1
|
Malik M, Das S, Paul P, Chakraborty P, Roy R, Maity A, Das A, Dasgupta M, Trivedi S, Tribedi P. Cuminaldehyde in combination with tetracycline shows promising antibiofilm activity against drug-resistant Pseudomonas aeruginosa. BIOFOULING 2024:1-20. [PMID: 39494810 DOI: 10.1080/08927014.2024.2422874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen often causes biofilm-linked infections. A combinatorial approach involving tetracycline (antibiotic) and cuminaldehyde (phytochemical) was explored to combat this infectious pathogen. The results showed that both tetracycline and cuminaldehyde individually demonstrated antibacterial effects. However, when the compounds were applied together, there was a significant increase in their antimicrobial potential. The determined fractional inhibitory concentration index of 0.43 indicated a synergistic interaction between the two compounds. Furthermore, a series of experiments demonstrated that the combined application of cuminaldehyde and tetracycline could lead to a significant enhancement of their antibiofilm potential. This enhanced antibiofilm potential was attributed to the accumulation of reactive oxygen species and increased cell membrane permeability. Besides, this combinatorial application reduced the secretion of various virulence factors from P. aeruginosa. Therefore, this combined approach holds promise for effectively treating P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Awantika Das
- Microbiology Department, Suraksha Diagnostic Pvt. Ltd. Newtown, Kolkata, India
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Saranya Trivedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, India
| |
Collapse
|
2
|
Chen H, Xia A, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100480. [PMID: 39309319 PMCID: PMC11416670 DOI: 10.1016/j.ese.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.
Collapse
Affiliation(s)
- Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Huchao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Evazinejad-Galangashi R, Mohagheghian A, Shirzad-Siboni M. Catalytic wet air oxidation removal of tetracycline by La 2O 3 immobilized on recycled polyethylene terephthalate using the response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122043. [PMID: 39126841 DOI: 10.1016/j.jenvman.2024.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the removal of tetracycline from the aqueous solutions by lanthanum oxide nanoparticles covered with polyethylene terephthalate (PET) using a low-cost and facile co-precipitation method, via catalytic wet air oxidation process (CWAO) by response surface methodology (RSM). XRD, FTIR, SEM, and EDX-map techniques have been employed to investigate the crystal structure, functional groups on the surface, morphologic characteristics, and elemental composition, respectively. Under optimum conditions (pH= 9, initial TC concentration= 20 mg L-1, nanocomposite dosage= 1.5 g L-1, pressure= 4 bar, temperature= 70 °C, and time= 90 min), TC removal efficiency by La2O3-PET was achieved at about 99.9%. The environmental parameters were assessed to determine tetracycline catalytic wet air oxidation degradation rate, which included cleaning gases, hydrogen peroxide, type of organic compounds, anions, radical scavenger and reusability. The ANOVA results indicated that the polynomial model proves that the model is entirely meaningful (F-value> 0.001 and P-value< 0.0001) and has high coefficient values of adjusted R2 (0.7404) and predicted R2 (0.5940). The findings indicated that the variables of time, pH, temperature, dosage, and TC concentration have the greatest role in removing tetracycline, respectively. However, pressure as a factor does not have a considerable influence on the performance of the system. In general, due to the presence of the role of additional anionics, the effectiveness of this method for removing tetracycline from drinking water was 82.76%. The catalyst indicated pleasing stability and recycling power during eight testing cycles. Further, the estimated electrical energy per order consumption (EEO) for the CWAO/La2O3-PET system was calculated as 5.31 kWh m-3 with an operational cost (OC) utilization of 1.78 USD kg-1 and it has been shown that this process is feasible and economically comparable to other CWAO processes. The breakdown intermediate products of tetracycline in the CWAO were examined using gas chromatography/mass spectrometry (GC-MS) analysis. The toxicity analyses for the removal of TC were carried out using Daphnia magna and the CWAO process achieved a remarkable decrease in the presence of La2O3-PET nanocomposite (LC50 and toxicity unit (TU) 48 h equal to 0.634 and 157.72 vol percent).
Collapse
Affiliation(s)
| | - Azita Mohagheghian
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shirzad-Siboni
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Li D, Guo X, Shao X, Zhou A, Zhu L, Zhang Y, Li B, Du Y, Cao L, Yang J. Stabilized Hf-doped Ti/Sb-SnO 2 electrode for efficient degradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47960-47973. [PMID: 39014141 DOI: 10.1007/s11356-024-34354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
The electrochemical advanced oxidation process (EAOP) has shown significant promise in the field of refractory organic wastewater treatment due to its high efficiency and environmentally friendly nature. In this study, Ti/Sb-SnO2 electrodes with varying proportions of Hf were prepared using the sol-gel method. The addition of Hf transformed the original collapsing and broken surface into a flat and regular surface. The results demonstrated that Ti/Sb-SnO2-Hf electrode doped with 6% Hf exhibited a higher oxygen evolution potential (OEP) and excellent stability. The OEP increased from 2.315 V without Hf-doping to 2.482 V, and the corresponding actual life was 321.05% higher than that without Hf. The current density (5-40 mA·cm-2), electrolyte concentration (0.02-0.2 mol·L-1), pH (3-11), and initial pollutant concentration (5-80 mg·L-1) were evaluated to confirm the tetracycline (TC) degradation characterization of Ti/Sb-SnO2-6%Hf electrodes. It was concluded that under the optimal degradation conditions, the removal rate of TC could reach 99.66% within 2 h. The degradation of TC follows first-order reaction kinetics. The oxidative degradation of TC was achieved through indirect oxidation, with ·OH playing a dominant role. TC's electrochemical oxidation degradation pathway has been proposed: Based on LC-MS results, three main pathways are speculated. During the electrocatalytic oxidation process, decarboxylation, deamidation, and ring-opening reactions occur under ·OH attack, producing intermediate compounds with m/z values of 427, 433, 350, 246, 461, 424, 330, 352, 309, 263, and 233. These intermediates are further oxidized to intermediate compounds with an m/z value of 218. This work introduces a new efficient anode electrochemical catalyst for the degradation of TC, providing a strategy for industrial applications.
Collapse
Affiliation(s)
- Danni Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xin Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xiang Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Anhui Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lin Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yuting Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Binbin Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yan Du
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China.
| |
Collapse
|
5
|
Liu W, Wang P, Chen J, Gao X, Che H, Su X, Liu B, Ao Y. In situ single iron atom doping on Bi 2WO 6 monolayers triggers efficient photo-fenton reaction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100414. [PMID: 38606035 PMCID: PMC11007430 DOI: 10.1016/j.ese.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Developing an efficient photocatalytic system for hydrogen peroxide (H2O2) activation in Fenton-like processes holds significant promise for advancing water purification technologies. However, challenges such as high carrier recombination rates, limited active sites, and suboptimal H2O2 activation efficiency impede optimal performance. Here we show that single-iron-atom dispersed Bi2WO6 monolayers (SIAD-BWOM), designed through a facile hydrothermal approach, can offer abundant active sites for H2O2 activation. The SIAD-BWOM catalyst demonstrates superior photo-Fenton degradation capabilities, particularly for the persistent pesticide dinotefuran (DNF), showcasing its potential in addressing recalcitrant organic pollutants. We reveal that the incorporation of iron atoms in place of tungsten within the electron-rich [WO4]2- layers significantly facilitates electron transfer processes and boosts the Fe(II)/Fe(III) cycle efficiency. Complementary experimental investigations and theoretical analyses further elucidate how the atomically dispersed iron induces lattice strain in the Bi2WO6 monolayer, thereby modulating the d-band center of iron to improve H2O2 adsorption and activation. Our research provides a practical framework for developing advanced photo-Fenton catalysts, which can be used to treat emerging and refractory organic pollutants more effectively.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Xin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| |
Collapse
|
6
|
Chen B, Chen Y, Chen S, Duan X, Gao J, Zhang N, He L, Wang X, Huang J, Chen X, Pan X. Iron‑calcium dual crosslinked graphene oxide/alginate aerogel microspheres for extraordinary elimination of tetracycline in complex wastewater: Performance, mechanism, and applications. Int J Biol Macromol 2024; 264:130554. [PMID: 38431001 DOI: 10.1016/j.ijbiomac.2024.130554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Antibiotics have been considered as a group of emerging contaminants for their stable chemical structure, significant pseudo-persistence, and biological toxicity. Tetracycline (TC), as one of the typical antibiotics frequently detected in environmental media, can cause the dissemination and accumulation of antibiotic resistance gene (ARG), ultimately threatening human health and environmental safety. Herein, a novel iron‑calcium di-crosslinked graphene oxide/alginate (GO/SA-Fe3+-Ca2+) aerogel was facilely synthesized for TC uptake. It was found that the introduction of GO nanosheets and Fe3+ sites into composite enormously enhanced TC removal. Specifically, TC can be stably and efficiently eliminated over the wide pH range of 5-8. The fitted maximum qe with Liu isotherm model at 308 K reached 1664.05 mg/g, surpassing almost all reported sorbents. The pseudo-second-order kinetic model with chemical sorption characteristics better fitted TC adsorption process, which was endothermic and spontaneous in nature. Multifarious adsorptive sites of GO/SA-Fe3+-Ca2+ synergically participated in TC uptake through multi-mechanisms (e.g., π-π EDA, cation-π bonding, H-bonding, Fe3+-coordination, and electrostatic attraction, etc.). The as-prepared composite showed satisfactory TC removal in several runs of adsorption-desorption operations, high salinity, and model aquaculture wastewater. Moreover, the packed-column could continuously run for >200 h until adsorption saturation was achieved with a dynamic adsorption capacity of 216.69 mg/g, manifesting its scale-up engineering applications. All above merits make as-constructed composite an alternative sorbent for eliminating TC from complex wastewater.
Collapse
Affiliation(s)
- Bo Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuyin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xingyu Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Nuan Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liucun He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Chen
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Fang GY, Liu XQ, Jiang YJ, Mu XJ, Huang BW. Horizontal gene transfer in activated sludge enhances microbial antimicrobial resistance and virulence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168908. [PMID: 38013098 DOI: 10.1016/j.scitotenv.2023.168908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Activated sludge (AS) plays a vital role in removing organic pollutants and nutrients from wastewater. However, the risks posed by horizontal gene transfer (HGT) between bacteria in AS are still unclear. Here, a total of 478 high-quality non-redundant metagenome-assembled genomes (MAGs) were obtained. >50 % and 5 % of MAGs were involved in at least one HGT and recent HGT, respectively. Most of the transfers (82.4 %) of antimicrobial resistance genes (ARGs) occurred among the classes of Alphaproteobacteria and Gammaproteobacteria. The bacteria involved in the transfers of virulence factor genes (VFGs) mainly include Alphaproteobacteria (42.3 %), Bacteroidia (19.2 %), and Gammaproteobacteria (11.5 %). Moreover, the number of ARGs and VFGs in the classes of Alphaproteobacteria and Gammaproteobacteria was higher than that in other bacteria (P < 0.001). Mobile genetic elements were important contributors to ARGs and VFGs in AS bacteria. These results have implications for the management of antimicrobial resistance and virulence in activated sludge microorganisms.
Collapse
Affiliation(s)
- Guan-Yu Fang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Xing-Quan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yu-Jian Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiao-Jing Mu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Bing-Wen Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| |
Collapse
|
8
|
Xia L, Sun Y, Wang Y, Yao W, Wu Q, Min Y, Xu Q. Three dimensional nickel foam carried sea urchin-like copper-cobalt-cerium cathode for enhanced tetracycline wastewater purification in photocatalytic fuel cell. J Colloid Interface Sci 2024; 653:1444-1454. [PMID: 37804613 DOI: 10.1016/j.jcis.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Photocatalytic fuel cells (PFCs) regarded as a potential sustainable technique, have been broadly reported. In this work, the carbon quantum dot-loaded TiO2 photoanode and sea urchin-like CuCoCe ternary metal oxide cathode materials are successfully synthesized and used to construct PFC systems for efficient tetracycline (TC) degradation (45 mg/L) and simultaneous electricity generation. The results demonstrate that the CQDs-modified TiO2 photoanode has improved absorption intensity in both the UV and visible regions, and the photocurrent density at 1.23 V vs RHE reached 1.31 mA cm-2, which is 1.3 times higher than that of the original TiO2 photoanode. The established PFC system achieves the highest removal ratio of 96.9 % for TC in 60 min with a maximum power density of 0.77 mW cm-2. The PFC system can operate efficiently over a wide pH range (3.0-9.0). Furthermore, quenching experiments and ESR spectra show that the main reactive oxygen species in the degradation process are •O2-, 1O2 and •OH. This study provides meaningful way to develop multiple metal oxides as cathode of PFC system for efficient organic pollutant degradation and energy recovery.
Collapse
Affiliation(s)
- Ligang Xia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Yidan Sun
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China
| | - Yuling Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
9
|
Wang L, Zhou C, Yuan Y, Jin Y, Liu Y, Jiang Z, Li X, Dai J, Zhang Y, Siyal AA, Ao W, Fu J, Qu J. Catalytic degradation of crystal violet and methyl orange in heterogeneous Fenton-like processes. CHEMOSPHERE 2023; 344:140406. [PMID: 37827464 DOI: 10.1016/j.chemosphere.2023.140406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Metals-loaded (Fe3+, Cu2+ and Zn2+) activated carbons (M@AC) with different loading ratios (0.1%, 0.5%, 1%, 5% and 10%) were prepared and employed for catalytic degradation of dye model compounds (crystal violet (CV) and methyl orange (MO)) in wastewater by heterogeneous Fenton-like technique. Compared with Cu@AC and Zn@AC, 0.5% Fe3+ loaded AC (0.5Fe@AC) had better catalytic activity for dyes degradation. The effects of dyes initial concentration, catalyst dosage, pH and hydrogen peroxide (H2O2) volume on the catalytic degradation process were investigated. Cyclic performance, stability of 0.5Fe@AC and iron leaching were explored. Degradation kinetics were well fitted to the pseudo-second-order model (Langmuir-Hinshelwood). Almost complete decolorization (99.7%) of 400 mg L-1 CV was achieved after 30 min reaction under the conditions of CV volume (30 mL), catalyst dosage (0.05 g), H2O2 volume (1 mL) and pH (7.7). Decolorization of MO reached 98.2% under the same conditions. The abilities of pyrolysis char (PC) of dyeing sludge (DS) and metal loaded carbon to remove dye pollutants were compared. The intermediate products were analyzed and the possible degradation pathway was proposed. This study provided an insight into catalytic degradation of triphenylmethane- and aromatic azo-based substances, and utilization of sludge char.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Systematic Engineering Center, JIHUA Group Co., Ltd., Beijing, 100070, China
| | - Chunbao Zhou
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yanxin Yuan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yajie Jin
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihui Jiang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangtong Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianjun Dai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yingwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Asif Ali Siyal
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenya Ao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Fu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junshen Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Zhang J, Xue D, Wang C, Fang D, Cao L, Gong C. Genetic engineering for biohydrogen production from microalgae. iScience 2023; 26:107255. [PMID: 37520694 PMCID: PMC10384274 DOI: 10.1016/j.isci.2023.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The development of biohydrogen as an alternative energy source has had great economic and environmental benefits. Hydrogen production from microalgae is considered a clean and sustainable energy production method that can both alleviate fuel shortages and recycle waste. Although algal hydrogen production has low energy consumption and requires only simple pretreatment, it has not been commercialized because of low product yields. To increase microalgal biohydrogen production several technologies have been developed, although they struggle with the oxygen sensitivity of the hydrogenases responsible for hydrogen production and the complexity of the metabolic network. In this review, several genetic and metabolic engineering studies on enhancing microalgal biohydrogen production are discussed, and the economic feasibility and future direction of microalgal biohydrogen commercialization are also proposed.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Dongsheng Xue
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Chongju Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Donglai Fang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Liping Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| |
Collapse
|
11
|
Li Y, Zhu Y, Yan X, Zhang G, Yan G, Li H. Strategy and mechanisms of sulfamethoxazole removal from aqueous systems by single and combined Shewanella oneidensis MR-1 and nanoscale zero-valent iron-enriched biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163676. [PMID: 37100153 DOI: 10.1016/j.scitotenv.2023.163676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
Sulfamethoxazole (SMX, a sulfonamide antibiotic) is ubiquitously present in various aqueous systems, which can accelerate the spread of antibiotic resistance genes, induce genetic mutations, and even disrupt the ecological equilibrium. Considering the potential eco-environmental risk of SMX, this study explored an effective technology using Shewanella oneidensis MR-1 (MR-1) and nanoscale zero-valent iron-enriched biochar (nZVI-HBC) to remove SMX from aqueous systems with different pollution levels (1-30 mg·L-1). SMX removal by nZVI-HBC and nZVI-HBC + MR-1 (55-100 %) under optimal conditions (iron/HBC ratio of 1:5, 4 g·L-1 nZVI-HBC, and 10 % v/v MR-1) was more effective than its removal by MR-1 and biochar (HBC) (8-35 %). This was due to the catalytic degradation of SMX in the nZVI-HBC and nZVI-HBC + MR-1 reaction systems because of accelerated electron transfer during oxidation of nZVI and reduction of Fe(III) to Fe(II). When SMX concentration was lower than 10 mg·L-1, nZVI-HBC + MR-1 effectively removed SMX (removal rate of approximately 100 %) when compared to nZVI-HBC (removal rate of 56-79 %). In addition to oxidation degradation of SMX by nZVI in the nZVI-HBC + MR-1 reaction system, MR-1-driven dissimilatory iron reduction accelerated electron transfer to SMX, thereby enhancing reductive degradation of SMX. However, a considerable decline in SMX removal from the nZVI-HBC + MR-1 system (42 %) was observed when SMX concentrations ranged 15-30 mg·L-1, which was due to the toxicity of accumulated degradation products of SMX. A high interaction probability between SMX and nZVI-HBC promoted the catalytic degradation of SMX in the nZVI-HBC reaction system. The results of this study provide promising strategies and insights for enhancing antibiotic removal from aqueous systems with different pollution levels.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China.
| | - Guanyu Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| |
Collapse
|
12
|
Swar SS, Boonnorat J, Ghimire A. Algae-based treatment of a landfill leachate pretreated by coagulation-flocculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118223. [PMID: 37270978 DOI: 10.1016/j.jenvman.2023.118223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
Landfill leachate (LL) management is an urgent issue at recently closed Sisdol Landfill Site (SLS) used to dispose of solid waste generated in Kathmandu (Nepal) as untreated leachate is flowing directly to the nearby Kolpu River causing environmental and health concerns. This study aims to assess the potential of algae-based treatment of LL pretreated by optimized coagulation-flocculation (CF) for the removal of conventional pollutants such as biological oxygen demand (BOD5), chemical oxygen demand (COD), ammonia, nitrate, and phosphate. Response Surface Methodology (RSM) was used to optimize the operating variables (dose and pH) during the pretreatment of leachate by the CF process using ferric chloride (FeCl3.7H2O), alum (Al2(SO4)3.6H2O) and commercial poly aluminium chloride (PAC) as coagulants using a jar test apparatus. The pretreated LL was subjected to algal treatment using the mixed microalgae culture isolated and enriched from the wastewater collection pond and grown in artificial light. The combined physicochemical and algal treatment of LL from SLS achieved 62.93-72.43%, 74.93-75.55% and 87.58-93.40% and 73.63-86.73% removal for COD, BOD5, ammonium-nitrogen and phosphate, respectively. Thus, this research has proven the feasibility of a combined physiochemical and algae-based treatment of LL and also offers an exciting alternative to current treatment practices for LL.
Collapse
Affiliation(s)
- Shiwasish Singh Swar
- Resource Recovery Research Group (Re3G), Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel 45200, Nepal
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani, Thailand
| | - Anish Ghimire
- Resource Recovery Research Group (Re3G), Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel 45200, Nepal.
| |
Collapse
|