1
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. Acta Neuropathol Commun 2024; 12:166. [PMID: 39434170 PMCID: PMC11492509 DOI: 10.1186/s40478-024-01876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The recently discovered interaction between presenilin 1 (PS1), a subunit of γ-secretase involved in amyloid-β (Aβ) peptide production, and GLT-1, the major brain glutamate transporter (EAAT2 in the human), may link two pathological aspects of Alzheimer's disease: abnormal Aβ occurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based fluorescence lifetime imaging microscopy (FLIM) to characterize the PS1/GLT-1 interaction in brain tissue from sporadic AD (sAD) patients. sAD brains showed significantly less PS1/GLT-1 interaction than those with frontotemporal lobar degeneration or non-demented controls. Familial AD (fAD) PS1 mutations, inducing a "closed" PS1 conformation similar to that in sAD brain, and gamma-secretase modulators (GSMs), inducing a "relaxed" conformation, respectively reduced and increased the interaction. Furthermore, PS1 influences GLT-1 cell surface expression and homomultimer formation, acting as a chaperone but not affecting GLT-1 stability. The diminished PS1/GLT-1 interaction suggests that these functions may not work properly in AD.
Collapse
Affiliation(s)
- Florian Perrin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Lauren C Anderson
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shane P C Mitchell
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Priyanka Sinha
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuliia Turchyna
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mei C Q Houser
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Can Zhang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| | - Rudolph E Tanzi
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
2
|
Zhou X, Liu Y, Wu Z, Zhang X, Tao H. Alzheimer's disease and epilepsy: Research hotspots for comorbidity in the era of global aging. Epilepsy Behav 2024; 157:109849. [PMID: 38820684 DOI: 10.1016/j.yebeh.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Neurological conditions such as Alzheimer's disease (AD) and epilepsy share a significant clinical overlap, particularly in the elderly, with each disorder potentiating the risk of the other. This interplay is significant amidst an aging global demographic. The review explores the classical pathologies of AD, including amyloid-beta plaques and hyperphosphorylated tau, and their potential role in the genesis of epilepsy. It also delves into the imbalance of glutamate and gamma-amino butyric acid activities, a key mechanism in epilepsy that may be influenced by AD pathology. The impact of age of onset on comorbidity is examined, with early-onset AD and Down syndrome presenting higher risks of epilepsy. The review suggests that epilepsy might precede cognitive symptoms in AD, indicating a complex interaction. Sleep modulation is highlighted as a factor, with sleep disturbances potentially contributing to AD progression. The necessity for cautious medication management is emphasized due to the cognitive effects of certain antiepileptic drugs. Animal models are recognized for their importance in understanding the relationship between AD and epilepsy, though creating fully representative models presents a challenge. The review concludes by noting the efficacy of medications such as lamotrigine, levetiracetam, and memantine in managing both conditions and suggests the ketogenic diet and cannabidiol as emerging treatment options, warranting further investigation for comprehensive patient care strategies.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
3
|
Puntambekar I, Xiao F, Shortman R, Koepp M. Functional imaging in late-onset epilepsy: A focused review. Seizure 2024:S1059-1311(24)00190-0. [PMID: 38991884 DOI: 10.1016/j.seizure.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION About 25 % of new-onset epilepsies are diagnosed after age 65. Late-onset epilepsy (LOE) is predicted to become a major healthcare problem in the next 15 years as the global population increases and ages. Neurodegenerative disorders account for 10-20 % of LOE, while over 20 % of these patients have an unknown etiology. Established diagnostic tools such as FDG-PET and novel biomarkers of neurodegeneration including amyloid and tau PET hold a lot of promise in diagnosing and ruling out neurodegenerative disorders in these patients. METHODS We conducted a literature search to identify articles involving LOE populations and using one or more functional neuroimaging techniques. RESULTS A total of 5 studies were identified through Boolean searching and snowballing. These were highly heterogenous with respect to operational definitions of LOE, analyses and interpretation pipelines. CONCLUSION While there is some evidence for feasibility and usefulness of FDG- and Amyloid PET in LOE, methodological heterogeneities in the available literature preclude any notable conclusions. Future research in this field will benefit from a consensus on epilepsy-specific analysis and interpretation guidelines for amyloid and tau PET.
Collapse
Affiliation(s)
- Isha Puntambekar
- Department of Clinical and experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK
| | - Fenglai Xiao
- Department of Clinical and experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK
| | | | - Matthias Koepp
- Department of Clinical and experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK; University College Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
4
|
Perrin F, Sinha P, Mitchell SPC, Sadek M, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. J Biol Chem 2024; 300:107172. [PMID: 38499151 PMCID: PMC11015137 DOI: 10.1016/j.jbc.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.
Collapse
Affiliation(s)
- Florian Perrin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Priyanka Sinha
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Shane Patrick Clancy Mitchell
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael Sadek
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
5
|
Honkanen EA, Rönkä J, Pekkonen E, Aaltonen J, Koivu M, Eskola O, Eldebakey H, Volkmann J, Kaasinen V, Reich MM, Joutsa J. GPi-DBS-induced brain metabolic activation in cervical dystonia. J Neurol Neurosurg Psychiatry 2024; 95:300-308. [PMID: 37758453 DOI: 10.1136/jnnp-2023-331668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is a highly efficacious treatment for cervical dystonia, but its mechanism of action is not fully understood. Here, we investigate the brain metabolic effects of GPi-DBS in cervical dystonia. METHODS Eleven patients with GPi-DBS underwent brain 18F-fluorodeoxyglucose positron emission tomography imaging during stimulation on and off. Changes in regional brain glucose metabolism were investigated at the active contact location and across the whole brain. Changes in motor symptom severity were quantified using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), executive function using trail making test (TMT) and parkinsonism using Unified Parkinson's Disease Rating Scale (UPDRS). RESULTS The mean (SD) best therapeutic response to DBS during the treatment was 81 (22)%. The TWSTRS score was 3.2 (3.9) points lower DBS on compared with off (p=0.02). At the stimulation site, stimulation was associated with increased metabolism, which correlated with DBS stimulation amplitude (r=0.70, p=0.03) but not with changes in motor symptom severity (p>0.9). In the whole brain analysis, stimulation increased metabolism in the GPi, subthalamic nucleus, putamen, primary sensorimotor cortex (PFDR<0.05). Acute improvement in TWSTRS correlated with metabolic activation in the sensorimotor cortex and overall treatment response in the supplementary motor area. Worsening of TMT-B score was associated with activation of the anterior cingulate cortex and parkinsonism with activation in the putamen. CONCLUSIONS GPi-DBS increases metabolic activity at the stimulation site and sensorimotor network. The clinical benefit and adverse effects are mediated by modulation of specific networks.
Collapse
Affiliation(s)
- Emma A Honkanen
- Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
- Department of Neurology, Satasairaala Central Hospital, Pori, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jaana Rönkä
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Juho Aaltonen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
| | - Maija Koivu
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Olli Eskola
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Hazem Eldebakey
- Department of Neurology, University Hospital Wurzburg, Wurzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Wurzburg, Wurzburg, Germany
| | - Valtteri Kaasinen
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Martin M Reich
- Department of Neurology, University Hospital Wurzburg, Wurzburg, Germany
| | - Juho Joutsa
- Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3495211. [PMID: 37986905 PMCID: PMC10659539 DOI: 10.21203/rs.3.rs-3495211/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The recently discovered interaction between presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for the generation of amyloid-β(Aβ) peptides, and GLT-1, the major glutamate transporter in the brain (EAAT2 in the human) may provide a mechanistic link between two important pathological aspects of Alzheimer's disease (AD): abnormal Aβoccurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based approach, fluorescence lifetime imaging microscopy (FLIM), to characterize the PS1/GLT-1 interaction in its native environment in the brain tissue of sporadic AD (sAD) patients. There was significantly less interaction between PS1 and GLT-1 in sAD brains, compared to tissue from patients with frontotemporal lobar degeneration (FTLD), or non-demented age-matched controls. Since PS1 has been shown to adopt pathogenic "closed" conformation in sAD but not in FTLD, we assessed the impact of changes in PS1 conformation on the interaction. Familial AD (fAD) PS1 mutations which induce a "closed" PS1 conformation similar to that in sAD brain and gamma-secretase modulators (GSMs) which induce a "relaxed" conformation, reduced and increased the interaction, respectively. This indicates that PS1 conformation seems to have a direct effect on the interaction with GLT-1. Furthermore, using biotinylation/streptavidin pull-down, western blotting, and cycloheximide chase assays, we determined that the presence of PS1 increased GLT-1 cell surface expression and GLT-1 homomultimer formation, but did not impact GLT-1 protein stability. Together, the current findings suggest that the newly described PS1/GLT-1 interaction endows PS1 with chaperone activity, modulating GLT-1 transport to the cell surface and stabilizing the dimeric-trimeric states of the protein. The diminished PS1/GLT-1 interaction suggests that these functions of the interaction may not work properly in AD.
Collapse
|
7
|
Fang Y, Si X, Wang J, Wang Z, Chen Y, Liu Y, Yan Y, Tian J, Zhang B, Pu J. Alzheimer Disease and Epilepsy: A Mendelian Randomization Study. Neurology 2023; 101:e399-e409. [PMID: 37225432 PMCID: PMC10435057 DOI: 10.1212/wnl.0000000000207423] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Observational studies suggested a bidirectional relationship between Alzheimer disease (AD) and epilepsies. However, it remains debated whether and in which direction a causal association exists. This study aims to explore the relationship between genetic predisposition to AD, CSF biomarkers of AD (β-amyloid [Aβ] 42 and phosphorylated tau [pTau]), and epilepsies with 2-sample, bidirectional Mendelian randomization (MR) method. METHODS Genetic instruments were obtained from large-scale genome-wide meta-analysis of AD (Ncase/proxy = 111,326, Ncontrol = 677,663), CSF biomarkers of AD (Aβ42 and pTau, N = 13,116), and epilepsy (Ncase = 15,212, Ncontrol = 29,677) of European ancestry. Epilepsy phenotypes included all epilepsy, generalized epilepsy, focal epilepsy, childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, generalized epilepsy with tonic-clonic seizures, focal epilepsy with hippocampal sclerosis (focal HS), and lesion-negative focal epilepsy. Main analyses were performed using generalized summary data-based MR. Sensitivity analyses included inverse variance weighted, MR pleiotropy residual sum and outlier, MR-Egger, weighted mode, and weighted median. RESULTS For forward analysis, genetic predisposition to AD was associated with an increased risk of generalized epilepsy (odds ratio [OR] 1.053, 95% CI 1.002-1.105, p = 0.038) and focal HS (OR 1.013, 95% CI 1.004-1.022, p = 0.004). These associations were consistent across sensitivity analyses and replicated using a separate set of genetic instruments from another AD genome-wide association study. For reverse analysis, there was a suggestive effect of focal HS on AD (OR 3.994, 95% CI 1.172-13.613, p = 0.027). In addition, genetically predicted lower CSF Aβ42 was associated with an increased risk of generalized epilepsy (β = 0.090, 95% CI 0.022-0.158, p = 0.010). DISCUSSION This MR study supports a causal link between AD, amyloid pathology, and generalized epilepsy. This study also indicates a close association between AD and focal HS. More effort should be made to screen seizure in AD, unravel its clinical implications, and explore its role as a putative modifiable risk factor.
Collapse
Affiliation(s)
- Yi Fang
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Si
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Wang
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyun Wang
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Chen
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Liu
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Yan
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tian
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Perrin F, Sinha P, Mitchell S, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542955. [PMID: 37398024 PMCID: PMC10312500 DOI: 10.1101/2023.05.30.542955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β (Aβ) peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2) provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy (FLIM) to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1/PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1/PS1 interaction in intact neurons by FLIM. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1/PS1 interaction and its relevance in normal physiology and AD models.
Collapse
|
9
|
Costa C, Vecchio F, Romoli M, Miraglia F, Cesarini EN, Alù F, Calabresi P, Rossini PM. Cognitive Decline Risk Stratification in People with Late-Onset Epilepsy of Unknown Etiology: An Electroencephalographic Connectivity and Graph Theory Pilot Study. J Alzheimers Dis 2021; 88:893-901. [PMID: 34842184 DOI: 10.3233/jad-210350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although people with late onset epilepsy of unknown etiology (LOEU) are at higher risk of cognitive decline compared to the general population, we still lack affordable tools to predict and stratify their risk of dementia. OBJECTIVE This pilot-study investigates the potential application of electroencephalography (EEG) network small-world (SW) properties in predicting cognitive decline among patients with LOEU. METHODS People diagnosed with LOEU and normal cognitive examination at the time of epilepsy diagnosis were included. Cerebrospinal fluid biomarkers, brain imaging, and neuropsychological assessment were performed at the time of epilepsy diagnosis. Baseline EEG was analyzed for SW properties. Patients were followed-up over time with neuropsychological testing to define the trajectory of cognitive decline. RESULTS Over 5.1 years of follow-up, among 24 patients diagnosed with LOEU, 62.5% were female, mean age was 65.3 years, thirteen developed mild cognitive impairment (MCI), and four developed dementia. Patients with LOEU developing MCI had lower values of SW coefficients in the delta (p = 0.03) band and higher SW values in the alpha frequency bands (p = 0.02) compared to patients having normal cognition at last follow-up. The two separate ANOVAs, for low and alpha bands, confirmed an interaction between SW and cognitive decline at follow-up. A similar gradient was confirmed for patients developing dementia compared to those with normal cognitive function as well as to those developing MCI. CONCLUSION Baseline EEG analysis through SW is worth investigating as an affordable, widely available tool to stratify LOEU patients for their risk of cognitive decline.
Collapse
Affiliation(s)
- Cinzia Costa
- Neurology Clinic, S. Maria della Misericordia Hospital -University of Perugia, Perugia, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilition, IRCCS San Raffaele Roma, Roma, Italy.,eCampus University, Novedrate (Como), Italy
| | - Michele Romoli
- Neurology Clinic, S. Maria della Misericordia Hospital -University of Perugia, Perugia, Italy.,UOC Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore C.A. Pizzardi, Bologna, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilition, IRCCS San Raffaele Roma, Roma, Italy
| | - Elena Nardi Cesarini
- Neurology Clinic, S. Maria della Misericordia Hospital -University of Perugia, Perugia, Italy.,UOC Neurologia, Ospedale di Senigallia, Senigallia, Italy
| | - Francesca Alù
- Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilition, IRCCS San Raffaele Roma, Roma, Italy
| | - Paolo Calabresi
- Neurologia, DipartimentoNeuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy.,Neurologia, Fondazione Policlinico Universitario"A. Gemelli" IRCCS, Roma, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilition, IRCCS San Raffaele Roma, Roma, Italy
| |
Collapse
|
10
|
Romoli M, Sen A, Parnetti L, Calabresi P, Costa C. Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol 2021; 17:469-485. [PMID: 34117482 DOI: 10.1038/s41582-021-00505-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
People with epilepsy - in particular, late-onset epilepsy of unknown aetiology - have an elevated risk of dementia, and seizures have been detected in the early stages of Alzheimer disease (AD), supporting the concept of an epileptic AD prodrome. However, the relationship between epilepsy and cognitive decline remains controversial, with substantial uncertainties about whether epilepsy drives cognitive decline or vice versa, and whether shared pathways underlie both conditions. Here, we review evidence that amyloid-β (Aβ) forms part of a shared pathway between epilepsy and cognitive decline, particularly in the context of AD. People with epilepsy show an increased burden of Aβ pathology in the brain, and Aβ-mediated epileptogenic alterations have been demonstrated in experimental studies, with evidence suggesting that Aβ pathology might already be pro-epileptogenic at the soluble stage, long before plaque deposition. We discuss the hypothesis that Aβ mediates - or is at least a major determinant of - a continuum spanning epilepsy and cognitive decline. Serial cognitive testing and assessment of Aβ levels might be worthwhile to stratify the risk of developing dementia in people with late-onset epilepsy. If seizures are a clinical harbinger of dementia, people with late-onset epilepsy could be an ideal group in which to implement preventive or therapeutic strategies to slow cognitive decline.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.,Neurology and Stroke Unit, "Maurizio Bufalini" Hospital, Cesena, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Lucilla Parnetti
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
11
|
Shin H, Lee SY, Cho HU, Oh Y, Kim IY, Lee KH, Jang DP, Min HK. Fornix Stimulation Induces Metabolic Activity and Dopaminergic Response in the Nucleus Accumbens. Front Neurosci 2019; 13:1109. [PMID: 31708723 PMCID: PMC6821687 DOI: 10.3389/fnins.2019.01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
The Papez circuit, including the fornix white matter bundle, is a well-known neural network that is involved in multiple limbic functions such as memory and emotional expression. We previously reported a large-animal study of deep brain stimulation (DBS) in the fornix that found stimulation-induced hemodynamic responses in both the medial limbic and corticolimbic circuits on functional resonance imaging (fMRI) and evoked dopamine responses in the nucleus accumbens (NAc), as measured by fast-scan cyclic voltammetry (FSCV). The effects of DBS on the fornix are challenging to analyze, given its structural complexity and connection to multiple neuronal networks. In this study, we extend our earlier work to a rodent model wherein we characterize regional brain activity changes resulting from fornix stimulation using fludeoxyglucose (18F-FDG) micro positron emission tomography (PET) and monitor neurochemical changes using FSCV with pharmacological confirmation. Both global functional changes and local changes were measured in a rodent model of fornix DBS. Functional brain activity was measured by micro-PET, and the neurochemical changes in local areas were monitored by FSCV. Micro-PET images revealed increased glucose metabolism within the medial limbic and corticolimbic circuits. Neurotransmitter efflux induced by fornix DBS was monitored at NAc by FSCV and identified by specific neurotransmitter reuptake inhibitors. We found a significant increase in the metabolic activity in several key regions of the medial limbic circuits and dopamine efflux in the NAc following fornix stimulation. These results suggest that electrical stimulation of the fornix modulates the activity of brain memory circuits, including the hippocampus and NAc within the dopaminergic pathway.
Collapse
Affiliation(s)
- Hojin Shin
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, South Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea
| | - Hyun-U Cho
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, South Korea
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - In Young Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Dong Pyo Jang
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, South Korea
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Radiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Paudel YN, Angelopoulou E, Jones NC, O’Brien TJ, Kwan P, Piperi C, Othman I, Shaikh MF. Tau Related Pathways as a Connecting Link between Epilepsy and Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4199-4212. [PMID: 31532186 DOI: 10.1021/acschemneuro.9b00460] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emerging findings point toward an important interconnection between epilepsy and Alzheimer's disease (AD) pathogenesis. Patients with epilepsy (PWE) commonly exhibit cognitive impairment similar to AD patients, who in turn are at a higher risk of developing epilepsy compared to age-matched controls. To date, no disease-modifying treatment strategy is available for either epilepsy or AD, reflecting an immediate need for exploring common molecular targets, which can delineate a possible mechanistic link between epilepsy and AD. This review attempts to disentangle the interconnectivity between epilepsy and AD pathogenesis via the crucial contribution of Tau protein. Tau protein is a microtubule-associated protein (MAP) that has been implicated in the pathophysiology of both epilepsy and AD. Hyperphosphorylation of Tau contributes to the different forms of human epilepsy and inhibition of the same exerted seizure inhibitions and altered disease progression in a range of animal models. Moreover, Tau-protein-mediated therapy has demonstrated promising outcomes in experimental models of AD. In this review, we discuss how Tau-related mechanisms might present a link between the cause of seizures in epilepsy and cognitive disruption in AD. Untangling this interconnection might be instrumental in designing novel therapies that can minimize epileptic seizures and cognitive deficits in patients with epilepsy and AD.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Nigel C. Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
| |
Collapse
|
13
|
Zhou X, Tao H, Cai Y, Cui L, Zhao B, Li K. Stage-dependent involvement of ADAM10 and its significance in epileptic seizures. J Cell Mol Med 2019; 23:4494-4504. [PMID: 31087543 PMCID: PMC6584734 DOI: 10.1111/jcmm.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/05/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
The prevalence of epileptic seizures in Alzheimer's disease (AD) has attracted an increasing amount of attention in recent years, and many cohort studies have found several risk factors associated with the genesis of seizures in AD. Among these factors, young age and severe dementia are seemingly contradictory and independent risk factors, indicating that the pathogenesis of epileptic seizures is, to a certain extent, stage‐dependent. A disintegrin and metalloproteinase domain‐containing protein 10 (ADAM10) is a crucial α‐secretase responsible for ectodomain shedding of its substrates; thus, the function of this protein depends on the biological effects of its substrates. Intriguingly, transgenic models have demonstrated ADAM10 to be associated with epilepsy. Based on the biological effects of its substrates, the potential pathogenic roles of ADAM10 in epileptic seizures can be classified into amyloidogenic processes in the ageing stage and cortical dysplasia in the developmental stage. Therefore, ADAM10 is reviewed here as a stage‐dependent modulator in the pathogenesis of epilepsy. Current data regarding ADAM10 in epileptic seizures were collected and reviewed for potential pathogenic roles (ie amyloidogenic processes and cortical dysplasia) and regulatory mechanisms (ie transcriptional and posttranscriptional regulation). These findings are then discussed in terms of the significance of the stage‐dependent functions of ADAM10 in epilepsy. Several potential targets for seizure control, such as candidate transcription factors and microRNAs that regulate ADAM10, as well as potential genetic screening tools for the early recognition of cortical dysplasia, have been suggested but must be studied in more detail.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|