1
|
Kang K, Wu Y, Gan H, Yang B, Xiao H, Wang D, Qiu H, Dong X, Tang H, Zhai X. Pathophysiological mechanisms underlying the development of focal cortical dysplasia and their association with epilepsy: Experimental models as a research approach. Seizure 2024; 121:176-185. [PMID: 39191070 DOI: 10.1016/j.seizure.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Focal cortical dysplasia (FCD) is a structural lesion that is the most common anatomical lesion identified in children, and the second most common in adults with drug-resistant focal-onset epilepsy. These lesions vary in size, location, and histopathological manifestations. FCDs are classified into three subtypes associated with loss-of-function mutations in PI3K/AKT, TSC1/TSC2, RHEB, and DEPDC/NPRL2/NPRL3. During the decades of research into FCD, experimental models have played an irreplaceable role in the research design of studies investigating disease pathogenesis, pathophysiology, and treatment. Further, the establishment of FCD experimental models has moved the field forward by (1) revealing the cellular processes and signaling pathways underlying FCD pathogenesis and (2) varying the methods and materials to study the function of FCD proteins. Currently, FCD experimental models are predominantly murine, with each model providing unique insights into FCD lesions. This review briefly summarizes the pathology and molecular functions of FCD, further comparing the available modeling methods and indexes, as well as the utilization of models, followed by an analysis of the similarities, advantages, and disadvantages between these models and human FCD.
Collapse
Affiliation(s)
- Kaiyi Kang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Yuxin Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hui Gan
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Baohui Yang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China; Department of Neurosurgery, Laboratory of Neurosurgery, Institute of Neurology, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Difei Wang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hanli Qiu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xinyu Dong
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Haotian Tang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China.
| |
Collapse
|
2
|
Scala M, Tomati V, Ferla M, Lena M, Cohen JS, Fatemi A, Brokamp E, Bican A, Phillips JA, Koziura ME, Nicouleau M, Rio M, Siquier K, Boddaert N, Musante I, Tamburro S, Baldassari S, Iacomino M, Scudieri P, Rosenfeld JA, Bellus G, Reed S, Al Saif H, Russo RS, Walsh MB, Cantagrel V, Crunk A, Gustincich S, Ruggiero SM, Fitzgerald MP, Helbig I, Striano P, Severino M, Salpietro V, Pedemonte N, Zara F. De novo variants in DENND5B cause a neurodevelopmental disorder. Am J Hum Genet 2024; 111:529-543. [PMID: 38387458 PMCID: PMC10940048 DOI: 10.1016/j.ajhg.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Matteo Ferla
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Mariateresa Lena
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ali Fatemi
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elly Brokamp
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna Bican
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A Phillips
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary E Koziura
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Nicouleau
- Université Paris Cité, Imagine Institute, Developmental Brain Disorders Laboratory, INSERM UMR 1163, 75015 Paris, France
| | - Marlene Rio
- Université Paris Cité, Imagine Institute, Developmental Brain Disorders Laboratory, INSERM UMR 1163, 75015 Paris, France; Service de Génétique, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Pairs, Paris, France
| | - Karine Siquier
- Université Paris Cité, Imagine Institute, Developmental Brain Disorders Laboratory, INSERM UMR 1163, 75015 Paris, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and INSERM U1000, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Ilaria Musante
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | | | | | | | - Paolo Scudieri
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics Laboratories, Houston, TX, USA
| | - Gary Bellus
- Clinical Genetics, Geisinger Medical Center, Danville, PA 17822, USA
| | - Sara Reed
- Clinical Genetics, Geisinger Medical Center, Danville, PA 17822, USA
| | - Hind Al Saif
- Department of Human and Molecular Genetics, Division of Clinical Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Matthew B Walsh
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Vincent Cantagrel
- Université Paris Cité, Imagine Institute, Developmental Brain Disorders Laboratory, INSERM UMR 1163, 75015 Paris, France
| | | | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Sarah M Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark P Fitzgerald
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | | | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| |
Collapse
|
3
|
Falker-Gieske C, Bennewitz J, Tetens J. Structural variation and eQTL analysis in two experimental populations of chickens divergently selected for feather-pecking behavior. Neurogenetics 2023; 24:29-41. [PMID: 36449109 PMCID: PMC9823035 DOI: 10.1007/s10048-022-00705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022]
Abstract
Feather pecking (FP) is a damaging nonaggressive behavior in laying hens with a heritable component. Its occurrence has been linked to the immune system, the circadian clock, and foraging behavior. Furthermore, dysregulation of miRNA biogenesis, disturbance of the gamma-aminobutyric acid (GABAergic) system, as well as neurodevelopmental deficiencies are currently under debate as factors influencing the propensity for FP behavior. Past studies, which focused on the dissection of the genetic factors involved in FP, relied on single nucleotide polymorphisms (SNPs) and short insertions and deletions < 50 bp (InDels). These variant classes only represent a certain fraction of the genetic variation of an organism. Hence, we reanalyzed whole-genome sequencing data from two experimental populations, which have been divergently selected for FP behavior for over more than 15 generations, performed variant calling for structural variants (SVs) as well as tandem repeats (TRs), and jointly analyzed the data with SNPs and InDels. Genotype imputation and subsequent genome-wide association studies, in combination with expression quantitative trait loci analysis, led to the discovery of multiple variants influencing the GABAergic system. These include a significantly associated TR downstream of the GABA receptor subunit beta-3 (GABRB3) gene, two microRNAs targeting several GABA receptor genes, and dystrophin (DMD), a direct regulator of GABA receptor clustering. Furthermore, we found the transcription factor ETV1 to be associated with the differential expression of 23 genes, which points toward a role of ETV1, together with SMAD4 and KLF14, in the disturbed neurodevelopment of high-feather pecking chickens.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Jörn Bennewitz
- grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Jens Tetens
- grid.7450.60000 0001 2364 4210Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
| |
Collapse
|