1
|
El-Ahmad P, Mendes-Silva AP, Diniz BS. Liquid Biopsy in Neuropsychiatric Disorders: A Step Closer to Precision Medicine. Mol Neurobiol 2024:10.1007/s12035-024-04492-y. [PMID: 39298102 DOI: 10.1007/s12035-024-04492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Psychiatric disorders are among the leading causes of disease burden worldwide. Despite their significant impact, their diagnosis remains challenging due to symptom heterogeneity, psychiatric comorbidity, and the lack of objective diagnostic tests and well-defined biomarkers. Leveraging genomic, epigenomic, and fragmentomic technologies, circulating cell-free DNA (ccfDNA)-based liquid biopsies have emerged as a potential non-invasive diagnosis and disease-monitoring tool. ccfDNA is a DNA species released into circulation from all types of cells through passive and active mechanisms and can serve as a biomarker for various diseases, namely, cancer. Despite their potential, the application of ccfDNA in neuropsychiatry remains underdeveloped. In this review, we provide an overview of liquid biopsies and their components, with a particular focus on ccfDNA. With a summary of pre-analytical practices and current ccfDNA technologies, we highlight the current state of research regarding the use of ccfDNA as a biomarker for neuropsychiatric disorders. Finally, we discuss future steps to unlock ccfDNA's potential in clinical practice.
Collapse
Affiliation(s)
- Perla El-Ahmad
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Berzero G, Pieri V, Mortini P, Filippi M, Finocchiaro G. The coming of age of liquid biopsy in neuro-oncology. Brain 2023; 146:4015-4024. [PMID: 37289981 PMCID: PMC10545511 DOI: 10.1093/brain/awad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
The clinical role of liquid biopsy in oncology is growing significantly. In gliomas and other brain tumours, targeted sequencing of cell-free DNA (cfDNA) from CSF may help differential diagnosis when surgery is not recommended and be more representative of tumour heterogeneity than surgical specimens, unveiling targetable genetic alterations. Given the invasive nature of lumbar puncture to obtain CSF, the quantitative analysis of cfDNA in plasma is a lively option for patient follow-up. Confounding factors may be represented by cfDNA variations due to concomitant pathologies (inflammatory diseases, seizures) or clonal haematopoiesis. Pilot studies suggest that methylome analysis of cfDNA from plasma and temporary opening of the blood-brain barrier by ultrasound have the potential to overcome some of these limitations. Together with this, an increased understanding of mechanisms modulating the shedding of cfDNA by the tumour may help to decrypt the meaning of cfDNA kinetics in blood or CSF.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Pieri
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurorehabilitation Unit; Neurophysiology Unit; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | |
Collapse
|
3
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Martins-Ferreira R, Leal B, Chaves J, Ciudad L, Samões R, Martins da Silva A, Pinho Costa P, Ballestar E. Circulating cell-free DNA methylation mirrors alterations in cerebral patterns in epilepsy. Clin Epigenetics 2022; 14:188. [PMID: 36575526 PMCID: PMC9795776 DOI: 10.1186/s13148-022-01416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DNA methylation profiling of circulating cell-free DNA (cfDNA) has rapidly become a promising strategy for biomarker identification and development. The cell-type-specific nature of DNA methylation patterns and the direct relationship between cfDNA and apoptosis can potentially be used non-invasively to predict local alterations. In addition, direct detection of altered DNA methylation patterns performs well as a biomarker. In a previous study, we demonstrated marked DNA methylation alterations in brain tissue from patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). RESULTS We performed DNA methylation profiling in cfDNA isolated from the serum of MTLE patients and healthy controls using BeadChip arrays followed by systematic bioinformatic analysis including deconvolution analysis and integration with DNase accessibility data sets. Differential cfDNA methylation analysis showed an overrepresentation of gene ontology terms and transcription factors related to central nervous system function and regulation. Deconvolution analysis of the DNA methylation data sets ruled out the possibility that the observed differences were due to changes in the proportional contribution of cortical neurons in cfDNA. Moreover, we found no overrepresentation of neuron- or glia-specific patterns in the described cfDNA methylation patterns. However, the MTLE-HS cfDNA methylation patterns featured a significant overrepresentation of the epileptic DNA methylation alterations previously observed in the hippocampus. CONCLUSIONS Our results support the use of cfDNA methylation profiling as a rational approach to seeking non-invasive and reproducible epilepsy biomarkers.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain ,grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Bárbara Leal
- grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - João Chaves
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,grid.413438.90000 0004 0574 5247Neurology Service, Hospital de Santo António - Centro Hospitalar Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain
| | - Raquel Samões
- grid.413438.90000 0004 0574 5247Neurology Service, Hospital de Santo António - Centro Hospitalar Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - António Martins da Silva
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,Neurophysiology Service, HSA-CHUP, Porto, Portugal
| | - Paulo Pinho Costa
- grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,grid.422270.10000 0001 2287 695XDepartment of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain ,grid.22069.3f0000 0004 0369 6365Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241 China
| |
Collapse
|
5
|
CfDNA Measurement as a Diagnostic Tool for the Detection of Brain Somatic Mutations in Refractory Epilepsy. Int J Mol Sci 2022; 23:ijms23094879. [PMID: 35563270 PMCID: PMC9102996 DOI: 10.3390/ijms23094879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsy is a neurological disorder that affects more than 50 million people. Its etiology is unknown in approximately 60% of cases, although the existence of a genetic factor is estimated in about 75% of these individuals. Hundreds of genes involved in epilepsy are known, and their number is increasing progressively, especially with next-generation sequencing techniques. However, there are still many cases in which the results of these molecular studies do not fully explain the phenotype of the patients. Somatic mutations specific to brain tissue could contribute to the phenotypic spectrum of epilepsy. Undetectable in the genomic DNA of blood cells, these alterations can be identified in cell-free DNA (cfDNA). We aim to review the current literature regarding the detection of somatic variants in cfDNA to diagnose refractory epilepsy, highlighting novel research directions and suggesting further studies.
Collapse
|
6
|
Martins-Ferreira R, Leal BG, Costa PP. The Potential of Circulating Cell-Free DNA Methylation as an Epilepsy Biomarker. Front Cell Neurosci 2022; 16:852151. [PMID: 35401115 PMCID: PMC8987989 DOI: 10.3389/fncel.2022.852151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) are highly degraded DNA fragments shed into the bloodstream. Apoptosis is likely to be the main source of cfDNA due to the matching sizes of cfDNA and apoptotic DNA cleavage fragments. The study of cfDNA in liquid biopsies has served clinical research greatly. Genetic analysis of these circulating fragments has been used in non-invasive prenatal testing, detection of graft rejection in organ transplants, and cancer detection and monitoring. cfDNA sequencing is, however, of limited value in settings in which genetic association is not well-established, such as most neurodegenerative diseases.Recent studies have taken advantage of the cell-type specificity of DNA methylation to determine the tissue of origin, thus detecting ongoing cell death taking place in specific body compartments. Such an approach is yet to be developed in the context of epilepsy research. In this article, we review the different approaches that have been used to monitor cell-type specific death through DNA methylation analysis, and recent data detecting neuronal death in neuropathological settings. We focus on the potential relevance of these tools in focal epilepsies, like Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS), characterized by severe neuronal loss. We speculate on the potential relevance of cfDNA methylation screening for the detection of neuronal cell death in individuals with high risk of epileptogenesis that would benefit from early diagnosis and consequent early treatment.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Bárbara Guerra Leal
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- *Correspondence: Bárbara Guerra Leal
| | - Paulo Pinho Costa
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Department of Human Genetics, Porto, Portugal
| |
Collapse
|
7
|
Ershova ES, Shmarina GV, Porokhovnik LN, Zakharova NV, Kostyuk GP, Umriukhin PE, Kutsev SI, Sergeeva VA, Veiko NN, Kostyuk SV. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls. Genes (Basel) 2022; 13:genes13030551. [PMID: 35328103 PMCID: PMC8955124 DOI: 10.3390/genes13030551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is associated with low-grade systemic inflammation. Circulating cell-free DNA (c-cfDNA) belongs to the DAMP class. The major research question was: can the c-cfDNA of schizophrenic patients (sz-cfDNA) stimulate the DNA sensor genes, which control the innate immunity? We investigated the in vitro response of ten human skin fibroblast (HSF) lines to five DNA probes containing different amounts of a GC-rich marker (the ribosomal repeat) and a DNA oxidation marker (8-oxodG) including sz-cfDNA and healthy control c-cfDNA (hc-cfDNA) probes. After 1 h, 3 h, and 24 h of incubation, the expression of 6 protein genes responsible for cfDNA transport into the cell (EEA1 and HMGB1) and the recognition of cytosolic DNA (TLR9, AIM2, STING and RIG-I) was analyzed at the transcriptional (RT-qPCR) and protein level (flow cytometry and fluorescence microscopy). Additionally, we analyzed changes in the RNA amount of 32 genes (RT-qPCR), which had been previously associated with different cellular responses to cell-free DNA with different characteristics. Adding sz-cfDNA and hc-cfDNA to the HSF medium in equal amounts (50 ng/mL) blocked endocytosis and stimulated TLR9 and STING gene expression while blocking RIG-I and AIM2 expression. Sz-cfDNA and hc-cfDNA, compared to gDNA, demonstrated much stronger stimulated transcription of genes that control cell proliferation, cytokine synthesis, apoptosis, autophagy, and mitochondrial biogenesis. No significant difference was observed in the response of the cells to sz-cfDNA and hc-cfDNA. Sz-cfDNA and hc-cfDNA showed similarly high biological activity towards HSFs, stimulating the gene activity of TLR9 and STING DNA sensor proteins and blocking the activity of the AIM2 protein gene. Since the sz-cfDNA content in the patients’ blood is several times higher than the hc-cfDNA content, sz-cfDNA may upregulate pro-inflammatory cytokines in schizophrenia.
Collapse
Affiliation(s)
- Elizaveta S. Ershova
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Galina V. Shmarina
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Lev N. Porokhovnik
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Correspondence:
| | - Natalia V. Zakharova
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - George P. Kostyuk
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - Pavel E. Umriukhin
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Department of Physiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey I. Kutsev
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Vasilina A. Sergeeva
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Natalia N. Veiko
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Svetlana V. Kostyuk
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| |
Collapse
|
8
|
Whitlock JH, Soelter TM, Williams AS, Hardigan AA, Lasseigne BN. Liquid biopsies in epilepsy: biomarkers for etiology, diagnosis, prognosis, and therapeutics. Hum Cell 2022; 35:15-22. [PMID: 34694568 PMCID: PMC8732818 DOI: 10.1007/s13577-021-00624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system, impacting nearly 50 million people around the world. Heterogeneous in nature, epilepsy presents in children and adults alike. Currently, surgery is one treatment approach that can completely cure epilepsy. However, not all individuals are eligible for surgical procedures or have successful outcomes. In addition to surgical approaches, antiepileptic drugs (AEDs) have also allowed individuals with epilepsy to achieve freedom from seizures. Others have found treatment through nonpharmacologic approaches such as vagus nerve stimulation, or responsive neurostimulation. Difficulty in accessing samples of human brain tissue along with advances in sequencing technology have driven researchers to investigate sampling liquid biopsies in blood, serum, plasma, and cerebrospinal fluid within the context of epilepsy. Liquid biopsies provide minimal or non-invasive sample collection approaches and can be assayed relatively easily across multiple time points, unlike tissue-based sampling. Various efforts have investigated circulating nucleic acids from these samples including microRNAs, cell-free DNA, transfer RNAs, and long non-coding RNAs. Here, we review nucleic acid-based liquid biopsies in epilepsy to improve understanding of etiology, diagnosis, prediction, and therapeutic monitoring.
Collapse
Affiliation(s)
- Jordan H Whitlock
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tabea M Soelter
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avery S Williams
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew A Hardigan
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N Lasseigne
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Bruno DCF, Donatti A, Martin M, Almeida VS, Geraldis JC, Oliveira FS, Dogini DB, Lopes-Cendes I. Circulating nucleic acids in the plasma and serum as potential biomarkers in neurological disorders. ACTA ACUST UNITED AC 2020; 53:e9881. [PMID: 32813850 PMCID: PMC7446710 DOI: 10.1590/1414-431x20209881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Neurological diseases are responsible for approximately 6.8 million deaths every year. They affect up to 1 billion people worldwide and cause significant disability and reduced quality of life. In most neurological disorders, the diagnosis can be challenging; it frequently requires long-term investigation. Thus, the discovery of better diagnostic methods to help in the accurate and fast diagnosis of neurological disorders is crucial. Circulating nucleic acids (CNAs) are defined as any type of DNA or RNA that is present in body biofluids. They can be found within extracellular vesicles or as cell-free DNA and RNA. Currently, CNAs are being explored as potential biomarkers for diseases because they can be obtained using non-invasive methods and may reflect unique characteristics of the biological processes involved in several diseases. CNAs can be especially useful as biomarkers for conditions that involve organs or structures that are difficult to assess, such as the central nervous system. This review presents a critical assessment of the most current literature about the use of plasma and serum CNAs as biomarkers for several aspects of neurological disorders: defining a diagnosis, establishing a prognosis, and monitoring the disease progression and response to therapy. We explored the biological origin, types, and general mechanisms involved in the generation of CNAs in physiological and pathological processes, with specific attention to neurological disorders. In addition, we present some of the future applications of CNAs as non-invasive biomarkers for these diseases.
Collapse
Affiliation(s)
- D C F Bruno
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A Donatti
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M Martin
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - V S Almeida
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - J C Geraldis
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - F S Oliveira
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - D B Dogini
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - I Lopes-Cendes
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
10
|
McGuckin Wuertz K, Treuting PM, Hemann EA, Esser-Nobis K, Snyder AG, Graham JB, Daniels BP, Wilkins C, Snyder JM, Voss KM, Oberst A, Lund J, Gale M. STING is required for host defense against neuropathological West Nile virus infection. PLoS Pathog 2019; 15:e1007899. [PMID: 31415679 DOI: 10.1371/journal.ppat.1007899] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
West Nile Virus (WNV), an emerging and re-emerging RNA virus, is the leading source of arboviral encephalitic morbidity and mortality in the United States. WNV infections are acutely controlled by innate immunity in peripheral tissues outside of the central nervous system (CNS) but WNV can evade the actions of interferon (IFN) to facilitate CNS invasion, causing encephalitis, encephalomyelitis, and death. Recent studies indicate that STimulator of INterferon Gene (STING), canonically known for initiating a type I IFN production and innate immune response to cytosolic DNA, is required for host defense against neurotropic RNA viruses. We evaluated the role of STING in host defense to control WNV infection and pathology in a murine model of infection. When challenged with WNV, STING knock out (-/-) mice displayed increased morbidity and mortality compared to wild type (WT) mice. Virologic analysis and assessment of STING activation revealed that STING signaling was not required for control of WNV in the spleen nor was WNV sufficient to mediate canonical STING activation in vitro. However, STING-/- mice exhibited a clear trend of increased viral load and virus dissemination in the CNS. We found that STING-/- mice exhibited increased and prolonged neurological signs compared to WT mice. Pathological examination revealed increased lesions, mononuclear cellular infiltration and neuronal death in the CNS of STING-/- mice, with sustained pathology after viral clearance. We found that STING was required in bone marrow derived macrophages for early control of WNV replication and innate immune activation. In vivo, STING-/- mice developed an aberrant T cell response in both the spleen and brain during WNV infection that linked with increased and sustained CNS pathology compared to WT mice. Our findings demonstrate that STING plays a critical role in immune programming for the control of neurotropic WNV infection and CNS disease.
Collapse
Affiliation(s)
- Kathryn McGuckin Wuertz
- Department of Global Health, University of Washington, Seattle, WA, United States of America.,Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America.,Department of Defense; United States Army Medical Department, San Antonio, TX, United States of America
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Emily A Hemann
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Katharina Esser-Nobis
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Annelise G Snyder
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States of America
| | - Courtney Wilkins
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Kathleen M Voss
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jennifer Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Michael Gale
- Department of Global Health, University of Washington, Seattle, WA, United States of America.,Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
11
|
Chen S, Liu M, Zhang X, Long R, Wang Y, Han Y, Zhang S, Xu M, Gu J. A Study of Cell-free DNA Fragmentation Pattern and Its Application in DNA Sample Type Classification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017:1-1. [PMID: 28692984 DOI: 10.1109/tcbb.2017.2723388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plasma cell-free DNA (cfDNA) has certain fragmentation patterns, which can bring non-random base content curves of the sequencing data's beginning cycles. We studied the patterns and found that we could determine whether a sample is cfDNA or not by just looking into the first 10 cycles of its base content curves. We analysed 3189 FastQ files, including 1442 cfDNA, 1234 genomic DNA, 507 FFPE tumour DNA and 6 urinary cfDNA. By deep analysing these data, we find the patterns are stable enough to distinguish cfDNA from other kinds of DNA samples. Based on this finding, we build classification models to recognise cfDNA samples by their sequencing data. Pattern recognition models are then trained with different classification algorithms like k-nearest neighbours (KNN), random forest and support vector machine (SVM). The result of 1000 iteration .632+ bootstrapping shows that all these classifiers can give an average accuracy higher than 98%, indicating that the cfDNA patterns are unique and can make the dataset highly separable. The best result is obtained using random forest classifier with a 99.89% average accuracy (σ = 0.00068). A tool called CfdnaPattern (http://github.com/OpenGene/CfdnaPattern) has been developed to train the model and to predict whether a sample is cfDNA or not.
Collapse
|
12
|
Ershova ES, Jestkova EM, Chestkov IV, Porokhovnik LN, Izevskaya VL, Kutsev SI, Veiko NN, Shmarina G, Dolgikh O, Kostyuk SV. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients. J Psychiatr Res 2017; 87:15-22. [PMID: 27987480 DOI: 10.1016/j.jpsychires.2016.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Abstract
Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p < 0.0000001). For the patients with other psychotic disorders and healthy controls, cfDNA/FL1-8-oxodG values were within the range of the values in SZ-2. Thus, apoptosis is impaired in approximately one-third of SZ patients. This leads to an increase in the number of cells with damaged DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder.
Collapse
Affiliation(s)
- E S Ershova
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - E M Jestkova
- Psychiatric Hospital № 14 of Moscow City Health Department, Moscow, 115447, Russia
| | - I V Chestkov
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - L N Porokhovnik
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia.
| | - V L Izevskaya
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - S I Kutsev
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - N N Veiko
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - G Shmarina
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - O Dolgikh
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| |
Collapse
|
13
|
Alapirtti T, Jylhävä J, Raitanen J, Mäkinen R, Peltola J, Hurme MA, Liimatainen S. The concentration of cell-free DNA in video-EEG patients is dependent on the epilepsy syndrome and duration of epilepsy. Neurol Res 2017; 38:45-50. [PMID: 27118450 DOI: 10.1080/01616412.2015.1127004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Cell-free DNA (cf-DNA) is a marker of inflammation and cell death. The purpose of the present study was to analyze the role of cf-DNA as a putative biomarker in refractory epilepsy. METHODS Baseline concentration of cf-DNA was measured in the serum of 51 carefully evaluated refractory epilepsy patients undergoing video-EEG monitoring. Epilepsy was classified based on seizure semiology, patient history, and imaging findings. Majority of the patients (47) had focal epilepsy. The association of the concentration cf-DNA with different clinical determinants was analyzed. 250 healthy individuals served as control subjects. RESULTS The mean baseline concentration of cf-DNA was lower in patients with extra temporal lobe epilepsy (XTLE) compared to control subjects (0.72 μg/ml vs. 0.80 μg/ml; p = 0.001). The difference in concentration of cf-DNA between patients with temporal lobe epilepsy (TLE) and control subjects was not significant. The maximum concentration of cf-DNA after baseline measurement was significantly lower in patients with duration of epilepsy ≥ 18 years compared to those with duration of epilepsy < 18 years (0.022 μg/ml vs. 0.031 μg/ml; p = 0.044). The maximum concentration of cf-DNA was higher in patients with body mass index (BMI) ≥ 25 compared to those with BMI < 25 (0.004 μg/ml vs. 0.041 μg/ml; p = 0.006). DISCUSSION The difference in cf-DNA concentration between patients with XTLE and control subjects strengthens the previous observations of the importance of epilepsy type with regard of different biomarkers.
Collapse
Affiliation(s)
- Tiina Alapirtti
- a Department of Neurology and Rehabilitation , Tampere University Hospital , Tampere , Finland
| | - Juulia Jylhävä
- b Department of Microbiology and Immunology , University of Tampere, School of Medicine , Tampere , Finland
| | - Jani Raitanen
- c School of Health Sciences , University of Tampere , Finland and UKK Institute for Health Promotion , Tampere , Finland
| | - Riikka Mäkinen
- d Medical Imaging Centre , Pirkanmaa Hospital District , Tampere , Finland
| | - Jukka Peltola
- a Department of Neurology and Rehabilitation , Tampere University Hospital , Tampere , Finland
| | - Mikko A Hurme
- b Department of Microbiology and Immunology , University of Tampere, School of Medicine , Tampere , Finland.,e The Laboratory Centre , Tampere University Hospital , Tampere , Finland
| | - Suvi Liimatainen
- a Department of Neurology and Rehabilitation , Tampere University Hospital , Tampere , Finland
| |
Collapse
|
14
|
Abstract
INTRODUCTION As the U.S. population ages, the incidence of chronic disease will rise. Chronic diseases have been linked to chronic inflammation. The purpose of this review is to summarize the literature on cell-free DNA (cfDNA) in relation to inflammation. METHODS PubMed, EMBASE, and Web of Science were searched. Inclusion criteria were noninterventional studies on acute and chronic inflammation, autoimmunity, and infection published in English after 2000, conducted in humans using the fluorescence method of quantifying DNA. Of the 442 articles retrieved, 83 were identified for full-text review and 13 remained after application of inclusion criteria. RESULTS Of the reviewed studies, three involved acute inflammation, six involved chronic inflammation, and four involved infection. Healthy controls with interpretable results were included in six studies, three of which used the Quant-iT high-sensitivity DNA kit and found cfDNA quantities near 800 ng/ml, while the other three used other fluorescence methods and found quantities below 100 ng/ml. All 13 studies compared groups, and all but 1 found statistically significant differences between them. Among studies using the Quant-iT reagent, levels were higher in infection than in chronic inflammation. Among studies that used other reagents, levels increased from chronic to acute inflammation to severe infection. CfDNA levels were associated with mortality and with clinical outcomes in acute inflammation and infection. Most studies assessed cfDNA's correlation with other inflammation biomarkers and found inconclusive results. CONCLUSION There appears to be an association between inflammation and cfDNA. Further research is necessary before cfDNA can be used clinically as a measure of inflammation.
Collapse
Affiliation(s)
- Mayu O Frank
- College of Nursing, New York University, New York, NY, USA Rockefeller University, New York, NY, USA
| |
Collapse
|
15
|
Chandrananda D, Thorne NP, Bahlo M. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA. BMC Med Genomics 2015; 8:29. [PMID: 26081108 PMCID: PMC4469119 DOI: 10.1186/s12920-015-0107-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022] Open
Abstract
Background High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. Methods In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. Results We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. Conclusions These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This sequence structure can be harnessed to improve bioinformatics algorithms, in particular for CNV and structural variant detection. Descriptive measures for cell-free DNA features developed here could also be used in biomarker analysis to monitor the changes that occur during different pathological conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0107-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dineika Chandrananda
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Natalie P Thorne
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Melanie Bahlo
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
16
|
Cox DJ, Field RH, Williams DG, Baran M, Bowie AG, Cunningham C, Dunne A. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 2015; 63:812-25. [PMID: 25627810 PMCID: PMC4657478 DOI: 10.1002/glia.22786] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/27/2022]
Abstract
The detection of nucleic acids by the innate immune system is an essential host response during viral infection. In recent years, a number of immune sensors capable of recognizing cytosolic DNA have been identified and include the PYHIN family members AIM2, IFI16, and p204 as well as the enzyme, cGAS. Activation of these receptors leads to the induction of antiviral genes including Type‐1 interferons and chemokines such as CCL5. We have carried out extensive expression profiling of these DNA sensors and other members of the PYHIN family in highly purified primary astrocytes and microglia and have demonstrated that both cell types express the majority of these proteins at the mRNA level. In microglia, several family members are highly upregulated in response to IFN‐β treatment while both cell types induce robust proinflammatory and antiviral cytokine production (e.g., IL‐6, CCL5, IFN‐β) in the presence of immune stimulatory DNA and RNA. The production of IL‐6 is partially dependent on the interferon receptor as is IFN‐β itself. Furthermore, we have found that p204 and AIM2 are upregulated in a Type I IFN dependent fashion in vivo, in a murine model of chronic neurodegeneration. Given the propensity of inflammatory responses to cause neuronal damage, increased expression and activation of these receptors, not only during viral infection but also during sterile inflammatory responses, has the potential to exacerbate existing neuroinflammation leading to further damage and impaired neurogenesis. GLIA 2015;63:812–825
Collapse
Affiliation(s)
- Donal J Cox
- Molecular Immunology Group, School, of Biochemistry and Immunology and Immunology Research Centre, Trinity College Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|