1
|
Liu SP, Li YF, Zhang D, Li CY, Dai XF, Lan DF, Cai J, Zhou H, Song T, Zhao YY, He ZX, Tan J, Zhang JD. Pharmacological actions of the bioactive compounds of Epimedium on the male reproductive system: current status and future perspective. Asian J Androl 2024:00129336-990000000-00204. [PMID: 38978290 DOI: 10.4103/aja20248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/26/2024] [Indexed: 07/10/2024] Open
Abstract
ABSTRACT Compounds isolated from Epimedium include the total flavonoids of Epimedium, icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium, its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.
Collapse
Affiliation(s)
- Song-Po Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Medical Genetics, Zunyi Medical University, Zunyi 563000, China
| | - Yun-Fei Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China
| | - Chun-Yang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Fang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dong-Feng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Yan-Yu Zhao
- Department of Medical Genetics, Zunyi Medical University, Zunyi 563000, China
| | - Zhi-Xu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China
| | - Ji-Dong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
2
|
Wu C, Xiong Y, Fu F, Zhang F, Qin F, Yuan J. The Role of Autophagy in Erectile Dysfunction. World J Mens Health 2024; 42:42.e44. [PMID: 38606869 DOI: 10.5534/wjmh.230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
Collapse
Affiliation(s)
- Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fudong Fu
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Kulshrestha R, Singla N, Afzal O, Goyal A, Saini M, Altamimi ASA, Almalki WH, Kazmi I, Al-Abbasi F, Alzarea SI, Gupta G. Role of Nutraceuticals in Treating Erectile Dysfunction via Inhibition of Phosphodiesterase-5 Enzyme: A Mini Review. Curr Pharm Biotechnol 2024; 25:1905-1914. [PMID: 38310448 DOI: 10.2174/0113892010256035231119071714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 02/05/2024]
Abstract
Erectile Dysfunction (ED) is a prevalent sexual health condition affecting a significant portion of the male population worldwide. The conventional therapeutic approaches for ED often involve the use of pharmaceutical agents targeting the phosphodiesterase-5 (PDE5) enzyme. Currently, treatment with PDE-5 inhibitors is the standard approach for ED, and four PDE-5 inhibitors, namely sildenafil, vardenafil, tadalafil, and avanafil, are in use. However, these pharmaceutical interventions may be associated with adverse effects and limitations. As a result, there has been a growing interest in exploring alternative and complementary treatment options for ED, such as nutraceuticals, which are bioactive compounds derived from natural sources. Nutraceuticals, which include vitamins, minerals, herbs, and other dietary supplements, have gained popularity for their potential health benefits. Certain nutraceuticals have demonstrated the ability to modulate various physiological pathways, including those involved in erectile function. A notable mechanism of action is the inhibition of the PDE5 enzyme, which plays a pivotal role in the regulation of cGMP levels. By inhibiting PDE5, nutraceuticals can promote the accumulation of cGMP, leading to enhanced penile blood flow and improved erectile function. A comprehensive analysis of the literature showcases various nutraceutical agents, including plant-derived compounds like flavonoids, polyphenols, and amino acids which have exhibited PDE5 inhibitory effects. Mechanistic insights into their action involve modulation of NO release, cGMP elevation, and relaxation of penile smooth muscles, all critical factors for achieving and sustaining erections. This review focuses on elucidating the role of nutraceuticals in treating erectile dysfunction through the inhibition of the PDE5 enzyme.
Collapse
Affiliation(s)
- Rashi Kulshrestha
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P. India
| | - Mahendra Saini
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
4
|
Zhang L, Qin X, Lian C, Liu J. Synthesis, evaluation of anti-breast cancer activity in vitro of ICS II derivatives and summary of the structure-activity relationship. Bioorg Med Chem 2023; 81:117188. [PMID: 36753987 DOI: 10.1016/j.bmc.2023.117188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
A series of Icariside II (ICS II) derivatives were synthesized, and their structure-activity relationships (SARs) were studied in this paper. The in vitro antitumor activities towards human breast cancer cell lines (MCF-7) were evaluated by Cell Counting Kit-8 (CCK-8 kit). Preliminary results showed that, compared with ICS II, most of the derivatives displayed good micromole level activities. Among the series of derivatives, the S27, which totally acetylated hydroxyl of ICS II, possessed highest cytotoxicity, with IC50 values of 0.70 ± 0.08 μM. Furthermore, compound S27 showed better selectivity than ICS II for cancer cells over normal cells. Our findings indicate that compound S27 may be a promising anticancer lead candidate drug.
Collapse
Affiliation(s)
- Ling Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Xiao Qin
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Chenlei Lian
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| |
Collapse
|
5
|
Kataoka T, Hotta Y, Kimura K. A review of experimental techniques for erectile function researches and development of medical technology using animal erectile dysfunction models in sexual and reproductive medicine. Reprod Med Biol 2023; 22:e12513. [PMID: 37020643 PMCID: PMC10069627 DOI: 10.1002/rmb2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Background Erectile dysfunction (ED) is one of the causes of male infertility and is a disease that requires treatment. The first-line drugs for ED are phosphodiesterase 5 (PDE-5) inhibitors, and further treatment options are currently limited. Medical technologies, such as genetic control and regenerative medicine, are developing rapidly. Research on erectile function is progressing rapidly, coupled with technological innovations in other areas. Methods A PubMed search using the keywords "animal (rat, mouse, rabbit, dog, and monkey)" and "erectile" was conducted, and all relevant peer-reviewed English results were evaluated. Main findings The methods for evaluating erectile function include intracavernous pressure (ICP) measurements, isometric tension studies, and dynamic infusion cavernosometry. Papers also reported various disease model animals for the study of diabetes mellitus, cavernous nerve injury, and drug-induced ED. Conclusion Basic research on ED treatment has progressed rapidly over the past 20 years. In particular, research on the mechanism of ED has been accelerated by the publication of a study on the evaluation of erectile function using ICP measurements in rats. In addition, molecular biological experimental methods such as polymerase chain reaction (PCR) and western blotting have become relatively easy to perform due to technological progress, thus advancing research development.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesChiba Institute of Science15‐8 Shiomi‐choChoshiChiba288‐0025Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
- Department of Clinical Pharmaceutics, Graduate School of Medical SciencesNagoya City University1‐Kawasumi, Mizuho‐cho, Mizuho‐kuNagoya467‐8601Japan
| |
Collapse
|
6
|
Tseng CH. Metformin’s effects on varicocele, erectile dysfunction, infertility and prostate-related diseases: A retrospective cohort study. Front Pharmacol 2022; 13:799290. [PMID: 35935880 PMCID: PMC9355151 DOI: 10.3389/fphar.2022.799290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/30/2022] [Indexed: 12/20/2022] Open
Abstract
Objectives: To investigate the risk of varicocele, erectile dysfunction (ED), infertility, prostatitis, benign prostate hyperplasia (BPH) and prostate cancer associated with metformin use. Materials and methods: A total of 261,838 males, mean age 52.39 years (SD: 11.39), with a new-onset type 2 diabetes mellitus in 1999–2009 were identified from Taiwan’s National Health Insurance. Among them, 175,171 were metformin initiators [metformin (+)] and 86,667 were non-metformin initiators [metformin (−)] in the initial 12-month prescriptions of antidiabetic drugs. Follow-up started after the initial 12-month prescriptions. Outcomes were followed up until 31 December 2011. Intention-to-treat (ITT) and per-protocol (PP) hazard ratios comparing metformin (+) to metformin (−) were estimated by Cox regression incorporated with the inverse probability of treatment-weighting using propensity scores. Results: The median follow-up time ranged 5.55–6.82 years in metformin (−) and 4.36–5.17 years in metformin (+) for different outcomes in ITT analyses. The respective median follow-up time in PP analyses ranged 2.20–2.61 years in metformin (−) and ranged 3.99–4.65 years in metformin (+). In the ITT analyses, for metformin (−), the incidence rates (per 100,000 person-years) of varicocele, ED, infertility, prostatitis, BPH and prostate cancer were 26.42, 455.89, 22.82, 590.23, 4226.19, and 141.69, respectively; and the respective incidence rates for metformin (+) were 25.65, 488.10, 32.60, 510.30, 3685.66, and 116.57. The hazard ratios (95% confidence intervals) comparing metformin (+) to metformin (−) in the ITT analyses were 0.960 (0.784–1.174) for varicocele, 1.077 (1.026–1.130) for ED, 1.368 (1.116–1.676) for infertility, 0.887 (0.849–0.927) for prostatitis, 0.883 (0.868–0.899) for BPH and 0.878 (0.802–0.961) for prostate cancer. The hazard ratios for the respective outcomes in the PP analyses were 0.845 (0.662–1.078), 1.350 (1.264–1.441), 1.396 (1.078–1.808), 0.800 (0.756–0.846), 0.875 (0.855–0.895), and 0.613 (0.548–0.686). Conclusion: Metformin use in patients with type 2 diabetes mellitus is associated with a neutral effect on varicocele, a higher risk of sexual dysfunction (ED and infertility) and a reduced risk of prostate-related health (prostatitis, BPH and prostate cancer).
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
- *Correspondence: Chin-Hsiao Tseng,
| |
Collapse
|
7
|
Niu Y, Lin G, Pan J, Liu J, Xu Y, Cai Q, Wang T, Luan Y, Chen Y, Feng Y, Yang X, Tian W, Bae WJ, Guan R, Xin Z. Deciphering the myth of icariin and synthetic derivatives in improving erectile function from a molecular biology perspective: a narrative review. Transl Androl Urol 2022; 11:1007-1022. [PMID: 35958901 PMCID: PMC9360520 DOI: 10.21037/tau-22-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background and Objective Although epimedium herb (EH) has been widely used in ancient Chinese medicine to enhance sexual activity, its pharmacological mechanism is not clear. Modern studies have shown that epimedium herb is rich in icariin (ICA, a flavonoid compound), and 91.2% of icariin is converted to icariside II (ICA II) by hydrolytic enzymes in intestinal bacteria after oral administration. YS-10 is a synthetic derivative of icariside II. The aim of this review was to summarize the contemporary evidence regarding the pharmacokinetics, therapeutic properties, and molecular biological mechanisms of ICA and some ICA derivatives for erectile dysfunction therapy. Methods A detailed search was conducted in the PubMed database using keywords and phrases, such as “icariin” AND “erectile dysfunction”, “icariside II” AND “erectile dysfunction”. The publication time is limited to last 20 years. Articles had to be published in peer reviewed journals. Key Content and Findings ICA and its some derivatives showed the specific inhibition on phosphodiesterase type 5 (PDE5) and the promotion of testosterone synthesis. In addition, by regulating various reliable evidence of signaling pathways such as PI3K/AKT, TGFβ1/Smad2, p38/MAPK, Wnt and secretion of various cytokines, ICA and ICA derivatives can activate endogenous stem cells (ESCs) leading to endothelial cell and smooth muscle cell proliferation, nerve regeneration and fibrosis inhibition, repair pathological changes in penile tissue and improve erectile function. Conclusions ICA and some of its derivatives could be a potential treatment for restoring spontaneous erections. In addition ICA and his derivatives may also be valuable as a regenerative medicine approach for other diseases, but more clinical and basic researches with high quality and large samples are recommended.
Collapse
Affiliation(s)
- Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,China-Korea Joint Research Center for Male Reproductive and Sexual Medicine, Institute of Urology, Tianjin, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Jiancheng Pan
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,China-Korea Joint Research Center for Male Reproductive and Sexual Medicine, Institute of Urology, Tianjin, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Xu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiliang Cai
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,China-Korea Joint Research Center for Male Reproductive and Sexual Medicine, Institute of Urology, Tianjin, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yegang Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,China-Korea Joint Research Center for Male Reproductive and Sexual Medicine, Institute of Urology, Tianjin, China
| | - Yuhong Feng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,China-Korea Joint Research Center for Male Reproductive and Sexual Medicine, Institute of Urology, Tianjin, China
| | - Xiaoqing Yang
- China-Korea Joint Research Center for Male Reproductive and Sexual Medicine, Institute of Urology, Tianjin, China
| | - Wenjie Tian
- Department of Urology, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea
| | - Wong Jin Bae
- Department of Urology, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea
| | - Ruili Guan
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| | - Zhongcheng Xin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,China-Korea Joint Research Center for Male Reproductive and Sexual Medicine, Institute of Urology, Tianjin, China.,Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
8
|
Li X, Yang HF, Chen Y, Pei LJ, Jiang R. Effect of the icariin on endothelial microparticles, endothelial progenitor cells, platelets, and erectile function in spontaneously hypertensive rats. Andrology 2021; 10:576-584. [PMID: 34779135 DOI: 10.1111/andr.13127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the effect of icariin on endothelial microparticles, endothelial progenitor cells, platelets, and erectile function in spontaneously hypertensive rats. MATERIALS AND METHODS Twelve 8-week-old healthy male Wistar-Kyoto rats and 12 spontaneously hypertensive rats were randomly divided into four following groups: Wistar-Kyoto control group (normal saline 1 ml/d given by gavage), Wistar-Kyoto + icariin group (icariin 10 mg/kg × d dissolved in 1 ml normal saline and given by gavage), spontaneously hypertensive rats control group (normal saline 1 ml/d given by gavage), and spontaneously hypertensive rats + icariin group (icariin 10 mg/kg × d dissolved in 1 ml normal saline and given by gavage). Four weeks later, the maximum intracavernous pressure/mean arterial pressure, platelet count, mean platelet volume, platelet distribution width, endothelial microparticles, endothelial progenitor cells, and vitronectin receptor were measured in each group. RESULTS Under 3 or 5 V electrical stimulation, the maximum intracavernous pressure/mean arterial pressure in the spontaneously hypertensive rats + icariin group (0.23 ± 0.03, 0.38 ± 0.02) was significantly higher compared to the spontaneously hypertensive rats control group (0.12 ± 0.02, 0.20 ± 0.02) (p<0.05). Platelet count, mean platelet volume, and platelet distribution width in the spontaneously hypertensive rats + icariin group (1103.67 ± 107.70 × 109 /L, 9.08 ± 0.50 fl, 11.87 ± 0.45%) were significantly lower than those in the spontaneously hypertensive rats control group (1298.00 ± 89.54 × 109 /L, 9.72 ± 0.44 fl, 13.03 ± 0.59%) (all p < 0.05). Endothelial microparticles, endothelial progenitor cells, and vitronectin receptor in the spontaneously hypertensive rats + icariin group (1.01 ± 0.28%, 1.53 ± 0.65%, 2.13 ± 0.53%) were significantly lower than those in the spontaneously hypertensive rats control group (1.58 ± 0.19%, 2.71 ± 0.64%, 3.76 ± 0.52%) (all p < 0.05). Moreover, maximum intracavernous pressure/mean arterial pressure was strongly negatively correlated with platelet distribution width and vitronectin receptor (r > 0.7), and maximum intracavernous pressure/mean arterial pressure was moderately negatively correlated with mean platelet volume, endothelial microparticles, and endothelial progenitor cells (0.5 < r<0.7). CONCLUSION Icariin may improve erectile function in spontaneously hypertensive rats by reducing the content of endothelial microparticles in blood and inhibiting the activation of the platelets. Endothelial microparticles, endothelial progenitor cells, and platelet activation-related (mean platelet volume, platelet distribution width, and vitronectin receptor) can be used as indicators for icariin to improve erectile function in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Xu Li
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hai-Fan Yang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Chen
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Jun Pei
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021; 14:ph14100982. [PMID: 34681206 PMCID: PMC8538309 DOI: 10.3390/ph14100982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10330, Thailand;
| | - Atul Kabra
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Sahibzad Ajit Singh Nagar 140413, Punjab, India;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
10
|
Cignarelli A, Genchi VA, D’Oria R, Giordano F, Caruso I, Perrini S, Natalicchio A, Laviola L, Giorgino F. Role of Glucose-Lowering Medications in Erectile Dysfunction. J Clin Med 2021; 10:jcm10112501. [PMID: 34198786 PMCID: PMC8201035 DOI: 10.3390/jcm10112501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Erectile dysfunction (ED) is a long-term complication of type 2 diabetes (T2D) widely known to affect the quality of life. Several aspects of altered metabolism in individuals with T2D may help to compromise the penile vasculature structure and functions, thus exacerbating the imbalance between smooth muscle contractility and relaxation. Among these, advanced glycation end-products and reactive oxygen species derived from a hyperglycaemic state are known to accelerate endothelial dysfunction by lowering nitric oxide bioavailability, the essential stimulus of relaxation. Although several studies have explained the pathogenetic mechanisms involved in the generation of erectile failure, few studies to date have described the efficacy of glucose-lowering medications in the restoration of normal sexual activity. Herein, we will present current knowledge about the main starters of the pathophysiology of diabetic ED and explore the role of different anti-diabetes therapies in the potential remission of ED, highlighting specific pathways whose activation or inhibition could be fundamental for sexual care in a diabetes setting.
Collapse
|
11
|
Xu F, Wu Q, Li L, Gong J, Huo R, Cui W. Icariside II: Anticancer Potential and Molecular Targets in Solid Cancers. Front Pharmacol 2021; 12:663776. [PMID: 33981241 PMCID: PMC8107468 DOI: 10.3389/fphar.2021.663776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Icariside II, an active flavonoid, is extracted from the traditional Chinese medicinal herb Epimedii. It possesses multiple biological and pharmacological properties, including anti-inflammatory, anticancer, and anti-osteoporotic properties. In recent years, apoptosis has become the hot spot in anticancer therapies. Icariside II exerts positive effects on inducing apoptosis and inhibiting proliferation in various cancers. The antitumorigenic activity of Icariside II was also proven through cell cycle arrest, triggering autophagy, reducing cellular metabolism, and inhibiting cancer metastasis and tumor-associated angiogenesis. Additionally, Icariside II, as a natural product, contributed to a synergistic effect alongside chemotherapeutic drugs. Due to its poor aqueous solubility and permeability, more strategies were developed to improve its therapeutic effects. This review aimed to summarize the chemopreventive properties of Icariside II in solid tumors and reveal its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiaolan Wu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Huo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Tseng CH. The Effect of Metformin on Male Reproductive Function and Prostate: An Updated Review. World J Mens Health 2021; 40:11-29. [PMID: 33831975 PMCID: PMC8761231 DOI: 10.5534/wjmh.210001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
Metformin is the first-line oral antidiabetic drug that shows multiple pleiotropic effects of anti-inflamation, anti-cancer, anti-aging, anti-microbia, anti-atherosclerosis, and immune modulation. Metformin's effects on men's related health are reviewed here, focusing on reproductive health under subtitles of erectile dysfunction (ED), steroidogenesis and spermatogenesis; and on prostate-related health under subtitles of prostate specific antigen (PSA), prostatitis, benign prostate hyperplasia (BPH), and prostate cancer (PCa). Updated literature suggests a potential role of metformin on arteriogenic ED but controversial and contradictory effects (either protective or harmful) on testicular functions of testosterone synthesis and spermatogenesis. With regards to prostate-related health, metformin use may be associated with lower levels of PSA in humans, but its clinical implications require more research. Although there is a lack of research on metform's effect on prostatitis, it may have potential benefits through its anti-microbial and anti-inflammatory properties. Metformin may reduce the risk of BPH by inhibiting the insulin-like growth factor 1 pathway and some but not all studies suggest a protective role of metformin on the risk of PCa. Many clinical trials are being conducted to investigate the use of metformin as an adjuvant therapy for PCa but results currently available are not conclusive. While some trials suggest a benefit in reducing the metastasis and recurrence of PCa, others do not show any benefit. More research works are warranted to illuminate the potential usefulness of metformin in the promotion of men's health.
Collapse
Affiliation(s)
- Chin Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
13
|
Yang X, Cui Y, Zhou Z, Zhao H, Zhang Y. Analysis of pharmacological mechanisms of Yinyanghuo as treatment of erectile dysfunction with network pharmacology-based strategy. Andrologia 2020; 53:e13943. [PMID: 33368466 DOI: 10.1111/and.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction is considered an important health problem that impacts the quality of life of men. Yinyanghuo, also called Epimedium or Horny Goat Weed, is a frequently used Chinese traditional herbal medicine, commonly used in treating erectile dysfunction in China. A network pharmacology method was performed systematically, at a molecular level, to analyse the pharmacological mechanism of Yinyanghuo as erectile dysfunction therapy. The network pharmacology method used in this study primarily includes prescreening of the active compounds, prediction of targets, network analysis and gene enrichment analysis. This network analysis proved that 4 targets (AR, NR3C2, PDE5A and BMP2) could be the targets of Yinyanghuo therapy on erectile dysfunction. Besides, gene enrichment analysis predicted that Yinyanghuo might have a role in erectile dysfunction by regulating 10 molecular functions, 8 cellular components, 10 biological processes and 36 possible targets related to 10 signalling pathways. Our study demonstrated the molecular and pharmacological mechanisms of Yinyanghuo against erectile dysfunction with a holistic approach and demonstrated a powerful method for analysing pharmacological mechanisms and rational utilisation of Traditional Chinese Medicine clinically.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanshan Cui
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhongbao Zhou
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huishan Zhao
- Department of Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yong Zhang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Li S, Zhan Y, Xie Y, Wang Y, Liu Y. The Impact of Icariside II on Human Prostate Cancer Cell Proliferation, Mobility, and Autophagy via PI3K-AKT-mTOR Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4169-4178. [PMID: 33116405 PMCID: PMC7549881 DOI: 10.2147/dddt.s268524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Introduction The flavonol glycoside icariside II (ICA II) has been shown to exhibit a range of anti-tumor properties. Herein, we evaluated the impact of ICA II on human prostate cancer cell proliferation, motility, and autophagy, and we further evaluated the molecular mechanisms underlying these effects. Methods We treated DU145 human prostate cancer cells with a range of ICA II doses and then assessed their proliferation via CCK-8 assay, while flow cytometry was used to monitor apoptosis and cell cycle progression. We further utilized wound healing and transwell assays to probe the impact of ICA II on migration and invasion, and assessed autophagy via laser confocal fluorescence microscopy. Western blotting was further utilized to measure LC3-II/I, Beclin-1, P70S6K, PI3K, AKT, mTOR, phospho-AKT, phospho-mTOR, and phospho-P70S6K levels, with qRT-PCR being used to evaluate the expression of specific genes at the mRNA level. Results We found that ICA II was capable of mediating the dose- and time-dependent suppression of DU145 cell proliferation, causing these cells to enter a state of cell cycle arrest and apoptosis. We further determined that ICA II treatment was associated with significant impairment of prostate cancer cell migration and invasion, whereas autophagy was enhanced in treated cells relative to untreated controls. Conclusion Our results indicate that ICA II treatment is capable of suppressing human prostate tumor cell proliferation and migration while enhancing autophagy via modulating the PI3K-AKT-mTOR signaling pathway. As such, ICA II may be an ideal candidate drug for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Shuang Li
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
| | - Yunlu Zhan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
| | - Yingwei Xie
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
| | - Yonghui Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
| | - Yuexin Liu
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
| |
Collapse
|