1
|
Shahid M, Ahmad A, Raish M, Bin Jardan YA, Alkharfy KM, Ahad A, Abul Kalam M, Ahmad Ansari M, Iqbal M, Ali N, Al-Jenoobi FI. Herb-drug interaction: Effect of sinapic acid on the pharmacokinetics of dasatinib in rats. Saudi Pharm J 2023; 31:101819. [PMID: 37860687 PMCID: PMC10582055 DOI: 10.1016/j.jsps.2023.101819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Dasatinib (DAS) is a narrow therapeutic index drug and novel oral multitarget inhibitor of tyrosine kinase and approved for the first-line therapy for chronic myelogenous leukemia (CML) and Philadelphia chromosome (Ph + ) acute lymphoblastic leukemia (ALL). DAS, a known potent substrate of cytochrome (CYP) 3A, P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) and is subject to auto-induction. The dietary supplementation of sinapic acid (SA) or concomitant use of SA containing herbs/foods may alter the pharmacokinetics as well as pharmacodynamics of DAS, that may probably lead to potential interactions. Protein expression in rat hepatic and intestinal tissues, as well as the in vivo pharmacokinetics of DAS and the roles of CYP3 A2 and drug transporters Pgp-MDR1 and BCPR/ABCG2, suggested a likely interaction mechanism. The single dose of DAS (25 mg/kg) was given orally to rats with or without SA pretreatment (20 mg/kg p.o. per day for 7 days, n = 6). The plasma concentration of DAS was estimated by using Ultra-High-Performance Liquid Chromatography Mass spectrometry (UHPLC-MS/MS). The in vivo pharmacokinetics and protein expression study demonstrate that SA pretreatment has potential to alter the DAS pharmacokinetics. The increase in Cmax, AUC and AUMC proposes increase in bioavailability and rate of absorption via modulation of CYP3 A2, PgP-MDR1 and BCPR/ABCG2 protein expression. Thus, the concomitant use of SA alone or with DAS may cause serious life-threatening drug interactions.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffer Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Raish M, Ahmad A, Shahid M, Jardan YAB, Ahad A, Kalam MA, Ansari MA, Iqbal M, Ali N, Alkharfy KM, Al-Jenoobi FI. Effects of Apigenin on Pharmacokinetics of Dasatinib and Probable Interaction Mechanism. Molecules 2023; 28:molecules28041602. [PMID: 36838589 PMCID: PMC9964503 DOI: 10.3390/molecules28041602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Dasatinib (DAS), a narrow-therapeutic index drug, Bcr-Abl, and Src family kinases multitarget inhibitor have been approved for chronic myelogenous leukemia (CML) and Ph-positive acute lymphocytic leukemia (Ph+ ALL). Apigenin (APG) has a long history of human usage in food, herbs, health supplements, and traditional medicine, and it poses low risk of damage. The concomitant use of APG containing herbs/foods and traditional medicine may alter the pharmacokinetics of DAS, that probably lead to possible herb-drug interactions. The pharmacokinetic interaction of APG pretreatment with DAS in rat plasma following single and co-oral dosing was successfully deliberated using the UPLC-MS/MS method. The in vivo pharmacokinetics and protein expression of CYP3A2, Pgp-MDR1, and BCPR/ABCG2 demonstrate that APG pretreatment has potential to drastically changed the DAS pharmacokinetics where escalation in the Cmax, AUC(0-t), AUMC(0-inf_obs), T1/2, Tmax, and MRT and reduction in Kel, Vd, and Cl significantly in rats pretreated with APG 40 mg/kg, thus escalating systemic bioavailability and increasing the rate of absorption via modulation of CYP3A2, Pgp-MDR1, and BCPR/ABCG2 protein expression. Therefore, the concomitant consumption of APG containing food or traditional herb with DAS may cause serious life-threatening drug interactions and more systematic clinical study on herb-drug interactions is required, as well as adequate regulation in herbal safety and efficacy.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Li J, Wang S, Tian F, Zhang SQ, Jin H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals (Basel) 2022; 15:ph15091126. [PMID: 36145347 PMCID: PMC9502688 DOI: 10.3390/ph15091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
As the use of herbs has become more popular worldwide, there are increasing reports of herb-drug interactions (HDIs) following the combination of herbs and drugs. The active components of herbs are complex and have a variety of pharmacological activities, which inevitably affect changes in the pharmacokinetics of chemical drugs in vivo. The absorption, distribution, metabolism, and excretion of drugs in vivo are closely related to the expression of drug transporters. When the active components of herbs inhibit or induce the expression of transporters, this can cause changes in substrate pharmacokinetics, resulting in changes in the efficacy and toxicity of drugs. In this article, the tissue distribution and physiological functions of drug transporters are summarized through literature retrieval, and the effects of herbs on drug transporters and the possible mechanism of HDIs are analyzed and discussed in order to provide ideas and a reference for further guiding of safe clinical drug use.
Collapse
Affiliation(s)
- Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fengjie Tian
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
| | - Shuang-Qing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, 29 Nanwei Road, Beijing 100050, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| |
Collapse
|
4
|
Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med 2022; 9:915903. [PMID: 35898278 PMCID: PMC9309384 DOI: 10.3389/fcvm.2022.915903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Macrophage polarization is an important regulatory mechanism of ventricular remodeling. Studies have shown that sinapic acid (SA) exerts an anti-inflammatory effect. However, the effect of SA on macrophages is still unclear. Objectives The purpose of the study was to investigate the role of SA in macrophage polarization and ventricular remodeling after myocardial infarction (MI). Methods An MI model was established by ligating the left coronary artery. The rats with MI were treated with SA for 1 or 4 weeks after MI. The effect of SA on bone marrow-derived macrophages (BMDMs) was also observed in vitro. Results Cardiac systolic dysfunction was significantly improved after SA treatment. SA reduced MCP-1 and CCR2 expression and macrophage infiltration. SA decreased the levels of the inflammatory factors TNF-α, IL-1α, IL-1β, and iNOS and increased the levels of the M2 macrophage markers CD206, Arg-1, IL-10, Ym-1, Fizz-1, and TGF-β at 1 week after MI. SA significantly increased CD68+/CD206+ macrophage infiltration. Myocardial interstitial fibrosis and MMP-2 and MMP-9 levels were decreased, and the sympathetic nerve marker TH and nerve sprouting marker GAP43 were suppressed after SA treatment at 4 weeks after MI. The PPARγ level was notably upregulated after SA treatment. In vitro, SA also increased the expression of PPARγ mRNA in BMDMs and IL-4-treated BMDMs in a concentration-dependent manner. SA enhanced Arg1 and IL-10 expression in BMDMs, and the PPARγ antagonist GW9662 attenuated M2 macrophage marker expression. Conclusions Our results demonstrated that SA attenuated structural and neural remodeling by promoting macrophage M2 polarization via PPARγ activation after MI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Xiong
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingyan Zhao
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Ke Hu
| |
Collapse
|
5
|
Cytochrome P450 3A2 and PGP-MDR1-Mediated Pharmacokinetic Interaction of Sinapic Acid with Ibrutinib in Rats: Potential Food/Herb–Drug Interaction. Processes (Basel) 2022. [DOI: 10.3390/pr10061066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Ibrutinib (IBR) metabolism (primarily by CYP3A enzyme) is the main route of excretion for IBR, which could lead to drug–drug/herb–drug interactions with herbal medicines, nutritional supplements, and other foods. Sinapic acid (SA) is a bioactive phytonutrient that is used as a dietary supplement to treat a variety of illnesses. Pharmacokinetic interactions may occur when IBR interacts with SA, which influences the pharmacokinetic processes such as absorption, distribution, metabolism, and excretion. Therefore, it is obligatory to investigate the safety apprehensions of such parallel usage and to evaluate the possible impact of SA on the pharmacokinetics of IBR and propose a possible interaction mechanism in an animal model. The IBR concentration in plasma samples was determined using a validated UHPLC-MS/MS method after administration of a single oral dosage of IBR (50 mg/kg) in rats with or without SA pretreatment (40 mg/kg p.o. each day for 7 days, n = 6). The co-administration of IBR with SA displayed significant increases in Cmax ~18.77%, AUC0–T ~28.07%, MRT ~16.87%, and Kel ~24.76%, and a significant decrease in the volume of distribution Vz/F_obs ~37.66%, the rate of clearance (Cl/F) ~21.81%, and T½ ~20.43%, respectively, were observed as compared to rats that were administered IBR alone, which may result in increased bioavailability of IBR. The metabolism of IBR in the liver and intestines is significantly inhibited when SA is given, which may lead to an increase in the absorption rate of IBR. These findings need to be investigated further before they can be used in clinical practice.
Collapse
|
6
|
Erukainure OL, Atolani O, Muhammad A, Ravichandran R, Abarshi MM, Katsayal SB, Chukwuma CI, Preissner R, Banerjee P, Mesaik MA. Translational suppression of SARS-COV-2 ORF8 protein mRNA as a Viable therapeutic target against COVID-19: Computational studies on potential roles of isolated compounds from Clerodendrum volubile leaves. Comput Biol Med 2021; 139:104964. [PMID: 34688170 PMCID: PMC8524706 DOI: 10.1016/j.compbiomed.2021.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
The open reading frame 8 (ORF8) protein of SARS-CoV-2 has been implicated in the onset of cytokine storms, which are responsible for the pathophysiology of COVID-19 infection. The present study investigated the potential of isolated compounds from Clerodendrum volubile leaves to stall oxidative bursts in vitro and interact with ORF8 mRNA segments of the SARS-CoV-2 whole genome using computational tools. Five compounds, namely, harpagide, 1-(3-methyl-2-butenoxy)-4-(1-propenyl)benzene, ajugoside, iridoid glycoside and erucic acid, were isolated from C. volubile leaves, and their structures were elucidated using conventional spectroscopy tools. Iridoid glycoside is being reported for the first time and is thus regarded as a new compound. The ORF8 mRNA sequences of the translation initiation sites (TIS) and translation termination sites (TTSs) encoding ORF8 amino acids were retrieved from the full genome of SARS-CoV-2. Molecular docking studies revealed strong molecular interactions of the isolated compounds with the TIS and TTS of ORF8 mRNA. Harpagide showed the strongest binding affinity for TIS, while erucic acid was the strongest for TTS. The immunomodulatory potentials of the isolated compounds were investigated on neutrophil phagocytic respiratory bursts using luminol-amplified chemiluminescence technique. The compounds significantly inhibited oxidative burst, with 1-(3-methyl-2-butenoxy)-4-(1-propenyl)benzene having the best activity. Ajugoside and erucic acid showed significant inhibitory activity on T-cell proliferation. These results indicate the potential of C. volubile compounds as immunomodulators and can be utilized to curb cytokine storms implicated in COVID-19 infection. These potentials are further corroborated by the strong interactions of the compounds with the TIS and TTS of ORF8 mRNA from the SARS-CoV-2 whole genome.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa,Corresponding author
| | | | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Rahul Ravichandran
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Musa M. Abarshi
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Sanusi B. Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Chika I. Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| | - Robert Preissner
- Institute for Physiology, Charité – University Medicine Berlin, Berlin, Germany
| | - Priyanka Banerjee
- Institute for Physiology, Charité – University Medicine Berlin, Berlin, Germany
| | - M. Ahmed Mesaik
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan,Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
7
|
Lin CH, Hsieh CL. Chinese Herbal Medicine for Treating Epilepsy. Front Neurosci 2021; 15:682821. [PMID: 34276290 PMCID: PMC8284486 DOI: 10.3389/fnins.2021.682821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Chinese herbal medicine has a long history of use for treating epilepsy. Because of the side effects of Western antiepileptic therapy and the quest for more accessible treatment, complementary and alternative medicines have become popular. Traditional Chinese medical diet therapy appears to be safe and effective. We searched PubMed and the Cochrane Library through November 2020 for the use of traditional Chinese medicine in clinical settings, including plants, fungi, and animals. Combinations of keywords included “epilepsy,” “seizure,” “antiepileptic,” “anticonvulsive,” “Chinese herbal medicine,” “Chinese herb,” and each of the Latin names, English names, and scientific names of herbs. We also summarized the sources and functions of these herbs in Chinese medicine. Different herbs can be combined to increase antiepileptic effects through various mechanisms, including anti-inflammation, antioxidation, GABAergic effect enhancement, modulation of NMDA channels and sodium channel, and neuroprotection. Despite reports of their anticonvulsive effects, adequate experimental evidence and randomized controlled clinical trials are required to confirm their antiepileptic effects.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Raish M, Shahid M, Bin Jardan YA, Ansari MA, Alkharfy KM, Ahad A, Abdelrahman IA, Ahmad A, Al-Jenoobi FI. Gastroprotective Effect of Sinapic Acid on Ethanol-Induced Gastric Ulcers in Rats: Involvement of Nrf2/HO-1 and NF-κB Signaling and Antiapoptotic Role. Front Pharmacol 2021; 12:622815. [PMID: 33716749 PMCID: PMC7946842 DOI: 10.3389/fphar.2021.622815] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background: In the current study, we evaluated the therapeutic potential of sinapic acid (SA) in terms of the mechanism underlying its gastroprotective action against ethanol-induced gastric ulcers in rats. Methods: These effects were examined through gross macroscopic evaluation of the stomach cavity [gastric ulcer index (GUI)], alteration in pH, gastric juice volume, free acidity, total acidity, total gastric wall mucus, and changes in PGE2. In addition, we evaluated lipid peroxidation (malondialdehyde), antioxidant systems (catalase and glutathione), inflammatory markers [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and myeloperoxidase (MPO)], apoptotic markers (caspase-3, Bax, and Bcl-2), nuclear factor-κB [NF-κB (p65)], NO levels, and histopathological staining (H and E and PAS). Results: In rats with ethanol-induced ulcers, pre-treatment with SA (40 mg/kg p. o.) decreased the sternness of ethanol-induced gastric mucosal injuries by decreasing the GUI, gastric juice volume, free acidity, and total acidity. In addition, the pH and total gastric mucosa were increased, together with histopathological alteration, neutrophil incursion, and increases in PGE2 and NO2. These effects were similar to those observed for omeprazole, a standard anti-ulcer drug. SA was shown to suppress gastric inflammation through decreasing TNF-α, IL-6, and MPO, as well as curbing gastric oxidative stress through the inhibition of lipid peroxidation (MDA) and restoration of depleted glutathione and catalase activity. SA inhibited Bcl-2-associated X (Bax) and caspase-3 activity, and restored the antiapoptotic protein Bcl-2; these findings indicate the antiapoptotic potential of SA, leading to enhanced cell survival. SA also repressed NF-κB signaling and increased IκBα. Moreover, SA upregulated the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), thereby restoring depleted antioxidant defense enzymes and implicating the NRF2/HO-1 signaling pathways. Conclusion: These results suggest that the prophylactic administration of SA (40 mg/kg) can ameliorate ethanol-induced gastric ulcers in rats primarily via the modulation of Nrf2/HO-1 and NF-κB signaling and subsequent enhancement of cell viability.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Impacts of Drug Interactions on Pharmacokinetics and the Brain Transporters: A Recent Review of Natural Compound-Drug Interactions in Brain Disorders. Int J Mol Sci 2021; 22:ijms22041809. [PMID: 33670407 PMCID: PMC7917745 DOI: 10.3390/ijms22041809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Natural compounds such as herbal medicines and/or phyto-compounds from foods, have frequently been used to exert synergistic therapeutic effects with anti-brain disorder drugs, supplement the effects of nutrients, and boost the immune system. However, co-administration of natural compounds with the drugs can cause synergistic toxicity or impeditive drug interactions due to changes in pharmacokinetic properties (e.g., absorption, metabolism, and excretion) and various drug transporters, particularly brain transporters. In this review, natural compound–drug interactions (NDIs), which can occur during the treatment of brain disorders, are emphasized from the perspective of pharmacokinetics and cellular transport. In addition, the challenges emanating from NDIs and recent approaches are discussed.
Collapse
|
10
|
Contino M, Guglielmo S, Riganti C, Antonello G, Perrone MG, Giampietro R, Rolando B, Fruttero R, Colabufo NA. One molecule two goals: A selective P-glycoprotein modulator increases drug transport across gastro-intestinal barrier and recovers doxorubicin toxicity in multidrug resistant cancer cells. Eur J Med Chem 2020; 208:112843. [DOI: 10.1016/j.ejmech.2020.112843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
|
11
|
Alsulays BB, Jamil S, Raish M, Ansari MA, Ahmad A, Alalaiwe A, Alshahrani SM, Alshetaili AS, Ansari MJ, Alshehri SM, haq N. Influences of Ferulic Acid on Pharmacokinetics of Carbamazepine in Rats: Possible Mechanism of Herb/food-drug Interactions. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.978.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|