1
|
Rebsamen M, Jin BZ, Klail T, De Beukelaer S, Barth R, Rezny-Kasprzak B, Ahmadli U, Vulliemoz S, Seeck M, Schindler K, Wiest R, Radojewski P, Rummel C. Clinical Evaluation of a Quantitative Imaging Biomarker Supporting Radiological Assessment of Hippocampal Sclerosis. Clin Neuroradiol 2023; 33:1045-1053. [PMID: 37358608 PMCID: PMC10654177 DOI: 10.1007/s00062-023-01308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE To evaluate the influence of quantitative reports (QReports) on the radiological assessment of hippocampal sclerosis (HS) from MRI of patients with epilepsy in a setting mimicking clinical reality. METHODS The study included 40 patients with epilepsy, among them 20 with structural abnormalities in the mesial temporal lobe (13 with HS). Six raters blinded to the diagnosis assessed the 3T MRI in two rounds, first using MRI only and later with both MRI and the QReport. Results were evaluated using inter-rater agreement (Fleiss' kappa [Formula: see text]) and comparison with a consensus of two radiological experts derived from clinical and imaging data, including 7T MRI. RESULTS For the primary outcome, diagnosis of HS, the mean accuracy of the raters improved from 77.5% with MRI only to 86.3% with the additional QReport (effect size [Formula: see text]). Inter-rater agreement increased from [Formula: see text] to [Formula: see text]. Five of the six raters reached higher accuracies, and all reported higher confidence when using the QReports. CONCLUSION In this pre-use clinical evaluation study, we demonstrated clinical feasibility and usefulness as well as the potential impact of a previously suggested imaging biomarker for radiological assessment of HS.
Collapse
Affiliation(s)
- Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Baudouin Zongxin Jin
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tomas Klail
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie De Beukelaer
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rike Barth
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beata Rezny-Kasprzak
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uzeyir Ahmadli
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland.
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| |
Collapse
|
2
|
García-Ramó KB, Sanchez-Catasus CA, Winston GP. Deep learning in neuroimaging of epilepsy. Clin Neurol Neurosurg 2023; 232:107879. [PMID: 37473486 DOI: 10.1016/j.clineuro.2023.107879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
In recent years, artificial intelligence, particularly deep learning (DL), has demonstrated utility in diverse areas of medicine. DL uses neural networks to automatically learn features from the raw data while this is not possible with conventional machine learning. It is helpful for the assessment of patients with epilepsy and whilst most published studies have been aimed at the automatic detection and prediction of seizures from electroencephalographic records, there is a growing number of investigations that use neuroimaging modalities (structural and functional magnetic resonance imaging, diffusion-weighted imaging and positron emission tomography) as input data. We review the application of DL to neuroimaging (sMRI, fMRI, DWI and PET) of focal epilepsy, specifically presurgical evaluation of drug-refractory epilepsy. First, a brief theoretical overview of artificial neural networks and deep learning is presented. Next, we review applications of deep learning to neuroimaging of epilepsy: diagnosis and lateralization, automated detection of lesion, presurgical evaluation and prediction of postsurgical outcome. Finally, the limitations, challenges and possible future directions in the application of these methods in the study of epilepsies are discussed. This approach could become an essential tool in clinical practice, particularly in the evaluation of images considered negative by visual inspection, in individualized treatments, and in the approach to epilepsy as a network disorder. However, greater multicenter collaboration is required to achieve the collection of sufficient data with the required quality together with the open access availability of the developed codes and tools.
Collapse
Affiliation(s)
- Karla Batista García-Ramó
- Group of Neuroimaging Processing, International Center for Neurological Restoration, Cuba; Department of Clinical Investigations, Center of Isotopes, Cuba.
| | - Carlos A Sanchez-Catasus
- Department of Neurology, Clínica Universidad de Navarra, Spain; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Gavin P Winston
- Division of Neurology, Department of Medicine, Queen's University, Canada; Centre for Neuroscience Studies, Queen's University, Canada.
| |
Collapse
|
3
|
Kaestner E, Rao J, Chang AJ, Wang ZI, Busch RM, Keller SS, Rüber T, Drane DL, Stoub T, Gleichgerrcht E, Bonilha L, Hasenstab K, McDonald C. Convolutional Neural Network Algorithm to Determine Lateralization of Seizure Onset in Patients With Epilepsy: A Proof-of-Principle Study. Neurology 2023; 101:e324-e335. [PMID: 37202160 PMCID: PMC10382265 DOI: 10.1212/wnl.0000000000207411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES A new frontier in diagnostic radiology is the inclusion of machine-assisted support tools that facilitate the identification of subtle lesions often not visible to the human eye. Structural neuroimaging plays an essential role in the identification of lesions in patients with epilepsy, which often coincide with the seizure focus. In this study, we explored the potential for a convolutional neural network (CNN) to determine lateralization of seizure onset in patients with epilepsy using T1-weighted structural MRI scans as input. METHODS Using a dataset of 359 patients with temporal lobe epilepsy (TLE) from 7 surgical centers, we tested whether a CNN based on T1-weighted images could classify seizure laterality concordant with clinical team consensus. This CNN was compared with a randomized model (comparison with chance) and a hippocampal volume logistic regression (comparison with current clinically available measures). Furthermore, we leveraged a CNN feature visualization technique to identify regions used to classify patients. RESULTS Across 100 runs, the CNN model was concordant with clinician lateralization on average 78% (SD = 5.1%) of runs with the best-performing model achieving 89% concordance. The CNN outperformed the randomized model (average concordance of 51.7%) on 100% of runs with an average improvement of 26.2% and outperformed the hippocampal volume model (average concordance of 71.7%) on 85% of runs with an average improvement of 6.25%. Feature visualization maps revealed that in addition to the medial temporal lobe, regions in the lateral temporal lobe, cingulate, and precentral gyrus aided in classification. DISCUSSION These extratemporal lobe features underscore the importance of whole-brain models to highlight areas worthy of clinician scrutiny during temporal lobe epilepsy lateralization. This proof-of-concept study illustrates that a CNN applied to structural MRI data can visually aid clinician-led localization of epileptogenic zone and identify extrahippocampal regions that may require additional radiologic attention. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in patients with drug-resistant unilateral temporal lobe epilepsy, a convolutional neural network algorithm derived from T1-weighted MRI can correctly classify seizure laterality.
Collapse
Affiliation(s)
- Erik Kaestner
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Jun Rao
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Allen J Chang
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Zhong Irene Wang
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Robyn M Busch
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Simon S Keller
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Theodor Rüber
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Daniel L Drane
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Travis Stoub
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Ezequiel Gleichgerrcht
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Leonardo Bonilha
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Kyle Hasenstab
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Carrie McDonald
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA.
| |
Collapse
|
4
|
Uher D, Drenthen GS, Schijns OEMG, Colon AJ, Hofman PAM, van Lanen RHGJ, Hoeberigs CM, Jansen JFA, Backes WH. Advances in Image Processing for Epileptogenic Zone Detection with MRI. Radiology 2023; 307:e220927. [PMID: 37129491 DOI: 10.1148/radiol.220927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Focal epilepsy is a common and severe neurologic disorder. Neuroimaging aims to identify the epileptogenic zone (EZ), preferably as a macroscopic structural lesion. For approximately a third of patients with chronic drug-resistant focal epilepsy, the EZ cannot be precisely identified using standard 3.0-T MRI. This may be due to either the EZ being undetectable at imaging or the seizure activity being caused by a physiologic abnormality rather than a structural lesion. Computational image processing has recently been shown to aid radiologic assessments and increase the success rate of uncovering suspicious regions by enhancing their visual conspicuity. While structural image analysis is at the forefront of EZ detection, physiologic image analysis has also been shown to provide valuable information about EZ location. This narrative review summarizes and explains the current state-of-the-art computational approaches for image analysis and presents their potential for EZ detection. Current limitations of the methods and possible future directions to augment EZ detection are discussed.
Collapse
Affiliation(s)
- Daniel Uher
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Gerhard S Drenthen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Olaf E M G Schijns
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Albert J Colon
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Paul A M Hofman
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Rick H G J van Lanen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Christianne M Hoeberigs
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Jacobus F A Jansen
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| | - Walter H Backes
- From the Department of Radiology and Nuclear Medicine (D.U., G.S.D., P.A.M.H., C.M.H., J.F.A.J., W.H.B.) and Department of Neurosurgery (O.E.M.G.S., R.H.G.J.v.L.), Maastricht University Medical Centre, P. Debyelaan 25, NL-6229 HX Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (D.U., G.S.D., O.E.M.G.S., R.H.G.J.v.L., J.F.A.J., W.H.B.); Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands (O.E.M.G.S., A.J.C., P.A.M.H., C.M.H., J.F.A.J.); and Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (J.F.A.J.)
| |
Collapse
|
5
|
Wang X, Lin D, Zhao C, Li H, Fu L, Huang Z, Xu S. Abnormal metabolic connectivity in default mode network of right temporal lobe epilepsy. Front Neurosci 2023; 17:1011283. [PMID: 37034164 PMCID: PMC10076532 DOI: 10.3389/fnins.2023.1011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Aims Temporal lobe epilepsy (TLE) is a common neurological disorder associated with the dysfunction of the default mode network (DMN). Metabolic connectivity measured by 18F-fluorodeoxyglucose Positron Emission Computed Tomography (18F-FDG PET) has been widely used to assess cumulative energy consumption and provide valuable insights into the pathophysiology of TLE. However, the metabolic connectivity mechanism of DMN in TLE is far from fully elucidated. The present study investigated the metabolic connectivity mechanism of DMN in TLE using 18F-FDG PET. Method Participants included 40 TLE patients and 41 health controls (HC) who were age- and gender-matched. A weighted undirected metabolic network of each group was constructed based on 14 primary volumes of interest (VOIs) in the DMN, in which Pearson's correlation coefficients between each pair-wise of the VOIs were calculated in an inter-subject manner. Graph theoretic analysis was then performed to analyze both global (global efficiency and the characteristic path length) and regional (nodal efficiency and degree centrality) network properties. Results Metabolic connectivity in DMN showed that regionally networks changed in the TLE group, including bilateral posterior cingulate gyrus, right inferior parietal gyrus, right angular gyrus, and left precuneus. Besides, significantly decreased (P < 0.05, FDR corrected) metabolic connections of DMN in the TLE group were revealed, containing bilateral hippocampus, bilateral posterior cingulate gyrus, bilateral angular gyrus, right medial of superior frontal gyrus, and left inferior parietal gyrus. Conclusion Taken together, the present study demonstrated the abnormal metabolic connectivity in DMN of TLE, which might provide further insights into the understanding the dysfunction mechanism and promote the treatment for TLE patients.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Dandan Lin
- Department of Clinical Medicine, Fujian Health College, Fuzhou, Fujian, China
| | - Chunlei Zhao
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Hui Li
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Liyuan Fu
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Zhifeng Huang
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shangwen Xu
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Kim D, Lee J, Moon J, Moon T. Interpretable deep learning-based hippocampal sclerosis classification. Epilepsia Open 2022; 7:747-757. [PMID: 36177546 PMCID: PMC9712484 DOI: 10.1002/epi4.12655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To evaluate the performance of a deep learning model for hippocampal sclerosis classification on the clinical dataset and suggest plausible visual interpretation for the model prediction. METHODS T2-weighted oblique coronal images of the brain MRI epilepsy protocol performed on patients were used. The training set included 320 participants with 160 no, 100 left and 60 right hippocampal sclerosis, and cross-validation was implemented. The test set consisted of 302 participants with 252 no, 25 left and 25 right hippocampal sclerosis. As the test set was imbalanced, we took an average of the accuracy achieved within each group to measure a balanced accuracy for multiclass and binary classifications. The dataset was composed to include not only healthy participants but also participants with abnormalities besides hippocampal sclerosis in the control group. We visualized the reasons for the model prediction using the layer-wise relevance propagation method. RESULTS When evaluated on the validation of the training set, we achieved multiclass and binary classification accuracy of 87.5% and 88.8% from the voting ensemble of six models. Evaluated on the test sets, we achieved multiclass and binary classification accuracy of 91.5% and 89.76%. The distinctly sparse visual interpretations were provided for each individual participant and group to suggest the contribution of each input voxel to the prediction on the MRI. SIGNIFICANCE The current interpretable deep learning-based model is promising for adapting effectively to clinical settings by utilizing commonly used data, such as MRI, with realistic abnormalities faced by neurologists to support the diagnosis of hippocampal sclerosis with plausible visual interpretation.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Artificial IntelligenceSungkyunkwan UniversitySuwonSouth Korea
| | - Jungtae Lee
- Application Engineering Team, Memory BusinessSamsung Electronics Co., Ltd.SuwonSouth Korea
| | - Jangsup Moon
- Department of NeurologySeoul National University HospitalSeoulSouth Korea,Department of Genomic MedicineSeoul National University HospitalSeoulSouth Korea
| | - Taesup Moon
- Department of Electrical and Computer EngineeringSeoul National UniversitySeoulSouth Korea,ASRI/INMC/IPAI/AIISSeoul National UniversitySeoulSouth Korea
| |
Collapse
|