Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mengping Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shengqi Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Bohan Cai
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. and Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257335, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
6
|
Ali MY, Liaqat F, Khazi MI, Sethupathy S, Zhu D. Utilization of glycosyltransferases as a seamless tool for synthesis and modification of the oligosaccharides-A review. Int J Biol Macromol 2023; 249:125916. [PMID: 37527764 DOI: 10.1016/j.ijbiomac.2023.125916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Glycosyltransferases (GTs) catalyze the transfer of active monosaccharide donors to carbohydrates to create a wide range of oligosaccharide structures. GTs display strong regioselectivity and stereoselectivity in producing glycosidic bonds, making them extremely valuable in the in vitro synthesis of oligosaccharides. The synthesis of oligosaccharides by GTs often gives high yields; however, the enzyme activity may experience product inhibition. Additionally, the higher cost of nucleotide sugars limits the usage of GTs for oligosaccharide synthesis. In this review, we comprehensively discussed the structure and mechanism of GTs based on recent literature and the CAZY website data. To provide innovative ideas for the functional studies of GTs, we summarized several remarkable characteristics of GTs, including folding, substrate specificity, regioselectivity, donor sugar nucleotides, catalytic reversibility, and differences between GTs and GHs. In particular, we highlighted the recent advancements in multi-enzyme cascade reactions and co-immobilization of GTs, focusing on overcoming problems with product inhibition and cost issues. Finally, we presented various types of GT that have been successfully used for oligosaccharide synthesis. We concluded that there is still an opportunity for improvement in enzymatically produced oligosaccharide yield, and future research should focus on improving the yield and reducing the production cost.
Collapse
Affiliation(s)
- Mohamad Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
8
|
Liao Y, Wu J, Li Z, Wang J, Yuan L, Lao C, Chen X, Yao J. Metabolic Engineering of Escherichia coli for High-Level Production of Lacto- N-neotetraose and Lacto- N-tetraose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37467490 DOI: 10.1021/acs.jafc.3c02997] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Lacto-N-neotetraose (LNnT) and lacto-N-tetraose (LNT) are important oligosaccharides found in breast milk and are commonly used as nutritional supplements in infant formula. We used metabolic engineering techniques to optimize the modified Escherichia coli BL21 star (DE3) strain for efficient synthesis of LNnT and LNT using β-1,4-galactosyltransferase (HpgalT) from Helicobacter pylori and β-1,3-galactosyltransferase (SewbdO) from Salmonella enterica subsp. salamae serovar, respectively. Further, we optimized the expression of three key genes, lgtA, galE, and HpgalT (SewbdO), to synthesize LNnT or LNT and deleted several genes (ugd, ushA, agp, wcaJ, otsA, and wcaC) to block competition in the UDP-galactose synthesis pathway. The optimized strain produced LNnT or LNT with a titer of 22.07 or 48.41 g/L, respectively, in a supplemented batch culture, producing 0.41 or 0.73 g/L/h, respectively. The strategies used in this study contribute to the development of cell factories for high-level LNnT and LNT and their derivatives.
Collapse
Affiliation(s)
- Yingxue Liao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan 232000, China
| | - Zhongkui Li
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jin Wang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Caiwen Lao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan 232000, China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
10
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
11
|
Zhu Y, Cao H, Wang H, Mu W. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: current advances and challenges. Curr Opin Biotechnol 2022; 78:102841. [PMID: 36371892 DOI: 10.1016/j.copbio.2022.102841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs) are structurally complex unconjugated glycans that are the third largest solid component in human milk. HMOs have drawn increasing attention because of their beneficial effects to infant health. Of the more than 200 HMOs, only less than 10 have been used in medical or food industries. Although HMO research has been becoming increasingly intensive and booming, the limited availability of HMOs still cannot meet the demand in health effect research and large-scale application. Therefore, efficient synthetic approaches and strategies for HMO production are urgently needed. The goal of this review is to highlight recent advances in microbial cell factory development for HMO biosynthesis. Key challenges in representative HMO production are also highlighted. The further perspectives in general HMO biosynthesis are discussed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Li M, Luo Y, Hu M, Li C, Liu Z, Zhang T. Module-Guided Metabolic Rewiring for Fucosyllactose Biosynthesis in Engineered Escherichia coli with Lactose De Novo Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14761-14770. [PMID: 36375030 DOI: 10.1021/acs.jafc.2c05909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fucosyllactose (FL) has garnered considerable attention for its benefits on infant health. In this study, we report an efficient E. coli cell factory to produce 2'/3-fucosyllactose (2'/3-FL) with lactose de novo pathway through metabolic network remodeling, including (1) modification of the PTSGlc system to enhance glucose internalization efficiency; (2) screening for β-1,4-galactosyltransferase (β-1,4-GalT) and introduction of lactose synthesis pathway; (3) eliminating inhibition of byproduct pathways; (4) constructing antibiotic-free and inducer-free FL strains; and (5) up-regulating the expression of genes in the GDP-l-fucose module. The final engineered strains BP10-3 and BP11-3 produced 4.36 g/L for 2'-FL and 3.23 g/L for 3-FL in shake flasks. In 3 L bioreactors, fed-batch cultivations of the two strains produced 40.44 g/L for 2'-FL and 30.42 g/L for 3-FL, yielding 0.63 and 0.69 g/g glucose, respectively. The strategy described in this work will help to engineer E. coli as a safe chassis for other lactose-independent HMOs production.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yejiao Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Isolation and Mechanistic Characterization of a Novel Zearalenone-Degrading Enzyme. Foods 2022; 11:foods11182908. [PMID: 36141036 PMCID: PMC9498698 DOI: 10.3390/foods11182908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Zearalenone (ZEN) and its derivatives pose a serious threat to global food quality and animal health. The use of enzymes to degrade mycotoxins has become a popular method to counter this threat. In this study, Aspergillus niger ZEN-S-FS10 extracellular enzyme solution with ZEN-degrading effect was separated and purified to prepare the biological enzyme, FSZ, that can degrade ZEN. The degradation rate of FSZ to ZEN was 75−80% (pH = 7.0, 28 °C). FSZ can function in a temperature range of 28−38 °C and pH range of 2.0−7.0 and can also degrade ZEN derivatives (α-ZAL, β-ZOL, and ZAN). According to the enzyme kinetics fitting, ZEN has a high degradation rate. FSZ can degrade ZEN in real samples of corn flour. FSZ can be obtained stably and repeatedly from the original strain. One ZEN degradation product was isolated: FSZ−P(C18H26O4), with a relative molecular weight of 306.18 g/mol. Amino-acid-sequencing analysis revealed that FSZ is a novel enzyme (homology < 10%). According to the results of molecular docking, ZEN and ZAN can utilize their end-terminal carbonyl groups to bind FSZ residues PHE307, THR55, and GLU129 for a high-degradation rate. However, α-ZAL and β-ZOL instead contain hydroxyl groups that would prevent binding to GLU129; thus, the degradation rate is low for these derivatives.
Collapse
|
14
|
Zheng J, Xu H, Fang J, Zhang X. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydr Polym 2022; 291:119564. [DOI: 10.1016/j.carbpol.2022.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023]
|
15
|
Zhang P, Zhu Y, Li Z, Zhang W, Guang C, Mu W. Designing a Highly Efficient Biosynthetic Route for Lacto- N-Neotetraose Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9961-9968. [PMID: 35938974 DOI: 10.1021/acs.jafc.2c04416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, the biosynthesis of human milk oligosaccharides (HMOs) has been attracting increasing attention. Lacto-N-neotetraose (LNnT) is one of the most important neutral-core HMOs with promising health effects for infants. It has received Generally Recognized as Safe (GRAS) status and is the second HMO commercially added in infant formula after 2'-fucosyllactose. In previous studies, a series of engineered Escherichia coli strains have been constructed and optimized to produce high titers of precursor lacto-N-triose II. On the basis of these strains, LNnT-producing strains were constructed by overexpressing the β1,4-galactosyltransferase-encoding gene from Aggregatibacter actinomycetemcomitans NUM4039 (Aa-β1,4-GalT). Interestingly, an appreciable LNnT titer was obtained by weakening the metabolic flux of the UDP-GlcNAc pathway and simply overexpressing the essential genes lgtA, galE, and Aa-β1,4-GalT in lacZ-, wecB-, and nagB-deleted E. coli. Subsequently, LNnT synthesis was optimized through balancing the expression of these three biosynthetic enzymes. The optimized strain produced LNnT with an extracellular titer of 12.1 g/L in fed-batch cultivation, with the productivity and specific yield of 0.25 g/L·h and 0.27 g/g dry cell weight, respectively.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Liu Y, Zhu Y, Wan L, Chen R, Zhang W, Mu W. High-Level De Novo Biosynthesis of 2'-Fucosyllactose by Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9017-9025. [PMID: 35834320 DOI: 10.1021/acs.jafc.2c02484] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2'-Fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk. In this study, a highly efficient biosynthetic route for 2'-FL production was designed via the de novo pathway of GDP-l-fucose using engineered Escherichia coli BL21(DE3). Specifically, plasmid-based strains with previously deleted lacZ and wcaJ were further reconstructed by introducing de novo pathway genes and α1,2-fucosyltransferase-encoding wbgL to realize 2'-FL synthesis. The 2'-FL titer was enhanced to 3.92 g/L by further introducing rcsA and rcsB. Subsequently, the additional wbgL expression cassette was chromosomally integrated into recA locus to strengthen fucosylation reaction and a strong constitutive promoter (PJ23119) was used to replace the original promoters of manC-manB and gmd-wcaG to improve 2'-FL synthesis. The maximal 2'-FL titer reached 9.06 and 79.23 g/L in shake-flask and fed-batch cultivation, respectively. The 2'-FL productivity reached 1.45 g/L/h, showing remarkable production potential in large-scale industrial application.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
17
|
Zhang P, Zhu Y, Li Z, Zhang W, Mu W. Recent Advances on Lacto- N-neotetraose, a Commercially Added Human Milk Oligosaccharide in Infant Formula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4534-4547. [PMID: 35385279 DOI: 10.1021/acs.jafc.2c01101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk oligosaccharides (HMOs) act as the important prebiotics and display many unique health effects for infants. Lacto-N-neotetraose (LNnT), an abundant HMO, attracts increasing attention because of its unique beneficial effects to infants and great commercial importance. It occurs in all groups of human milk, but the concentration generally decreases gradually with the lactation period. It has superior prebiotic property for infants, and its other health effects have also been verified, including being immunomodulatory, anti-inflammatory, preventing necrotizing enterocolitis, antiadhesive antimicrobials, antiviral activity, and promoting maturation of intestinal epithelial cells. Safety evaluation and clinical trial studies suggest that LNnT is safe and well-tolerant for infants. It has been commercially added as a functional ingredient in infant formula. LNnT can be synthesized via chemical, enzymatic, or cell factory approachs, among which the metabolic engineering-based cell factory synthesis is considered to be the most practical and effective. In this article, the occurrence and physiological effects of LNnT were reviewed in detail, the safety evaluation and regulation status of LNnT were described, various approaches to LNnT synthesis were comprehensively summarized and compared, and the future perspectives of LNnT-related studies were provided.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|