1
|
Ogunlusi O, Ghosh A, Sarkar M, Carter K, Davuluri H, Chakraborty M, Eckel-Mahan K, Keene A, Menet JS, Bell-Pedersen D, Sarkar TR. Rhythm is essential: Unraveling the relation between the circadian clock and cancer. Crit Rev Oncol Hematol 2025; 208:104632. [PMID: 39864535 DOI: 10.1016/j.critrevonc.2025.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Physiological processes such as the sleep-wake cycle, metabolism, hormone secretion, neurotransmitter release, sensory capabilities, and a variety of behaviors, including sleep, are controlled by a circadian rhythm adapted to 24-hour day-night periodicity. Disruption of circadian rhythm may lead to the risks of numerous diseases, including cancers. Several epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer. On the contrary, oncogenic processes may suppress the homeostatic balance imposed by the circadian clock. The integration of circadian biology into cancer research offers new options for making cancer treatment more effective, and the pharmacological modulation of core clock genes is a new approach in cancer therapy. This review highlights the role of the circadian clock in tumorigenesis, how clock disruption alters the tumor microenvironment, and discusses how pharmacological modulation of circadian clock genes can lead to new therapeutic options.
Collapse
Affiliation(s)
| | - Abantika Ghosh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Kayla Carter
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Harshini Davuluri
- The Master of Biotechnology Program, Texas A&M University, College Station, TX, USA
| | - Mahul Chakraborty
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, The University of Texas Health Science Centre, Houston, TX, USA
| | - Alex Keene
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Jerome S Menet
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Deborah Bell-Pedersen
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA.
| |
Collapse
|
2
|
Rusnáková DŠ, Aziri R, Dubovan P, Jurík M, Mego M, Pinďák D. Detection, significance and potential utility of circulating tumor cells in clinical practice in breast cancer (Review). Oncol Lett 2025; 29:10. [PMID: 39492933 PMCID: PMC11526295 DOI: 10.3892/ol.2024.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 11/05/2024] Open
Abstract
Although advances in diagnostic techniques, new therapeutic strategies and personalization of breast cancer (BC) care have improved the survival for a number of patients, BC remains a major cause of morbidity and mortality for women. The study of circulating tumor cells (CTCs) has significant potential in translational oncology since these cells represent promising biomarkers throughout the entire course of BC in patients. CTCs also have notable prognostic value in early BC as well as metastatic BC. Based on current knowledge, it seems that the dynamics of CTCs that change during therapy reflect therapy response, and CTCs could serve as a tool for risk stratification and real-time monitoring of treatment in patients with BC. The question of how to use this information in everyday clinical practice and how this information can guide or change therapy to affect the clinical outcome of patients with BC remains unanswered. The present review aims to discuss current completed and ongoing trials that have been designed to demonstrate the clinical significance of CTCs, offer insights into treatment efficacy and assess CTC utility, facilitating their implementation in the routine management of patients with BC.
Collapse
Affiliation(s)
- Dominika Šmičková Rusnáková
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Ramadan Aziri
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Peter Dubovan
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Miroslav Jurík
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Michal Mego
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Daniel Pinďák
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
3
|
Hattori M. Role of circulating tumor cells in breast cancer. Breast Cancer 2025; 32:26-32. [PMID: 39656381 DOI: 10.1007/s12282-024-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025]
Abstract
Circulating tumor cells (CTCs) are tumor cells that shed from the primary tumor or metastatic loci, intravasate, and circulate in the bloodstream. CTCs have been suggested to play a major role in the metastatic spread of cancer, constantly shedding from tumors during proliferation or as a result of mechanical insults. Breast cancer (BC) is one of the most representative tumors in CTC research, with several studies conducted on its clinical validity and utility in both early and advanced BC (EBC and ABC, respectively). The assessment of the number and molecular profiles of CTCs is expected to provide a more tailored therapy for patients with BC. The detection of CTCs is usually dependent on molecular markers, and epithelial cell adhesion molecules are widely used. Although the CellSearch® technology has been widely utilized for CTC detection, recent advances have led to the development of novel detection methods, facilitating further molecular analysis. In this review, we discuss the clinical applications of CTCs, current status of research, and efforts to incorporate CTC analysis into clinical practice. Additionally, we discuss potential challenges and future directions for integrating CTC analysis into clinical practice.
Collapse
Affiliation(s)
- Masaya Hattori
- Department of Breast Oncology, Aichi Cancer Center, 1-1 Kanokoden Chikusa-ku, Nagoya, 464-8681, Japan.
| |
Collapse
|
4
|
Thomas-Bonafos T, Pierga JY, Bidard FC, Cabel L, Kiavue N. Circulating tumor cells in breast cancer: clinical validity and utility. NPJ Breast Cancer 2024; 10:103. [PMID: 39613809 DOI: 10.1038/s41523-024-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/23/2024] [Indexed: 12/01/2024] Open
Abstract
Circulating tumor cells (CTCs) have been extensively studied in breast cancer (BC), with large studies establishing CTCs as a robust prognostic biomarker in early and metastatic breast cancer (MBC). Several phase II and phase III trials have investigated the clinical utility of CTCs in BC. Here, we outline the current landscape for the use of CTCs in the clinic at different stages of BC, focusing first on early BC, then on MBC, with a particular focus on interventional clinical trials based on CTCs.
Collapse
Affiliation(s)
- Thibault Thomas-Bonafos
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Jean Yves Pierga
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - François-Clément Bidard
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
- Université de Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, France
| | - Luc Cabel
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Nicolas Kiavue
- Institut Curie, Department of Medical Oncology, Paris, France.
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France.
| |
Collapse
|
5
|
Reduzzi C, Nicolo' E, Singhal S, Venetis K, Ortega-Franco A, de Miguel-Perez D, Dipasquale A, Gouda MA, Saldanha EF, Kasi PM, Jantus-Lewintre E, Fusco N, Malapelle U, Gandara DR, Rolfo C, Serrano MJ, Cristofanilli M. Unveiling the impact of circulating tumor cells: Two decades of discovery and clinical advancements in solid tumors. Crit Rev Oncol Hematol 2024; 203:104483. [PMID: 39159706 DOI: 10.1016/j.critrevonc.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Circulating tumor cells (CTCs) enumeration and molecular profiling hold promise in revolutionizing the management of solid tumors. Their understanding has evolved significantly over the past two decades, encompassing pivotal biological discoveries and clinical studies across various malignancies. While for some tumor types, such as breast, prostate, and colorectal cancer, CTCs are ready to enter clinical practice, for others, additional research is required. CTCs serve as versatile biomarkers, offering insights into tumor biology, metastatic progression, and treatment response. This review summarizes the latest advancements in CTC research and highlights future directions of investigation. Special attention is given to concurrent evaluations of CTCs and other circulating biomarkers, particularly circulating tumor DNA. Multi-analyte assessment holds the potential to unlock the full clinical capabilities of liquid biopsy. In conclusion, CTCs represent a transformative biomarker in precision oncology, offering extraordinary opportunities to translate scientific discoveries into tangible improvements in patient care.
Collapse
Affiliation(s)
- Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Eleonora Nicolo'
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Surbhi Singhal
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Ana Ortega-Franco
- Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erick F Saldanha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON, Canada
| | - Pashtoon M Kasi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| | - Eloisa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and CIBERONC, Valencia, Spain
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20121, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - David R Gandara
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Jose Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain; Pathological Anatomy Unit, Molecular Pathology Laboratory,Virgen de las Nieves. University Hospital, Av. Dr. Olóriz 16, Granada 18012, Spain
| | - Massimo Cristofanilli
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| |
Collapse
|
6
|
Nicolò E, Gianni C, Curigliano G, Reduzzi C, Cristofanilli M. Modeling the management of patients with human epidermal growth factor receptor 2-positive breast cancer with liquid biopsy: the future of precision medicine. Curr Opin Oncol 2024; 36:503-513. [PMID: 39011731 DOI: 10.1097/cco.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW In the evolving landscape of human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) management, liquid biopsy offers unprecedented opportunities for guiding clinical decisions. Here, we review the most recent findings on liquid biopsy applications in HER2-positive BC and its potential role in addressing challenges specific to this BC subtype. RECENT FINDINGS Recent studies have highlighted the significance of liquid biopsy analytes, primarily circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), in stratifying patients' prognosis, predicting treatment response, and monitoring tumor evolution in both early and advanced stages of BC. Liquid biopsy holds promise in studying minimal residual disease to detect and potentially treat disease recurrence before it manifests clinically. Additionally, liquid biopsy may have significant implication in the management of brain metastasis, a major challenge in HER2-positive BC, and could redefine parameters for determining HER2 positivity. Combining ctDNA and CTCs is crucial for a comprehensive understanding of HER2-positive tumors, as they provide complementary insights. SUMMARY Research efforts are needed to address analytical challenges, validate, and broaden the application of liquid biopsy in HER2-positive BC. This effort will ultimately facilitate its integration into clinical practice, optimizing the care of patients with HER2-positive tumors.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
7
|
Li N, Chen S, Cai X. Harnessing molecular probes for imaging of human epidermal growth factor receptor (HER) family. Bioorg Med Chem 2024; 113:117931. [PMID: 39362074 DOI: 10.1016/j.bmc.2024.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
The human epidermal growth factor receptor (HER) family plays a critical role in the development, migration, and invasion of various cancers. Currently, the FDA has approved numerous targeting therapies for the HER family consist of small molecule drugs, monoclonal antibodies and antibody-drug conjugates. To facilitate precision therapy using currently approved targeted agents, early detection and quantification of each HER receptor are essential for assessment, treatment, and prognostic purposes. This study provides a comprehensive review of the latest advancements in detection and quantification of HER receptors, including traditional biopsies, liquid biopsies, and non-invasive detection methods. Although traditional histological methods, such as immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), have yielded valuable insights, advancements in real-time and non-invasive detection technologies necessitate improved methods for the dynamic evaluation of HER status. This article also reviews several emerging real-time techniques for detecting and quantifying HER status in circulating tumor cells (CTCs) extracted from blood samples, as well as in vivo assessments using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This review emphasizes the importance of continuous innovation in the application of HER receptor imaging technologies, with the goal of enhancing treatment outcomes and prognoses for cancer patients.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Shengxi Chen
- Biodesign Center for BioEnergetics, Arizona State University, Tempe 85287, USA.
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China.
| |
Collapse
|
8
|
Bhagyalalitha M, Handattu Shankaranarayana A, Arun Kumar S, Singh M, Pujar KG, Bidye D, Veeranna Pujar G. Advances in HER2-Targeted Therapies: From monoclonal antibodies to dual inhibitors developments in cancer treatment. Bioorg Chem 2024; 151:107695. [PMID: 39137598 DOI: 10.1016/j.bioorg.2024.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
HER2 receptors, overexpressed in certain human cancers, have drawn significant attention in cancer research due to their correlation with poor survival rates. Researchers have developed monoclonal antibodies like Trastuzumab and Pertuzumab against HER2 receptors, which have proven highly beneficial in cancer therapy. Bispecific antibodies like Zanidatamab and antibody-drug conjugates like T-DM1 have been developed to overcome the resistance associated with monotherapy. Small molecules such as Lapatinib, Neratinib, and Pyrotinib were initially developed for treating breast cancer. However, ongoing research is investigating their potential use in other types of cancer, often in combination with other medications. EGFR/HER2 dual-targeted drugs have overcome drug resistance associated with HER2-targeted monotherapy. This comprehensive review covers the structural characteristics of HER2, the HER family signaling pathway mechanism, recent findings regarding HER2 receptor involvement in various cancers, and diverse HER2-targeted therapies. This information provides a comprehensive understanding of HER2-targeted strategies in the evolving field of cancer treatment.
Collapse
Affiliation(s)
- Meduri Bhagyalalitha
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Akshatha Handattu Shankaranarayana
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Sethu Arun Kumar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Manisha Singh
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Karthik G Pujar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Durgesh Bidye
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India.
| |
Collapse
|
9
|
Shi J, Duan Y. Knowledge-map and research trends of circulating tumor cells in breast cancer: a scientometric analysis. Discov Oncol 2024; 15:506. [PMID: 39340703 PMCID: PMC11438760 DOI: 10.1007/s12672-024-01385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Assessing circulating tumor cells (CTCs) in early-stage breast cancer patients can help identify relapse risk for timely interventions. Molecular analysis of CTCs can reveal vulnerabilities for personalized treatment options in metastatic breast cancer. This study aims to summarize CTCs in breast cancer research understanding and evaluate research trends. Extracted from the Web of Science Core Collection, publications on CTCs in breast cancer studies spanning from January 1, 2008, to December 21, 2023, were included. Co-authorships, references, and keywords were analyzed using Bibliometrix R packages and VOSviewer software. References and keywords burst detection were conducted with CiteSpace, and BICOMB was utilized to generate high-frequency keyword layouts. Biclustering analysis of the binary co-keyword matrix was performed using gCLUTO. 1747 articles focusing on CTCs in breast cancer were identified. The USA and the University of Texas MD Anderson Cancer Center demonstrated the highest productivity at the national and institutional levels, respectively. The journal "CANCERS" had the highest publication outputs on this subject. Pantel K emerged as the foremost author with the highest publication and co-citation counts. Analysis of co-keywords unveiled five prominent research areas concerning CTCs in breast cancer. The prognostic and predictive roles of CTCs in breast cancer have substantial implications for clinical practice. Nevertheless, precise assessment of CTCs, encompassing its quantities and attributes through advanced technologies, and its role in detecting minimal residual disease in breast cancer, continue to pose notable challenges. In conclusion, recent advancements and trends in CTCs research in breast cancer are examined through scientometric analysis in this study. The results provide valuable insights for the formulation of novel approaches in CTCs research, emphasizing the current research frontiers.
Collapse
Affiliation(s)
- Jinan Shi
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Pandey P, Chaudhary R, Tripathi D, Lavudi K, Dua K, Weinfeld M, Lavasanifar A, Rajinikanth PS. Personalized treatment approach for HER2-positive metastatic breast cancer. Med Oncol 2024; 41:252. [PMID: 39320608 DOI: 10.1007/s12032-024-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Breast cancer (BC) is a leading global concern for women, with 30% being HER2-positive cases linked to poorer outcomes. Targeted therapies like trastuzumab deruxtecan (T-DXd), trastuzumab, pertuzumab, and T-DM1 have revolutionized HER2-positive metastatic breast cancer (MBC) treatment. Although these therapies have improved MBC management and patient outcomes, resistance can develop, reducing effectiveness. Personalized strategies based on tumor characteristics offer hope for better responses and longer outcomes. This review outlines insights into MBC patients responding well to anti-HER2 treatments, even across multiple treatment regimen. Recent immunotherapy, locoregional therapy, and liquid biopsy breakthroughs are covered, suggesting ways to increase long-term responders. Personalized approaches have boosted HER2-positive MBC outcomes, and ongoing research is crucial to uncover new treatments and biomarkers, potentially elevating long-term response rates and prognoses. This may aid in providing new direction to breast cancer clinics.
Collapse
Affiliation(s)
- Prashant Pandey
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Michael Weinfeld
- Cross Cancer Institute and Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
11
|
Rapanotti MC, Cenci T, Scioli MG, Cugini E, Anzillotti S, Savino L, Coletta D, Di Raimondo C, Campione E, Roselli M, Bernardini S, Bianchi L, De Luca A, Ferlosio A, Orlandi A. Circulating Tumor Cells: Origin, Role, Current Applications, and Future Perspectives for Personalized Medicine. Biomedicines 2024; 12:2137. [PMID: 39335650 PMCID: PMC11429165 DOI: 10.3390/biomedicines12092137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Circulating tumor cells (CTCs) currently represent a revolutionary tool offering unique insights for the evaluation of cancer progression, metastasis, and response to therapies. Indeed, CTCs, upon detachment from primary tumors, enter the bloodstream and acquire a great potential for their use for personalized cancer management. In this review, we describe the current understanding of and advances in the clinical employment of CTCs. Although considered rare and fleeting, CTCs are now recognized as key players favoring the development of cancer metastasis and disease recurrence, particularly in malignant melanoma, lung, breast, and colorectal cancer patients. To date, the advancements in technology and the development of several successful approaches, also including immunomagnetic enrichment allow for a reliable and reproducible detection and characterization of CTCs. Those innovative methodologies improved the isolation, quantification, and characterization of CTCs from the blood of cancer patients, providing extremely useful evidence and new insights into the nature of the tumor, its epithelial/mesenchymal profile, and its potential resistance to therapy. In fact, in addition to their prognostic and predictive value, CTCs could serve as a valuable instrument for real-time monitoring of treatment response and disease recurrence, facilitating timely interventions and thus improving patient outcomes. However, despite their potential, several challenges hinder the widespread clinical utility of CTCs: (i) CTCs' rarity and heterogeneity pose technical limitations in isolation and characterization, as well as significant hurdles in their clinical implementation; (ii) it is mandatory to standardize CTC detection methods, optimize the sample processing techniques, and integrate them with existing diagnostic modalities; and (iii) the need for the development of new techniques, such as single-cell analysis platforms, to enhance the sensitivity and specificity of CTC detection, thereby facilitating their integration into routine clinical practice. In conclusion, CTCs represent a potential extraordinary tool in cancer diagnostics and therapeutics, offering unprecedented opportunities for personalized medicine and precision oncology. Moreover, their ability to provide real-time insights into tumor biology, treatment response, and disease progression underlines a great potential for their clinical application to improve patients' outcomes and advance our understanding of cancer biology.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Tonia Cenci
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Elisa Cugini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.C.)
| | - Silvia Anzillotti
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Luca Savino
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Deborah Coletta
- Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (D.C.); (M.R.)
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (E.C.); (L.B.)
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (E.C.); (L.B.)
| | - Mario Roselli
- Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (D.C.); (M.R.)
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.C.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (E.C.); (L.B.)
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| |
Collapse
|
12
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Smit DJ, Schneegans S, Pantel K. Clinical applications of circulating tumor cells in patients with solid tumors. Clin Exp Metastasis 2024; 41:403-411. [PMID: 38281256 PMCID: PMC11374849 DOI: 10.1007/s10585-024-10267-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
The concept of liquid biopsy analysis has been established more than a decade ago. Since the establishment of the term, tremendous advances have been achieved and plenty of methods as well as analytes have been investigated in basic research as well in clinical trials. Liquid biopsy refers to a body fluid-based biopsy that is minimal-invasive, and most importantly, allows dense monitoring of tumor responses by sequential blood sampling. Blood is the most important analyte for liquid biopsy analyses, providing an easily accessible source for a plethora of cells, cell-derived products, free nucleic acids, proteins as well as vesicles. More than 12,000 publications are listed in PubMed as of today including the term liquid biopsy. In this manuscript, we critically review the current implications of liquid biopsy, with special focus on circulating tumor cells, and describe the hurdles that need to be addressed before liquid biopsy can be implemented in clinical standard of care guidelines.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Svenja Schneegans
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
14
|
Verschoor N, Bos MK, de Kruijff IE, Van MN, Kraan J, Drooger JC, Zuetenhorst JM, Wilting SM, Sleijfer S, Jager A, Martens JWM. Trastuzumab and first-line taxane chemotherapy in metastatic breast cancer patients with a HER2-negative tumor and HER2-positive circulating tumor cells: a phase II trial. Breast Cancer Res Treat 2024; 205:87-95. [PMID: 38291268 PMCID: PMC11062986 DOI: 10.1007/s10549-023-07231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE HER2 overexpressing circulating tumor cells (CTCs) are observed in up to 25% of HER2-negative metastatic breast cancer patients. Since targeted anti-HER2 therapy has drastically improved clinical outcomes of patients with HER2-positive breast cancer, we hypothesized that patients with HER2 overexpressing CTCs might benefit from the addition of trastuzumab to chemotherapy. METHODS In this single-arm, phase II trial, patients with HER2-positive CTCs received trastuzumab as addition to first-line treatment with taxane chemotherapy. Patients with detectable CTCs but without HER2 overexpression that received taxane chemotherapy only, were used as control group. The primary outcome measure was progression-free rate at 6 months (PFR6), with a target of 80%. In November 2022, the study was terminated early due to slow patient accrual. RESULTS 63 patients were screened, of which eight patients had HER2-positive CTCs and were treated with trastuzumab. The median number of CTCs was 15 per 7.5 ml of blood (range 1-131) in patients with HER2-positive CTCs, compared to median 5 (range 1-1047) in the control group. PFR6 was 50% in the trastuzumab group and 54% in the taxane monotherapy group, with no significant difference in median PFS (8 versus 9 months, p = 0.51). CONCLUSION No clinical benefit of trastuzumab was observed, although this study was performed in a limited number of patients. Additionally, we observed a strong correlation between the number of evaluable CTCs and the presence of HER2-positive CTCs. We argue that randomized studies investigating agents that are proven to be solely effective in the HER2-positive patient group in patients with HER2-positive CTCs and HER2-negative tissue are currently infeasible. Several factors contribute to this impracticality, including the need for more stringent thresholds, and the rapidly evolving landscape of cancer treatments.
Collapse
Affiliation(s)
- Noortje Verschoor
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Manouk K Bos
- Department of Internal Medicine, Breast Cancer Center South Holland South, Ikazia Hospital, Rotterdam, The Netherlands
| | - Ingeborg E de Kruijff
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mai N Van
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jan C Drooger
- Department of Internal Medicine, Breast Cancer Center South Holland South, Ikazia Hospital, Rotterdam, The Netherlands
| | - Johanna M Zuetenhorst
- Department of Medical Oncology, Franciscus Gasthuis & Vlietland, Rotterdam/Schiedam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Smit DJ, Pantel K. Circulating tumor cells as liquid biopsy markers in cancer patients. Mol Aspects Med 2024; 96:101258. [PMID: 38387225 DOI: 10.1016/j.mam.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Over the past decade, novel methods for enrichment and identification of cancer cells circulating in the blood have been established. Blood-based detection of cancer cells and other tumor-associated products can be summarized under the term of Liquid Biopsy. Circulating tumor cells (CTCs) have been used for diagnosis, risk stratification and treatment selection as well as treatment monitoring in several studies over the past years, thus representing a valuable biomarker for cancer patients. A plethora of methods to enrich, detect and analyze CTCs has been established. In contrast to other liquid biopsy analytes (e.g. ctDNA), CTCs represent a viable analyte that provides a unique opportunity to understand the underlaying biology of cancer and the metastatic cascade on the molecular level. In this review, we provide an overview on the current methods used for enrichment, detection, molecular and functional characterization of CTCs.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
16
|
Bardol T, Eslami‐S Z, Masmoudi D, Alexandre M, Duboys de Labarre M, Bobrie A, D'Hondt V, Guiu S, Kurma K, Cayrefourcq L, Jacot W, Alix‐Panabières C. First evidence of AXL expression on circulating tumor cells in metastatic breast cancer patients: A proof-of-concept study. Cancer Med 2024; 13:e6843. [PMID: 38132919 PMCID: PMC10807582 DOI: 10.1002/cam4.6843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND For several years, the AXL tyrosine kinase receptor, a member of the Tyro3-Axl-Mer (TAM) family, has been considered a new strategic target in oncology. AXL overexpression is common in solid tumors and is associated with poor prognosis. In this context, the detection of a subset of circulating tumor cells (CTCs) that express AXL (AXL+ CTCs) could be clinically relevant. METHODS Immunostaining was performed to assess AXL expression in human breast cancer cell lines. The optimal conditions were established using flow cytometry. Spiking experiments were carried out to optimize the parameters of the CellSearch® system detection test. CTC enumeration and AXL expression were evaluated in patients with metastatic breast cancer (mBC) before treatment initiation. RESULTS An innovative AXL+ CTC detection assay to be used with the CellSearch® system was developed. In a prospective longitudinal clinical trial, blood samples from 60 patients with untreated mBC were analyzed to detect AXL+ CTCs with this new assay. CTCs were detected in 35/60 patients (58.3%) and AXL+ CTCs were identified in 7 of these 35 patients (11.7% of all patients). CONCLUSION This newly established AXL+ CTC assay is a promising tool that can be used for liquid biopsy in future clinical trials to stratify and monitor patients with cancer receiving anti-AXL therapies.
Collapse
Affiliation(s)
- Thomas Bardol
- Laboratory of Rare Circulating Human Cells—University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)Université de Montpellier, CNRS, IRDMontpellierFrance
| | - Zahra Eslami‐S
- Laboratory of Rare Circulating Human Cells—University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)Université de Montpellier, CNRS, IRDMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Doryan Masmoudi
- Laboratory of Rare Circulating Human Cells—University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)Université de Montpellier, CNRS, IRDMontpellierFrance
| | - Marie Alexandre
- Department of Medical OncologyInstitut du Cancer de Montpellier, Montpellier UniversityMontpellierFrance
- Institut de Recherche en Cancérologie de MontpellierINSERM U1194, Montpellier UniversityMontpellierFrance
| | - Marie Duboys de Labarre
- Department of Medical OncologyInstitut du Cancer de Montpellier, Montpellier UniversityMontpellierFrance
- Institut de Recherche en Cancérologie de MontpellierINSERM U1194, Montpellier UniversityMontpellierFrance
| | - Angélique Bobrie
- Department of Medical OncologyInstitut du Cancer de Montpellier, Montpellier UniversityMontpellierFrance
- Institut de Recherche en Cancérologie de MontpellierINSERM U1194, Montpellier UniversityMontpellierFrance
| | - Véronique D'Hondt
- Department of Medical OncologyInstitut du Cancer de Montpellier, Montpellier UniversityMontpellierFrance
- Institut de Recherche en Cancérologie de MontpellierINSERM U1194, Montpellier UniversityMontpellierFrance
| | - Séverine Guiu
- Department of Medical OncologyInstitut du Cancer de Montpellier, Montpellier UniversityMontpellierFrance
- Institut de Recherche en Cancérologie de MontpellierINSERM U1194, Montpellier UniversityMontpellierFrance
| | - Keerthi Kurma
- Laboratory of Rare Circulating Human Cells—University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)Université de Montpellier, CNRS, IRDMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Laure Cayrefourcq
- Laboratory of Rare Circulating Human Cells—University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)Université de Montpellier, CNRS, IRDMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - William Jacot
- Department of Medical OncologyInstitut du Cancer de Montpellier, Montpellier UniversityMontpellierFrance
- Institut de Recherche en Cancérologie de MontpellierINSERM U1194, Montpellier UniversityMontpellierFrance
| | - Catherine Alix‐Panabières
- Laboratory of Rare Circulating Human Cells—University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)Université de Montpellier, CNRS, IRDMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| |
Collapse
|
17
|
Nicolò E, Serafini MS, Munoz-Arcos L, Pontolillo L, Molteni E, Bayou N, Andreopoulou E, Curigliano G, Reduzzi C, Cristofanilli M. Real-time assessment of HER2 status in circulating tumor cells of breast cancer patients: Methods of detection and clinical implications. THE JOURNAL OF LIQUID BIOPSY 2023; 2:100117. [PMID: 40028485 PMCID: PMC11863949 DOI: 10.1016/j.jlb.2023.100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 03/05/2025]
Abstract
The human epidermal growth factor receptor 2 (HER2) plays a central role in breast cancer (BC). Therefore, it is critical to develop a method that can capture its spatial and temporal heterogeneity. Nowadays, therapeutic decisions for BC patients relies on evaluation of HER2 status from tissue biopsies using immunohistochemistry and in situ hybridization. Nevertheless, considering the technical and logistical challenges associated with tissue biopsies, there is an unmet need for a non-invasive and accurate approach to obtain real-time assessment of HER2 status. In this context, circulating biomarkers, particularly circulating tumor cells (CTCs), emerged as promising candidates. HER2 assessment on CTCs can be performed at genomic, transcriptomic, and protein levels on both bulk CTCs and at the single-cell resolution. However, the main limitation of the literature to date is the lack of a consistent definition of HER2-positive CTCs, which poses a major challenge for both, future research and clinical applications. Several studies revealed discordance in HER2 status between the primary tumor and corresponding CTCs. For instance, HER2-positive CTCs have been detected among patients with HER2-negative BC and vice versa. As a result, researchers have evaluated the prognostic and predictive value of HER2 status in CTCs, both in the early and metastatic settings, to increase the possibility of using anti-HER2 therapy also for these patients and to dissect mechanisms of treatment resistance. This review aims to provide an overview of the methods to determine HER2 status in CTCs and to summarize the evidence and future perspective on how CTCs-HER2 assessment can be integrated into the clinical management of BC patients.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mara Serena Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Laura Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Letizia Pontolillo
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Medical Oncology Department, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Elisabetta Molteni
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, University of Udine, Via Chiusaforte, Udine, Italy
| | - Nadia Bayou
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Eleni Andreopoulou
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Marchiò C, Criscitiello C, Scatena C, Santinelli A, Graziano P, Malapelle U, Cursano G, Venetis K, Fanelli GN, Pepe F, Berrino E, De Angelis C, Perrone G, Curigliano G, Fusco N. Think "HER2" different: integrative diagnostic approaches for HER2-low breast cancer. Pathologica 2023; 115:292-301. [PMID: 38180137 PMCID: PMC10767801 DOI: 10.32074/1591-951x-942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
This work explores the complex field of HER2 testing in the HER2-low breast cancer era, with a focus on methodological aspects. We aim to propose clear positions to scientific societies, institutions, pathologists, and oncologists to guide and shape the appropriate diagnostic strategies for HER2-low breast cancer. The fundamental question at hand is whether the necessary tools to effectively translate our knowledge about HER2 into practical diagnostic schemes for the lower spectrum of expression are available. Our investigation is centered on the significance of distinguishing between an immunohistochemistry (IHC) score 0 and score 1+ in light of the clinical implications now apparent, as patients with HER2-low breast cancer become eligible for trastuzumab-deruxtecan treatment. Furthermore, we discuss the definition of HER2-low beyond its conventional boundaries and assess the reliability of established diagnostic procedures designed at a time when therapeutic perspectives were non-existent for these cases. In this regard, we examine potential complementary technologies, such as gene expression analysis and liquid biopsy. Ultimately, we consider the potential role of artificial intelligence (AI) in the field of digital pathology and its integration into HER2 testing, with a particular emphasis on its application in the context of HER2-low breast cancer.
Collapse
Affiliation(s)
- Caterina Marchiò
- Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Cristian Scatena
- Department of Laboratory Medicine, Pisa University Hospital, Anatomic Pathology 1 Universitaria, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Alfredo Santinelli
- Anatomic Pathology, Azienda Sanitaria Territoriale di Pesaro-Urbino, Pesaro, Italy
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Ospedale ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo (FG), Italy
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Giuseppe Nicolò Fanelli
- Department of Laboratory Medicine, Pisa University Hospital, Anatomic Pathology 1 Universitaria, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Enrico Berrino
- Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Giuseppe Perrone
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Roma, Italy
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Pathology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
19
|
Stoecklein NH, Oles J, Franken A, Neubauer H, Terstappen LWMM, Neves RPL. Clinical application of circulating tumor cells. MED GENET-BERLIN 2023; 35:237-250. [PMID: 38835741 PMCID: PMC11110132 DOI: 10.1515/medgen-2023-2056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This narrative review aims to provide a comprehensive overview of the current state of circulating tumor cell (CTC) analysis and its clinical significance in patients with epithelial cancers. The review explores the advancements in CTC detection methods, their clinical applications, and the challenges that lie ahead. By examining the important research findings in this field, this review offers the reader a solid foundation to understand the evolving landscape of CTC analysis and its potential implications for clinical practice. The comprehensive analysis of CTCs provides valuable insights into tumor biology, treatment response, minimal residual disease detection, and prognostic evaluation. Furthermore, the review highlights the potential of CTCs as a non-invasive biomarker for personalized medicine and the monitoring of treatment efficacy. Despite the progress made in CTC research, several challenges such as standardization, validation, and integration into routine clinical practice remain. The review concludes by discussing future directions and the potential impact of CTC analysis on improving patient outcomes and guiding therapeutic decision-making in epithelial cancers.
Collapse
Affiliation(s)
- Nikolas H Stoecklein
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Julia Oles
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Andre Franken
- University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf Department of Obstetrics and Gynecology Düsseldorf Deutschland
| | - Hans Neubauer
- University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf Department of Obstetrics and Gynecology Düsseldorf Deutschland
| | - Leon W M M Terstappen
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Rui P L Neves
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| |
Collapse
|
20
|
Deng Q, Jiang B, Yan H, Wu J, Cao Z. Circulating tumor cells in gastric cancer: developments and clinical applications. Clin Exp Med 2023; 23:4385-4399. [PMID: 37548815 DOI: 10.1007/s10238-023-01158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Circulating tumor cells (CTCs), which are shed from primary tumor or metastatic sites into the bloodstream and subsequently seed into distant tissues, are considered as the precursors of metastases. Gastric cancer (GC) is a highly heterogeneous malignant tumor. With regard to the diagnosis of GC, secondary pathological biopsy is difficult, while invasive examination is harmful to patients. In recent years, CTCs have made great progress in tumor diagnosis, prognosis prediction, efficacy detection and treatment guidance, but the research on the role of CTCs in GC remains limited. The following sections review the landmark studies demonstrating the technical approaches of CTCs monitoring in the field of GC. Moreover, we highlight the clinical application of CTCs numbers and phenotypes in monitoring the therapeutic efficacy and judging patient prognosis by sequential blood analyses.
Collapse
Affiliation(s)
- Qian Deng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Bo Jiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Haijiao Yan
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Zhenzhen Cao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
21
|
Keup C, Kimmig R, Kasimir-Bauer S. The Diversity of Liquid Biopsies and Their Potential in Breast Cancer Management. Cancers (Basel) 2023; 15:5463. [PMID: 38001722 PMCID: PMC10670968 DOI: 10.3390/cancers15225463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Analyzing blood as a so-called liquid biopsy in breast cancer (BC) patients has the potential to adapt therapy management. Circulating tumor cells (CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA) and other blood components mirror the tumoral heterogeneity and could support a range of clinical decisions. Multi-cancer early detection tests utilizing blood are advancing but are not part of any clinical routine yet. Liquid biopsy analysis in the course of neoadjuvant therapy has potential for therapy (de)escalation.Minimal residual disease detection via serial cfDNA analysis is currently on its way. The prognostic value of blood analytes in early and metastatic BC is undisputable, but the value of these prognostic biomarkers for clinical management is controversial. An interventional trial confirmed a significant outcome benefit when therapy was changed in case of newly emerging cfDNA mutations under treatment and thus showed the clinical utility of cfDNA analysis for therapy monitoring. The analysis of PIK3CA or ESR1 variants in plasma of metastatic BC patients to prescribe targeted therapy with alpesilib or elacestrant has already arrived in clinical practice with FDA-approved tests available and is recommended by ASCO. The translation of more liquid biopsy applications into clinical practice is still pending due to a lack of knowledge of the analytes' biology, lack of standards and difficulties in proving clinical utility.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, 45147 Essen, Germany
| | | | | |
Collapse
|
22
|
Pei H, Han Z, Du D, Fan Y, Si H, Chang W, Wang Y, Li L, Tang B. Combined Molecular and Morphological Imaging of CTCs for HER2-Targeted Chemotherapy Guidance. Anal Chem 2023; 95:13235-13241. [PMID: 37606014 DOI: 10.1021/acs.analchem.3c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Since biomolecules change dynamically with tumor evolution and drug treatment, it is necessary to confirm target molecule expression in real time for effective guidance of subsequent chemotherapy treatment. However, current methods to confirm target proteins require complex processing steps and invasive tissue biopsies, limiting their clinical utility for targeted treatment monitoring. Here, CTCs, as a promising liquid biopsy source, were used to molecularly characterize the target protein HER2. To accurately identify CTCs, we specifically proposed a combined molecular and morphological imaging method, rather than using specific biomarker alone or morphology analysis, we identified CTCs as CK19+/CD45-/HE+. On the basis of the accurate identification of CTCs, we further analyzed the target protein HER2 in clinical patients at the single-CTC level. Comparative analysis of the clinical results of patient pathological tissue and paired blood samples showed that CTCs had a heterogeneous HER2 expression at the single-cell level and showed results inconsistent with the immunohistochemistry results in some cases. CTC-based analysis could help clinicians have a more comprehensive understanding of patient target protein expression. We believe that CTC-based target protein studies are of great significance for the precise management of targeted therapy.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhaojun Han
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yuanyuan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wendi Chang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yiguo Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, People's Republic of China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
- Laoshan Laboratory,168 Wenhai Middle Road, Aoshanwei Jimo, Qingdao 266237, People's Republic of China
| |
Collapse
|
23
|
Munoz-Arcos LS, Nicolò E, Serafini MS, Gerratana L, Reduzzi C, Cristofanilli M. Latest advances in clinical studies of circulating tumor cells in early and metastatic breast cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:1-21. [PMID: 37739480 DOI: 10.1016/bs.ircmb.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Circulating tumor cells (CTCs) have emerged as a promising biomarker in breast cancer, offering insights into disease progression and treatment response. While CTCs have demonstrated prognostic relevance in early breast cancer, more validation is required to establish optimal cut-off points. In metastatic breast cancer, the detection of CTCs using the Food and Drug Administration-approved CellSearch® system is a strong independent prognostic factor. However, mesenchymal CTCs and the Parsortix® PC1 system show promise as alternative detection methods. This chapter offers a comprehensive review of clinical studies on CTCs in breast cancer, emphasizing their prognostic and predictive value in different stages of the disease and provides insights into potential future directions in CTC research.
Collapse
Affiliation(s)
- Laura S Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Mara S Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
24
|
Höller A, Nguyen-Sträuli BD, Frauchiger-Heuer H, Ring A. "Diagnostic and Prognostic Biomarkers of Luminal Breast Cancer: Where are We Now?". BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:525-540. [PMID: 37533589 PMCID: PMC10392911 DOI: 10.2147/bctt.s340741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Luminal breast cancers are hormone receptor (estrogen and/or progesterone) positive that are further divided into HER2-negative luminal A and HER2-positive luminal B subtypes. According to currently accepted convention, they represent the most common subtypes of breast cancer, accounting for approximately 70% of cases. Biomarkers play a critical role in the functional characterization, prognostication, and therapeutic prediction, rendering them indispensable for the clinical management of invasive breast cancer. Traditional biomarkers include clinicopathological parameters, which are increasingly extended by genetic and other molecular markers, enabling the comprehensive characterization of patients with luminal breast cancer. Liquid biopsies capturing and analyzing circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging technologies that envision personalized management through precision oncology. This article reviews key biomarkers in luminal breast cancer and ongoing developments.
Collapse
Affiliation(s)
- Anna Höller
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Heike Frauchiger-Heuer
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Strati A, Markou A, Kyriakopoulou E, Lianidou E. Detection and Molecular Characterization of Circulating Tumour Cells: Challenges for the Clinical Setting. Cancers (Basel) 2023; 15:cancers15072185. [PMID: 37046848 PMCID: PMC10092977 DOI: 10.3390/cancers15072185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Over the last decade, liquid biopsy has gained much attention as a powerful tool in personalized medicine since it enables monitoring cancer evolution and follow-up of cancer patients in real time. Through minimally invasive procedures, liquid biopsy provides important information through the analysis of circulating tumour cells (CTCs) and circulating tumour-derived material, such as circulating tumour DNA (ctDNA), circulating miRNAs (cfmiRNAs) and extracellular vehicles (EVs). CTC analysis has already had an important impact on the prognosis, detection of minimal residual disease (MRD), treatment selection and monitoring of cancer patients. Numerous clinical trials nowadays include a liquid biopsy arm. CTC analysis is now an exponentially expanding field in almost all types of solid cancers. Functional studies, mainly based on CTC-derived cell-lines and CTC-derived explants (CDx), provide important insights into the metastatic process. The purpose of this review is to summarize the latest findings on the clinical significance of CTCs for the management of cancer patients, covering the last four years. This review focuses on providing a comprehensive overview of CTC analysis in breast, prostate and non-small-cell lung cancer. The unique potential of CTC single-cell analysis for understanding metastasis biology, and the importance of quality control and standardization of methodologies used in this field, is also discussed.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumour Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Athina Markou
- Analysis of Circulating Tumour Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Evi Lianidou
- Analysis of Circulating Tumour Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
26
|
Di Sario G, Rossella V, Famulari ES, Maurizio A, Lazarevic D, Giannese F, Felici C. Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review. Front Genet 2023; 14:1152470. [PMID: 37077538 PMCID: PMC10109350 DOI: 10.3389/fgene.2023.1152470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
In the last years, liquid biopsy gained increasing clinical relevance for detecting and monitoring several cancer types, being minimally invasive, highly informative and replicable over time. This revolutionary approach can be complementary and may, in the future, replace tissue biopsy, which is still considered the gold standard for cancer diagnosis. "Classical" tissue biopsy is invasive, often cannot provide sufficient bioptic material for advanced screening, and can provide isolated information about disease evolution and heterogeneity. Recent literature highlighted how liquid biopsy is informative of proteomic, genomic, epigenetic, and metabolic alterations. These biomarkers can be detected and investigated using single-omic and, recently, in combination through multi-omic approaches. This review will provide an overview of the most suitable techniques to thoroughly characterize tumor biomarkers and their potential clinical applications, highlighting the importance of an integrated multi-omic, multi-analyte approach. Personalized medical investigations will soon allow patients to receive predictable prognostic evaluations, early disease diagnosis, and subsequent ad hoc treatments.
Collapse
|
27
|
Mazzitelli C, Santini D, Corradini AG, Zamagni C, Trerè D, Montanaro L, Taffurelli M. Liquid Biopsy in the Management of Breast Cancer Patients: Where Are We Now and Where Are We Going. Diagnostics (Basel) 2023; 13:diagnostics13071241. [PMID: 37046459 PMCID: PMC10092978 DOI: 10.3390/diagnostics13071241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Liquid biopsy (LB) is an emerging diagnostic tool that analyzes biomarkers in the blood (and possibly in other body fluids) to provide information about tumor genetics and response to therapy. This review article provides an overview of LB applications in human cancer with a focus on breast cancer patients. LB methods include circulating tumor cells and cell-free tumor products, such as circulating tumor DNA. LB has shown potential in detecting cancer at an early stage, monitoring tumor progression and recurrence, and predicting patient response to therapy. Several studies have demonstrated its clinical utility in breast cancer patients. However, there are limitations to LB, including the lack of standardized assays and the need for further validation. Future potential applications of LB include identifying the minimal residual disease, early detection of recurrence, and monitoring treatment response in various cancer types. LB represents a promising non-invasive diagnostic tool with potential applications in breast cancer diagnosis, treatment, and management. Further research is necessary to fully understand its clinical utility and overcome its current limitations.
Collapse
|
28
|
Stergiopoulou D, Markou A, Strati A, Zavridou M, Tzanikou E, Mastoraki S, Kallergi G, Georgoulias V, Lianidou E. Comprehensive liquid biopsy analysis as a tool for the early detection of minimal residual disease in breast cancer. Sci Rep 2023; 13:1258. [PMID: 36690653 PMCID: PMC9870904 DOI: 10.1038/s41598-022-25400-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023] Open
Abstract
Liquid biopsy (LB) provides a unique minimally invasive tool to follow-up cancer patients over time, to detect minimal residual disease (MRD), to study metastasis-biology and mechanisms of therapy-resistance. Molecular characterization of CTCs offers additionally the potential to understand resistance to therapy and implement individualized targeted treatments which can be modified during the disease evolution and follow-up period of a patient. In this study, we present a long-term follow-up of operable breast cancer patients based on a comprehensive liquid biopsy analysis. We performed a comprehensive liquid biopsy analysis in peripheral blood of 13 patients with early-stage operable breast cancer at several time points for a period of ten years, consisting of: (a) CTC enumeration using the CellSearch system, (b) phenotypic analysis of CTCs using Immunofluorescence, (c) gene expression analysis, in EpCAM(+) CTCs for CK-19, CD24,CD44, ALDH1, and TWIST1, (d) analysis of PIK3CA and ESR1 mutations in EpCAM(+) CTCs and corresponding plasma ctDNA and (e) DNA methylation of ESR1 in CTCs. 10/13 (77%) patients were found negative for LB markers in PB during the whole follow-up period, and these patients did not relapse during the follow-up. However, 3/13(18%) patients that were positive for at least one LB marker relapsed within the follow-up period. The molecular characteristics of CTCs were highly different even for the same patient at different time points, and always increased before the clinical relapse. Our results indicate that liquid biopsy can reveal the presence of MRD at least 4 years before the appearance of clinically detectable metastatic disease demonstrating that a comprehensive liquid biopsy analysis provides highly important information for the therapeutic management of breast cancer patients.
Collapse
Affiliation(s)
- Dimitra Stergiopoulou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Athina Markou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Martha Zavridou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Eleni Tzanikou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Sophia Mastoraki
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Galatea Kallergi
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Vassilis Georgoulias
- First Department of Medical Oncology, METROPOLITAN General Hospital, 264, Mesogion Av, Cholargos, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece.
| |
Collapse
|
29
|
Characterization of RARRES1 Expression on Circulating Tumor Cells as Unfavorable Prognostic Marker in Resected Pancreatic Ductal Adenocarcinoma Patients. Cancers (Basel) 2022; 14:cancers14184405. [PMID: 36139565 PMCID: PMC9497091 DOI: 10.3390/cancers14184405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Our explorative study used a microfluidic-based approach for circulating tumor cell (CTC) detection in 55 pancreatic ductal adenocarcinoma (PDAC) patients before treatment initiation (baseline) and during follow-up (FUP). For the first time, we assessed the expression of retinoic acid receptor responder 1 (RARRES1) on CTCs. CTCs were detected in 25.5% of patients at baseline, while the detection rate during FUP was higher (45.5%). Especially high CTC counts during FUP in resected patients were associated with early tumor relapse (p = 0.02). Combining CTC detection and RARRES1 protein expression showed that RARRES1-positive patients with high CTCs counts after curative operation during FUP had a worse prognosis (p = 0.001). In conclusion, RARRES1 is a new marker of interest for further research investigations on subtypes of CTCs in PDAC. Abstract Background: In pancreatic ductal adenocarcinoma (PDAC), the characterization of circulating tumor cells (CTCs) opens new insights into cancer metastasis as the leading cause of cancer-related death. Here, we focused on the expression of retinoic acid receptor responder 1 (RARRES1) on CTCs as a novel marker for treatment failure and early relapse. Methods: The stable isotope labeling of amino acids in cell culture (SILAC)—approach was applied for identifying and quantifying new biomarker proteins in PDAC cell lines HPDE and its chemoresistant counterpart, L3.6pl-Res. Fifty-five baseline and 36 follow-up (FUP) peripheral blood samples were processed via a marker-independent microfluidic-based CTC detection approach using RARRES1 as an additional marker. Results: SILAC-based proteomics identified RARRES1 as an abundantly expressed protein in more aggressive chemoresistant PDAC cells. At baseline, CTCs were detected in 25.5% of all PDAC patients, while FUP analysis (median: 11 months FUP) showed CTC detection in 45.5% of the resected patients. CTC positivity (≥3 CTC) at FUP was significantly associated with short recurrence-free survival (p = 0.002). Furthermore, detection of RARRES1 positive CTCs was indicative of an even earlier relapse after surgery (p = 0.001). Conclusions: CTC detection in resected PDAC patients during FUP is associated with a worse prognosis, and RARRES1 expression might identify an aggressive subtype of CTCs that deserves further investigation.
Collapse
|
30
|
Trapp EK, Fasching PA, Fehm T, Schneeweiss A, Mueller V, Harbeck N, Lorenz R, Schumacher C, Heinrich G, Schochter F, de Gregorio A, Tzschaschel M, Rack B, Janni W, Friedl TWP. Does the Presence of Circulating Tumor Cells in High-Risk Early Breast Cancer Patients Predict the Site of First Metastasis-Results from the Adjuvant SUCCESS A Trial. Cancers (Basel) 2022; 14:3949. [PMID: 36010945 PMCID: PMC9406108 DOI: 10.3390/cancers14163949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
The prognostic relevance of circulating tumor cells (CTCs) in breast cancer is well established. However, little is known about the association of CTCs and site of first metastasis. In the SUCCESS A trial, 373 out of 3754 randomized high-risk breast cancer patients developed metastatic disease. CTC status was assessed by the FDA-approved CellSearch®-System (Menarini Silicon Biosystems, Bologna, Italy) in 206 of these patients before chemotherapy and additionally in 159 patients after chemotherapy. CTCs were detected in 70 (34.0%) of 206 patients before (median 2 CTCs, 1-827) and in 44 (27.7%) of 159 patients after chemotherapy (median 1 CTC, 1-124); 16 (10.1%) of 159 patients were CTC-positive at both timepoints. The site of first distant disease was bone-only, visceral-only, and other-site-only in 44 (21.4%), 60 (29.1%), and 74 (35.9%) patients, respectively, while 28 (13.6%) patients had multiple sites of first metastatic disease. Patients with CTCs at both timepoints more often showed bone-only first distant disease (37.5% vs. 21.0%) and first distant disease at multiple sites (31.3% vs. 12.6%) than patients without CTCs before and/or after chemotherapy (p = 0.027). In conclusion, the presence of CTCs before and after chemotherapy is associated with multiple-site or bone-only first-distant disease and may trigger intensified follow-up and perhaps further treatment.
Collapse
Affiliation(s)
- Elisabeth K. Trapp
- Department of Gynecology and Obstetrics, Medical University of Graz, 8036 Graz, Austria
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Volkmar Mueller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, LMU University Hospital, 81337 München, Germany
| | - Ralf Lorenz
- Gynecologic Practice Dr. Lorenz, N. Hecker, Dr. Kreiss-Sender, 38100 Braunschweig, Germany
| | - Claudia Schumacher
- Department of Gynecology and Obstetrics, St. Elisabeth’s Hospital, 50935 Cologne, Germany
| | | | - Fabienne Schochter
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Amelie de Gregorio
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Marie Tzschaschel
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas W. P. Friedl
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
31
|
Darlix A, Cayrefourcq L, Pouderoux S, Menjot de Champfleur N, Bievelez A, Jacot W, Leaha C, Thezenas S, Alix-Panabières C. Detection of Circulating Tumor Cells in Cerebrospinal Fluid of Patients with Suspected Breast Cancer Leptomeningeal Metastases: A Prospective Study. Clin Chem 2022; 68:1311-1322. [PMID: 35953885 DOI: 10.1093/clinchem/hvac127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND The diagnosis of breast cancer (BC)-related leptomeningeal metastases (LM) relies on the detection of tumor cells in cerebrospinal fluid (CSF) using conventional cytology (gold standard). However, the sensitivity of this technique is low. Our goal was to evaluate whether circulating tumor cell (CTC) detection in CSF using the CellSearch® system could be used for LM diagnosis. METHODS This prospective, monocentric study included adult patients with suspected BC-related LM. The clinical sensitivity and specificity of CTC detection in CSF for LM diagnosis were calculated relative to conventional CSF cytology. RESULTS Forty-nine eligible patients were included and 40 were evaluable (CTC detection technical failure: n = 8, eligibility criteria failure: n = 1). Cytology was positive in 18/40 patients. CTCs were detected in these 18 patients (median: 5824 CTC, range: 93 to 45052) and in 5/22 patients with negative cytology (median: 2 CTC, range: 1 to 44). The detection of ≥1 CSF CTC was associated with a clinical sensitivity of 100% (95% CI, 82.4-100) and a specificity of 77.3% (95% CI, 64.3-90.3) for LM diagnosis. HER2+ CTCs were detected in the CSF of 40.6% of patients with HER2- BC (median: 500 CTC, range: 13 to 28 320). CONCLUSIONS The clinical sensitivity of CTC detection in CSF with the CellSearch® system for LM diagnosis is higher than that of CSF cytology. CTC detection in patients with negative cytology, however, must be further investigated. The finding of HER2+ CTCs in patients with HER2- BC suggests that the HER2 status of LM should be evaluated to increase the treatment opportunities for these patients.
Collapse
Affiliation(s)
- Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France.,Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, University of Montpellier, Montpellier, France.,CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Stéphane Pouderoux
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | | | - Alexis Bievelez
- Biometrics Unit, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - William Jacot
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier IRCM, INSERM U1194, University of Montpellier; Montpellier, France
| | - Cristina Leaha
- Department of Pathology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Simon Thezenas
- Biometrics Unit, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, University of Montpellier, Montpellier, France.,CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
32
|
Zhou J, Wu J, Hao X, Li P, Zhang H, Wu X, Chen J, Liu J, Xiao J, Zhang S, Jiang Z, Yang Y, Hu Z, Wang T. An exploratory study on the checkout rate of circulating tumor cells and the prediction of efficacy of neoadjuvant therapy and prognosis in patients with HER-2-positive early breast cancer. Front Oncol 2022; 12:966624. [PMID: 35992876 PMCID: PMC9388052 DOI: 10.3389/fonc.2022.966624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeoadjuvant therapy is a standard treatment for patients with large, nonmetastatic breast cancer and may allow breast-conserving surgery after tumor downsizing while decreasing the risk of subsequent relapse. Dynamic changes of circulation tumor cells (CTCs) have a role in predicting treatment efficacy of breast cancer. However, the relationship between CTC enumeration before neoadjuvant therapy and pathologic complete response rate is still uncertain.MethodsThe study was exploratory. A total of 50 breast cancer patients were enrolled in a phase II clinical study of neoadjuvant therapy for HER-2-positive early breast cancer. They were enrolled for blood draws before and after neoadjuvant therapy. We used two methods (CellSearch and TUMORFISH) to detect CTCs. We compared the sensitivity of the two systems and investigated the correlation of the enumeration on baseline CTCs with the diagnosis, prognosis, and efficacy of neoadjuvant therapy of the patients with HER-2-positive early breast cancer. We also explored the dynamic change of CTCs after neoadjuvant therapy.ResultsThe sensitivity of TUMORFISHER (27/50) method was significantly higher than that of the CellSearch system (15/50, p=0.008). The CTC numbers detected by the two detection systems were not significantly correlated with lymph node status, clinical stage, ki-67 level and hormone receptor status. Patients with ≥1 CTC before neoadjuvant therapy measured by the TUMORFISHER system had a significant high pCR rate (74.1% vs. 39.1%, p = 0.013); whereas, there was no predictive effect on pCR by CellSearch system (73.3% vs. 51.4%, p = 0.15). Patients with a decrease in CTCs enumeration after neoadjuvant therapy were more likely to achieve pCR than those with no change or increase in CTCs enumeration (87.5% vs 50.0%, p = 0.015) by the TUMORFISHER method. Unfortunately, there was no predictive value of CTCs enumeration for EFS before and after neoadjuvant therapy by two methods.ConclusionsOur study demonstrates that the new CTCs detection method TUMORFISHER system has a higher checkout rate in early breast cancer than the CellSearch system, and shows the opportunity of CTC enumeration as a novel assistant biomarker to predict the response of neoadjuvant therapy in patients with HER-2-positive early breast cancer.
Collapse
Affiliation(s)
- Jinmei Zhou
- Breast Cancer Department of Oncology Institute, the Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiangling Wu
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaopeng Hao
- Department of General Surgery, the First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ping Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Huiqiang Zhang
- Breast Cancer Department of Oncology Institute, the Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xuexue Wu
- Breast Cancer Department of Oncology Institute, the Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiaxin Chen
- Department of Oncology, the Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital/Chinese People's Liberation Army (PLA) Medical School, Beijing, China
| | - Jiawei Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinyi Xiao
- Breast Cancer Department of Oncology Institute, the Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shaohua Zhang
- Breast Cancer Department of Oncology Institute, the Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zefei Jiang
- Breast Cancer Department of Oncology Institute, the Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanlian Yang
- Department of General Surgery, the First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhiyuan Hu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- *Correspondence: Zhiyuan Hu, ; Tao Wang,
| | - Tao Wang
- Breast Cancer Department of Oncology Institute, the Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Zhiyuan Hu, ; Tao Wang,
| |
Collapse
|
33
|
Addanki S, Meas S, Sarli VN, Singh B, Lucci A. Applications of Circulating Tumor Cells and Circulating Tumor DNA in Precision Oncology for Breast Cancers. Int J Mol Sci 2022; 23:ijms23147843. [PMID: 35887191 PMCID: PMC9315812 DOI: 10.3390/ijms23147843] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Liquid biopsies allow for the detection of cancer biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Elevated levels of these biomarkers during cancer treatment could potentially serve as indicators of cancer progression and shed light on the mechanisms of metastasis and therapy resistance. Thus, liquid biopsies serve as tools for cancer detection and monitoring through a simple, non-invasive blood draw, allowing multiple longitudinal sampling. These circulating markers have significant prospects for use in assessing patients’ prognosis, monitoring response to therapy, and developing precision medicine. In addition, single-cell omics of these liquid biopsy markers can be potential tools for identifying tumor heterogeneity and plasticity as well as novel therapeutic targets. In this review, we focus on our current understanding of circulating tumor biomarkers, especially in breast cancer, and the scope of novel sequencing technologies and diagnostic methods for better prognostication and patient stratification to improve patient outcomes.
Collapse
Affiliation(s)
- Sridevi Addanki
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
| | - Salyna Meas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vanessa Nicole Sarli
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Balraj Singh
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony Lucci
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
34
|
de Castro DG, Pellizzon ACA, Braun AC, Chen MJ, Silva MLG, Fogaroli RC, Gondim GRM, Ramos H, Neto ES, Abrahão CH, Yu LS, Abdallah EA, Calsavara VF, Chinen LTD. Heterogeneity of HER2 Expression in Circulating Tumor Cells of Patients with Breast Cancer Brain Metastases and Impact on Brain Disease Control. Cancers (Basel) 2022; 14:cancers14133101. [PMID: 35804873 PMCID: PMC9264951 DOI: 10.3390/cancers14133101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Results from a previous study suggested that the number of circulating tumor cells (CTC) might have a role as a biomarker of early distant brain failure in patients with breast cancer brain metastases (BCBM). However, it remains largely underexplored whether heterogeneous HER2 expression in CTC may have a prognostic implication. We evaluated the status of HER2 expression in CTC before and after radiotherapy/radiosurgery for BCBM and observed that the presence of HER2 expression in any moment was associated with longer distant brain failure-free survival, irrespective of the primary immunophenotype of the breast tumor. This finding suggests that the status of HER2 expression in CTC has the potential to improve the treatment selection for patients with BCBM. Abstract HER2 expression switching in circulating tumor cells (CTC) in breast cancer is dynamic and may have prognostic and predictive clinical implications. In this study, we evaluated the association between the expression of HER2 in the CTC of patients with breast cancer brain metastases (BCBM) and brain disease control. An exploratory analysis of a prospective assessment of CTC before (CTC1) and after (CTC2) stereotactic radiotherapy/radiosurgery (SRT) for BCBM in 39 women was performed. Distant brain failure-free survival (DBFFS), the primary endpoint, and overall survival (OS) were estimated. After a median follow-up of 16.6 months, there were 15 patients with distant brain failure and 16 deaths. The median DBFFS and OS were 15.3 and 19.5 months, respectively. The median DBFFS was 10 months in patients without HER2 expressed in CTC and was not reached in patients with HER2 in CTC (p = 0.012). The median OS was 17 months in patients without HER2 in CTC and was not reached in patients with HER2 in CTC (p = 0.104). On the multivariate analysis, DBFFS was superior in patients who were primary immunophenotype (PIP) HER2-positive (HR 0.128, 95% CI 0.025–0.534; p = 0.013). The expression of HER2 in CTC was associated with a longer DBFFS, and the switching of HER2 expression between the PIP and CTC may have an impact on prognosis and treatment selection for BCBM.
Collapse
Affiliation(s)
- Douglas Guedes de Castro
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
- Correspondence:
| | - Antônio Cássio Assis Pellizzon
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
| | - Alexcia Camila Braun
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.B.); (E.A.A.)
| | - Michael Jenwei Chen
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
| | - Maria Letícia Gobo Silva
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
| | - Ricardo Cesar Fogaroli
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
| | - Guilherme Rocha Melo Gondim
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
| | - Henderson Ramos
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
| | - Elson Santos Neto
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
| | - Carolina Humeres Abrahão
- Department of Radiation Oncology, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.A.P.); (M.J.C.); (M.L.G.S.); (R.C.F.); (G.R.M.G.); (H.R.); (E.S.N.); (C.H.A.)
| | - Liao Shin Yu
- Department of Imaging, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil;
| | - Emne Ali Abdallah
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil; (A.C.B.); (E.A.A.)
| | | | | |
Collapse
|
35
|
Circulating tumor cell assay to non-invasively evaluate PD-L1 and other therapeutic targets in multiple cancers. PLoS One 2022; 17:e0270139. [PMID: 35714131 PMCID: PMC9205490 DOI: 10.1371/journal.pone.0270139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/04/2022] [Indexed: 11/19/2022] Open
Abstract
Biomarker directed selection of targeted anti-neoplastic agents such as immune checkpoint inhibitors, small molecule inhibitors and monoclonal antibodies form an important aspect of cancer treatment. Immunohistochemistry (IHC) analysis of the tumor tissue is the method of choice to evaluate the presence of these biomarkers. However, a significant barrier to biomarker testing on tissue is the availability of an adequate amount of tissue and need for repetitive sampling due to tumor evolution. Also, tumor tissue testing is not immune to inter- and intra-tumor heterogeneity. We describe the analytical and clinical validation of a Circulating Tumor Cell (CTC) assay to accurately assess the presence of PD-L1 22C3 and PD-L1 28.8, ER, PR and HER2, from patients with solid tumors to guide the choice of suitable targeted therapies. Analytically, the test has high sensitivity, specificity, linearity and precision. Based on a blinded case control study, the clinical sensitivity and specificity for PD-L1 (22C3 and 28.8) was determined to be 90% and 100% respectively. The clinical sensitivity and specificity was 83% and 89% for ER; 80% and 94% for PR; 63% and 89% for HER2 (by ICC); and 100% and 92% for HER2 (by FISH), respectively. The performance characteristics of the test support its suitability and adaptability for routine clinical use.
Collapse
|
36
|
Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel) 2022; 14:2052. [PMID: 35565189 PMCID: PMC9105073 DOI: 10.3390/cancers14092052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however, they have limitations. With the development of novel techniques, such as personalized medicine and genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and microfluidic devices.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
37
|
Verschoor N, Deger T, Jager A, Sleijfer S, Wilting SM, Martens JW. Validity and utility of HER2/ERBB2 copy number variation assessed in liquid biopsies from breast cancer patients: a systematic review. Cancer Treat Rev 2022; 106:102384. [DOI: 10.1016/j.ctrv.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
|
38
|
Unveiling the Potential of Liquid Biopsy in HER2-Positive Breast Cancer Management. Cancers (Basel) 2022; 14:cancers14030587. [PMID: 35158855 PMCID: PMC8833720 DOI: 10.3390/cancers14030587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Breast cancer (BC) is the most prevailing cancer in women worldwide. Amongst the different BC subtypes, human epidermal growth factor receptor 2 (HER2)-positive tumours are characterised by an overexpression of the HER2 membrane receptor. Nowadays, HER2-status assessment relies on immunohistochemical methodologies in the tumour tissue, which could be complemented by novel methodologies to improve the clinical management of these patients. In this regard, liquid biopsy is an easy, rapid, and minimally invasive tool to obtain circulating tumour components from body fluids. Herein, by reviewing the published studies, we aim to decipher the clinical validity of liquid biopsy in both early and metastatic HER2-positive BC. Abstract Invasive breast cancer (BC) is the most common cancer in women with a slightly increasing yearly incidence. BC immunohistochemical characterisation is a crucial tool to define the intrinsic nature of each tumour and personalise BC patients’ clinical management. In this regard, the characterisation of human epidermal growth factor receptor 2 (HER2) status guides physicians to treat with therapies tailored to this membrane receptor. Standardly, a tumour solid biopsy is therefore required, which is an invasive procedure and has difficulties to provide the complete molecular picture of the tumour. To complement these standard-of-care approaches, liquid biopsy is a validated methodology to obtain circulating tumour components such as circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) from body fluids in an easy-to-perform minimal-invasive manner. However, its clinical validity in cancer is still to be demonstrated. This review focusses on the utilisation of both ctDNA and CTCs in early and metastatic HER2-positive BC tumours. We discuss recently published studies deciphering the capacity of liquid biopsy to determine the response to neoadjuvant and adjuvant therapies as well as to predict patients’ outcomes.
Collapse
|