1
|
Villena-Rueda BE, Kajitani GS, Ota VK, Honorato-Mauer J, Santoro ML, Bugiga AVG, Rosa JS, Asprino PF, Meneghetti P, Torrecilhas AC, Intasqui P, Bertolla RP, Foresti ML, da Graça Naffah-Mazzacoratti M, de Moraes Mello LEA, Belangero SI. miR-9-5p is Downregulated in Serum Extracellular Vesicles of Patients Treated with Biperiden After Traumatic Brain Injury. Mol Neurobiol 2024; 61:9595-9607. [PMID: 38664300 DOI: 10.1007/s12035-024-04194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/19/2024] [Indexed: 10/23/2024]
Abstract
Traumatic brain injury (TBI) is a prevalent and debilitating condition, which often leads to the development of post-traumatic epilepsy (PTE), a condition that yet lacks preventive strategies. Biperiden, an anticholinergic drug, is a promising candidate that has shown efficacy in murine models of PTE. MicroRNAs (miRNAs), small regulatory RNAs, can help in understanding the biological basis of PTE and act as TBI- and PTE-relevant biomarkers that can be detected peripherally, as they are present in extracellular vesicles (EVs) that cross the blood-brain barrier. This study aimed to investigate miRNAs in serum EVs from patients with TBI, and their association with biperiden treatment and PTE. Blood samples of 37 TBI patients were collected 10 days after trauma and treatment initiation in a double-blind clinical trial. A total of 18 patients received biperiden, with three subjects developing PTE, and 19 received placebo, with two developing PTE. Serum EVs were characterized by size distribution and protein profiling, followed by high-throughput sequencing of the EV miRNome. Differential expression analysis revealed no significant differences in miRNA expression between TBI patients with and without PTE. Interestingly, miR-9-5p displayed decreased expression in biperiden-treated patients compared to the placebo group. This miRNA regulates genes enriched in stress response pathways, including axonogenesis and neuronal death, relevant to both PTE and TBI. These findings indicate that biperiden may alter miR-9-5p expression in serum EVs, which may play a role in TBI resolution.
Collapse
Affiliation(s)
- Beatriz Enguidanos Villena-Rueda
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Satoru Kajitani
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jessica Honorato-Mauer
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcos Leite Santoro
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Molecular Biology Division, Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda Victória Gomes Bugiga
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Joice Santos Rosa
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Paula Meneghetti
- Laboratório de Imunologia Celular E Bioquímica de Fungos E Protozoários, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular E Bioquímica de Fungos E Protozoários, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paula Intasqui
- Human Reproduction Section, Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Human Reproduction Section, Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maira Licia Foresti
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto D'Or de Pesquisa E Ensino (IDOR), São Paulo, Brazil
| | | | - Luiz Eugênio Araújo de Moraes Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto D'Or de Pesquisa E Ensino (IDOR), São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil.
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
2
|
Foresti ML, Garzon E, de Moraes MT, Valeriano RPS, Santiago JP, dos Santos GM, Longo NM, Baise C, Andrade JCQF, Susemihl MA, Leite CDC, Naffah Mazzacoratti MDG, Paiva WS, de Andrade AF, Teixeira MJ, Mello LE. Initial clinical evidence on biperiden as antiepileptogenic after traumatic brain injury-a randomized clinical trial. Front Neurol 2024; 15:1443982. [PMID: 39175759 PMCID: PMC11339878 DOI: 10.3389/fneur.2024.1443982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
There is currently no efficacious intervention for preventing post-traumatic epilepsy (PTE). Preclinical studies support the potential use of anticholinergics for this condition. The purpose of this study was to evaluate the effects of biperiden as an intervention for preventing PTE. A randomized, double-blinded clinical trial was conducted at HC/FMUSP between 2018-2022. Adults with acute traumatic brain injury (TBI) were randomly assigned to receive biperiden or placebo, for 10 days. The primary outcome was the incidence of PTE while the secondary outcomes included the frequency of seizures, the frequency of any adverse events and mortality after 24 months. The study was powered at a planned enrolment of 132 patients. The trial began in January 2018 and was halted by researchers on March 2020 (and terminated in December 2022) in the face of the global COVID-19 pandemic. Overall, 123 participants were randomized and 112 contributed with data for modified mITT analysis, being that 61 (49.5%) participants completed the 24-month follow-up consult. Data analysis indicated lack of evidence of biperiden for either, the incidence of post-traumatic epilepsy (2.6, 95%CI, 0.65-10.57; p = 0.170) or the mortality rate (1.57, 95%CI, 0.73-3.38; p = 0.248). The frequency of late post-traumatic seizures was higher for biperiden group (2.03, 95%CI = 0.912-3.1597; p <0.001). The present study suggests that there was insufficient evidence regarding the effect of biperiden in preventing PTE after TBI, which underpins the need for larger studies. Clinical trial registration: ClinicalTrials.gov, identifier: NCT01048138.
Collapse
Affiliation(s)
- Maira Licia Foresti
- Neurology Neuroscience Postgraduation Program, Physiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto D’Or de Pesquisa e Ensino, São Paulo, Brazil
| | - Eliana Garzon
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Sociedade Beneficente de Senhoras Hospital Sírio-Libanês, São Paulo, Brazil
| | - Mariana Teichner de Moraes
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael P. S. Valeriano
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - João Paulo Santiago
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Mercenas dos Santos
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Natália Mata Longo
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Baise
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Joaquina C. Q. F. Andrade
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Claudia da Costa Leite
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria da Graça Naffah Mazzacoratti
- Neurology Neuroscience Postgraduation Program, Physiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wellingson Silva Paiva
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Almir Ferreira de Andrade
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Manuel Jacobsen Teixeira
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz E. Mello
- Neurology Neuroscience Postgraduation Program, Physiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto D’Or de Pesquisa e Ensino, São Paulo, Brazil
| |
Collapse
|
3
|
Ots HD, Anderson T, Sherrerd-Smith W, DelBianco J, Rasic G, Chuprin A, Toor Z, Fitch E, Ahuja K, Reid F, Musto AE. Scoping review of disease-modifying effect of drugs in experimental epilepsy. Front Neurol 2023; 14:1097473. [PMID: 36908628 PMCID: PMC9997527 DOI: 10.3389/fneur.2023.1097473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Epilepsy affects ~50 million people worldwide causing significant medical, financial, and sociologic concerns for affected patients and their families. To date, treatment of epilepsy is primarily symptomatic management because few effective preventative or disease-modifying interventions exist. However, recent research has identified neurobiological mechanisms of epileptogenesis, providing new pharmacologic targets to investigate. The current scientific evidence remains scattered across multiple studies using different model and experimental designs. The review compiles different models of anti-epileptogenic investigation and highlights specific compounds with potential epileptogenesis-modifying experimental drugs. It provides a platform for standardization of future epilepsy research to allow a more robust compound analysis of compounds with potential for epilepsy prevention. Methods PubMed, Ovid MEDLINE, and Web of Science were searched from 2007 to 2021. Studies with murine models of epileptogenesis and explicitly detailed experimental procedures were included in the scoping review. In total, 51 articles were selected from 14,983 and then grouped by five core variables: (1) seizure frequency, (2) seizure severity, (3) spontaneous recurrent seizures (SRS), (4) seizure duration, and (5) mossy fiber sprouting (MFS). The variables were differentiated based on experimental models including methods of seizure induction, treatment schedule and timeline of data collection. Data was categorized by the five core variables and analyzed by converting original treatment values to units of percent of its respective control. Results Discrepancies in current epileptogenesis models significantly complicate inter-study comparison of potential anti-epileptogenic interventions. With our analysis, many compounds showed a potential to reduce epileptogenic characteristics defined by the five core variables. WIN55,212-2, aspirin, rapamycin, 1400W, and LEV + BQ788 were identified compounds with the potential of effective anti-epileptic properties. Significance Our review highlights the need for consistent methodology in epilepsy research and provides a novel approach for future research. Inconsistent experimental designs hinder study comparison, slowing the progression of treatments for epilepsy. If the research community can optimize and standardize parameters such as methods of seizure induction, administration schedule, sampling time, and aniMal models, more robust meta-analysis and collaborative research would follow. Additionally, some compounds such as rapamycin, WIN 55,212-2, aspirin, 1400W, and LEV + BQ788 showed anti-epileptogenic modulation across multiple variables. We believe they warrant further study both individually and synergistically.
Collapse
Affiliation(s)
- Heather D. Ots
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Taylor Anderson
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John DelBianco
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Gordana Rasic
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anthony Chuprin
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Zeeshan Toor
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Elizabeth Fitch
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kripa Ahuja
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Faith Reid
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E. Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
4
|
Biperiden for prevention of post-traumatic epilepsy: A protocol of a double-blinded placebo-controlled randomized clinical trial (BIPERIDEN trial). PLoS One 2022; 17:e0273584. [PMID: 36084082 PMCID: PMC9462738 DOI: 10.1371/journal.pone.0273584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Traumatic brain injury (TBI) is one of the most important causes of acquired structural epilepsy, post-traumatic epilepsy (PTE), however, efficient preventative measures and treatment are still not available to patients. Preclinical studies indicated biperiden, an anticholinergic drug, as a potential drug to modify the epileptogenic process. The main objective of this clinical trial is to evaluate the efficacy of biperiden as an antiepileptogenic agent in patients that suffered TBI.
Methods
This prospective multicenter (n = 10) interventional study will include 312 adult patients admitted to emergency care units with a diagnosis of moderate or severe TBI. Following inclusion and exclusion criteria, patients will be randomized, using block randomization, to receive double-blind treatment with placebo or biperiden for 10 days. Follow-up will occur at specific time windows up to 2 years. Main outcomes are incidence of PTE after TBI and occurrence of severe adverse events. Other outcomes include exploratory investigation of factors that might have benefits for the treatment or might influence its results, such as genetic background, clinical progression, electroencephalographic abnormalities, health-related quality of life and neuropsychological status. Analyses will be conducted following the safety, intention-to-treat and efficacy concepts.
Discussion
We hypothesize that biperiden treatment will be effective to prevent or mitigate the development of post-traumatic epilepsy in TBI patients. Other health measures from this population also may benefit from treatment with biperiden.
Trial registration
ClinicalTrials.gov, NCT04945213. Registered on June 30, 2021.
Collapse
|
5
|
Pharmacological perspectives and mechanisms involved in epileptogenesis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epileptogenesis can be defined as the process by which a previously healthy brain develops a tendency toward recurrent electrical activity, occurring in three phases: first as an initial trigger (such as stroke, infections, and traumatic brain injury); followed by the latency period and the onset of spontaneous and recurrent seizures which characterizes epilepsy.
Main body
The mechanisms that may be involved in epileptogenesis are inflammation, neurogenesis, migration of neurons to different regions of the brain, neural reorganization, and neuroplasticity.In recent years, experimental studies have enabled the discovery of several mechanisms involved in the process of epileptogenesis, mainly neuroinflammation, that involves the activation of glial cells and an increase in specific inflammatory mediators. The lack of an experimental animal model protocol for epileptogenic compounds contributes to the difficulty in understanding disease development and the creation of new drugs.
Conclusion
To solve these difficulties, a new approach is needed in the development of new AEDs that focus on the process of epileptogenesis and the consolidation of animal models for studies of antiepileptogenic compounds, aiming to reach the clinical phases of the study. Some examples of these compounds are rapamycin, which inhibits mTOR signaling, and losartan, that potentiates the antiepileptogenic effect of some AEDs. Based on this, this review discusses the main mechanisms involved in epileptogenesis, as well as its pharmacological approach.
Collapse
|
6
|
Sanabria V, Romariz S, Braga M, Foresti ML, Naffah-Mazzacoratti MDG, Mello LE, Longo BM. Anticholinergics: A potential option for preventing posttraumatic epilepsy. Front Neurosci 2022; 16:1100256. [PMID: 36909741 PMCID: PMC9998514 DOI: 10.3389/fnins.2022.1100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/30/2022] [Indexed: 03/14/2023] Open
Abstract
Interest in the use of anticholinergics to prevent the development of epilepsy after traumatic brain injury (TBI) has grown since recent basic studies have shown their effectiveness in modifying the epileptogenic process. These studies demonstrated that treatment with anticholinergics, in the acute phase after brain injury, decreases seizure frequency, and severity, and the number of spontaneous recurrent seizures (SRS). Therefore, anticholinergics may reduce the risk of developing posttraumatic epilepsy (PTE). In this brief review, we summarize the role of the cholinergic system in epilepsy and the key findings from using anticholinergic drugs to prevent PTE in animal models and new clinical trial protocols. Furthermore, we discuss why treatment with anticholinergics is more likely to prevent PTE than treatment for other epilepsies.
Collapse
Affiliation(s)
- Viviam Sanabria
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Simone Romariz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Matheus Braga
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maira Licia Foresti
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | | | - Luiz Eugênio Mello
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, São Paulo, Brazil
| | - Beatriz M Longo
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Selected Molecular Targets for Antiepileptogenesis. Int J Mol Sci 2021; 22:ijms22189737. [PMID: 34575901 PMCID: PMC8466306 DOI: 10.3390/ijms22189737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.
Collapse
|
8
|
Benassi SK, Alves JGSM, Guidoreni CG, Massant CG, Queiroz CM, Garrido-Sanabria E, Loduca RDDS, Susemihl MA, Paiva WS, de Andrade AF, Teixeira MJ, Andrade JQ, Garzon E, Foresti ML, Mello LE. Two decades of research towards a potential first anti-epileptic drug. Seizure 2021; 90:99-109. [DOI: 10.1016/j.seizure.2021.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 11/27/2022] Open
|
9
|
Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiol Dis 2021; 158:105446. [PMID: 34280524 DOI: 10.1016/j.nbd.2021.105446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Prevention or modification of acquired epilepsy in patients at risk is an urgent, yet unmet, clinical need. Following acute brain insults, there is an increased risk of mesial temporal lobe epilepsy (mTLE), which is often associated with debilitating comorbidities and reduced life expectancy. The latent period between brain injury and the onset of epilepsy may offer a therapeutic window for interfering with epileptogenesis. The pilocarpine model of mTLE is widely used in the search for novel antiepileptogenic treatments. Recent biochemical studies indicated that cholinergic mechanisms play a role in the epileptogenic alterations induced by status epilepticus (SE) in this and other models of mTLE, which prompted us to evaluate whether treatment with the muscarinic antagonist scopolamine during the latent period after SE is capable of preventing or modifying epilepsy and associated behavioral and cognitive alterations in female Sprague-Dawley rats. First, in silico pharmacokinetic modeling was used to select a dosing protocol by which M-receptor inhibitory brain levels of scopolamine are maintained during prolonged treatment. This protocol was verified by drug analysis in vivo. Rats were then treated twice daily with scopolamine over 17 days after SE, followed by drug wash-out and behavioral and video/EEG monitoring up to ~6 months after SE. Compared to vehicle controls, rats that were treated with scopolamine during the latent period exhibited a significantly lower incidence of spontaneous recurrent seizures during periods of intermittent recording in the chronic phase of epilepsy, less behavioral excitability, less cognitive impairment, and significantly reduced aberrant mossy fiber sprouting in the hippocampus. The present data may indicate that scopolamine exerts antiepileptogenic/disease-modifying activity in the lithium-pilocarpine rat model, possibly involving increased remission of epilepsy as a new mechanism of disease-modification. For evaluating the rigor of the present data, we envision a study that more thoroughly addresses the gender bias and video-EEG recording limitations of the present study.
Collapse
|
10
|
Mosini AC, Calió ML, Foresti ML, Valeriano RPS, Garzon E, Mello LE. Modeling of post-traumatic epilepsy and experimental research aimed at its prevention. ACTA ACUST UNITED AC 2020; 54:e10656. [PMID: 33331416 PMCID: PMC7747873 DOI: 10.1590/1414-431x202010656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Research on the prevention of post-traumatic epilepsy (PTE) has seen remarkable advances regarding its physiopathology in recent years. From the search for biomarkers that might be used to indicate individual susceptibility to the development of new animal models and the investigation of new drugs, a great deal of knowledge has been amassed. Various groups have concentrated efforts in generating new animal models of traumatic brain injury (TBI) in an attempt to provide the means to further produce knowledge on the subject. Here we forward the hypothesis that restricting the search of biomarkers and of new drugs to prevent PTE by using only a limited set of TBI models might hamper the understanding of this relevant and yet not preventable medical condition.
Collapse
Affiliation(s)
- A C Mosini
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Associação Brasileira de Epilepsia, São Paulo, SP, Brasil
| | - M L Calió
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - M L Foresti
- Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, RJ, Brasil
| | - R P S Valeriano
- Divisão de Clínica Neurológica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E Garzon
- Divisão de Clínica Neurológica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L E Mello
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
11
|
Sanabria V, Bittencourt S, Perosa SR, de la Rosa T, da Graça Naffah-Mazzacoratti M, Andersen ML, Tufik S, Cavalheiro EA, Amado D. Hormonal and biochemical changes in female Proechimys guyannensis, an animal model of resistance to pilocarpine-induced status epilepticus. Sci Rep 2020; 10:20982. [PMID: 33268798 PMCID: PMC7710747 DOI: 10.1038/s41598-020-77879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/10/2020] [Indexed: 11/09/2022] Open
Abstract
The Amazon rodent Proechimys guyannensis is widely studied for hosting various pathogens, though rarely getting sick. Previous studies on male Proechimys have revealed an endogenous resistance to epilepsy. Here, we assess in female Proechimys, whether sex hormones and biochemical aspects can interfere with the induction of status epilepticus (SE). The lithium-pilocarpine ramp-up protocol was used to induce SE, and blood sera were collected at 30 and 90 min after SE, alongside brains, for biochemical, western blot and immunohistochemical analyses. Results from non-ovariectomised (NOVX) Proechimys were compared to ovariectomised (OVX) animals. Data from female Wistars were used as a positive control of SE inductions. SE latency was similar in NOVX, OVX, and female Wistars groups. However, the pilocarpine dose required to induce SE in Proechimys was higher (25- to 50-folds more). Despite a higher dose, Proechimys did not show strong SE like Wistars; they only reached stage 2 of the Racine scale. These data suggest that female Proechimys are resistant to SE induction. Glucose and progesterone levels increased at 30 min and returned to normal at 90 min after SE. A relevant fact because in humans and rodents, SE leads to hypoglycaemia after 30 min of SE and does not return to normal levels in a short time, a typical adverse effect of SE. In OVX animals, a decrease in GABAergic receptors within 90 min of SE may suggest that ovariectomy produces changes in the hippocampus, including a certain vulnerability to seizures. We speculate that progesterone and glucose increases form part of the compensatory mechanisms that provide resistance in Proechimys against SE induction.
Collapse
Affiliation(s)
- Viviam Sanabria
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, São Paulo, SP, Brazil.
| | - Simone Bittencourt
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, São Paulo, SP, Brazil
| | - Sandra R Perosa
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, São Paulo, SP, Brazil
| | - Tomás de la Rosa
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, São Paulo, SP, Brazil
| | | | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 826, São Paulo, SP, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 826, São Paulo, SP, Brazil
| | - Esper A Cavalheiro
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, São Paulo, SP, Brazil
| | - Débora Amado
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Meller S, Brandt C, Theilmann W, Klein J, Löscher W. Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy. Brain Res 2019; 1712:109-123. [DOI: 10.1016/j.brainres.2019.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/09/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023]
|