1
|
Duan Y, Zhang Y, Wang T, Sun J, Ali W, Ma Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Interactive mechanism between connexin43 and Cd-induced autophagic flux blockage and gap junctional intercellular communication dysfunction in rat hepatocytes. Heliyon 2023; 9:e21052. [PMID: 37876489 PMCID: PMC10590978 DOI: 10.1016/j.heliyon.2023.e21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Cadmium (Cd) is a significant environmental contaminant known for its potential hepatotoxic effects. However, the precise mechanisms underlying Cd-induced hepatotoxicity have yet to be fully understood. Therefore, the purpose of this study was to investigate the dynamic role of connexin 43 (Cx43) in response to Cd exposure, particularly its impact on gap junctional intercellular communication (GJIC) and autophagy in hepatocytes. To establish an in vitro model of Cd-induced hepatocyte injury, the Buffalo rat liver 3A cell line (BRL3A) was utilized.In order to elucidate the mechanism by which Cx43 influences Cd-induced hepatocyte toxic injury, inhibitors of Cx43 (Dynasore) and P-Cx43 (Ro318220) were employed in the model. The findings revealed that inhibiting Cx43 and its phosphorylation further compromised GJIC function, exacerbating the impairment, while also intensifying the blockage of autophagic flux. To gain further insight into the role of Cx43, siRNA was utilized to knock down Cx43 expression, yielding similar results. The down-regulation of Cx43 expression was found to worsen the morphological damage induced by cadmium exposure, diminish the cell proliferation capacity of BRL3A cells, and exacerbate the disruption of GJIC and autophagic flow caused by Cd.These findings suggest that Cx43 may serve as a potential therapeutic target for the treatment of liver damage resulting from Cd exposure. By targeting Cx43, it may be possible to mitigate the adverse effects of Cd on hepatocytes.
Collapse
Affiliation(s)
- Yuntian Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
2
|
Sun J, Yu F, Wang T, Bian J, Liu Z, Zou H. The role of DRP1- PINK1-Parkin-mediated mitophagy in early cadmium-induced liver damage. Toxicology 2021; 466:153082. [PMID: 34952138 DOI: 10.1016/j.tox.2021.153082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) is an important environmental pollutant that causes varying degrees of damage to multiple systems of the body. However, the specific mechanism of Cd-induced liver mitophagy remains unclear. In the present study, 5-week-old BALB/c mice and a mouse liver parenchyma cell line (AML12) were studied using a combination of in vivo and in vitro studies. We found that Cd damaged liver cells, destroy the structure and function of mitochondria, and increased the production of superoxide anions. This study further examined the effect of Cd on mitochondrial dynamics and mitophagy and showed that Cd increased mitochondrial division and induced mitophagy. The PINK1-Parkin pathway is a classical mitophagy pathway. Cd-induced mitophagy was inhibited after significantly knocking down Pink1. Mdivi-1 can effectively inhibit mitochondrial division. In this study, Mdivi-1 inhibited the expression of DRP1 and significantly inhibited the occurrence of mitophagy induced by Cd. We further examined the effect of Cd on mitophagy flux. Cd did not increase lysosomal colocalization with mitochondria. In summary, Cd increase the level of oxidative stress, destroy the structure and function of mitochondria, destroy the homeostasis of mitochondrial division and fusion, induce mitophagy through the PINK1-Parkin pathway. Mitophagy plays a protective role in early cadmium-induced liver damage.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Fan Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
3
|
Mouro VGS, Ladeira LCM, Lozi AA, de Medeiros TS, Silva MR, de Oliveira EL, de Melo FCSA, da Matta SLP. Different Routes of Administration Lead to Different Oxidative Damage and Tissue Disorganization Levels on the Subacute Cadmium Toxicity in the Liver. Biol Trace Elem Res 2021; 199:4624-4634. [PMID: 33400155 DOI: 10.1007/s12011-020-02570-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
The toxic effects of cadmium (Cd) on hepatic parameters are widely described in the literature. Experimental models often make use of the intraperitoneal route (i.p.) because it is easier to apply, while in the oral route, Cd poisoning in humans is best represented by allowing the metal to pass through the digestive system and be absorbed into the bloodstream. Thus, this study investigated the Cd exposure impact on the liver, by comparing both i.p. and oral routes, both in single dose, in addition to the oral route in fractional doses. Swiss adult male mice received CdCl2 1.5 mg/kg i.p., 30 mg/kg oral single dose, and 4.28 mg/kg oral route in fractional doses for 7 consecutive days. Cd bioaccumulation was observed in all animals exposed to Cd. Hepatic concentrations of Ca and Fe increased only in the fractionated oral route. Liver activities of SOD and CAT increased only by oral single dose. GST decreased in all forms of oral administration, while MDA decreased only in i.p. route. Liver weight and HSI increased in the i.p. route, while organ volume increased in all forms of oral administration, and liver density increased in all animals exposed to Cd. In hepatic histomorphometry, the changes were more evident in oral administration, mainly in exposure to metal in a single dose. Thus, the subacute administration of Cd in different routes of administration leads to different changes in liver poisoning.
Collapse
Affiliation(s)
- Viviane Gorete Silveira Mouro
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
- Department of Pharmacy, Faculty Univertix, Matipó, MG, 35367-000, Brazil.
| | | | - Amanda Alves Lozi
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | | | | | - Sérgio Luis Pinto da Matta
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
4
|
Tang J, Bei M, Zhu J, Xu G, Chen D, Jin X, Huang J, Dong J, Shi L, Xu L, Hu B. Acute cadmium exposure induces GSDME-mediated pyroptosis in triple-negative breast cancer cells through ROS generation and NLRP3 inflammasome pathway activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103686. [PMID: 34098069 DOI: 10.1016/j.etap.2021.103686] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) exposure can exert an impact on carcinogenicity of breast cancer, however, the mechanism is not fully understood in triple-negative breast cancer (TNBC). We performed a TNBC MDA-MB-231 cell model and assessed the toxic effect of Cd exposure (0, 10, 20, 50, 60, 80 μM). Cd reduced cell viability in a time- and dose-dependent manner, followed by cell cycle arrest in S phase with alterations of cyclin 1A1, cyclin 1D1 and CDK2. Lactate dehydrogenase (LDH) release, apoptosis and pyroptosis were increased, which were relieved by z-VAD. Elevated ROS and NLRP3, caspase-1, IL-1β and IL-18 were detected, which was attenuated by N-acetylcysteine. Increased bax and decreased caspase-8, caspase-9 and caspase-3 were found. gasdermin E (GSDME) was activated with cleavage of GSDME-NT, which was retarded by z-VAD. Additionally, p38 MAPK signaling pathway was activated. Our data demonstrate GSDME-activated pyroptosis in Cd toxicity, implying a potential impact on TNBC.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pathology, and the Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, 314001, ZJ, China
| | - Mingrong Bei
- Department of Cell Biology and Genetics, Shantou University College of Medicine, Shantou, 515041, GD, China
| | - Jia Zhu
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Jianzhong Huang
- Department of Public Health, Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Jingjian Dong
- Medical Laboratory Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Lili Shi
- Medical Laboratory Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Long Xu
- Department of Public Health, Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China.
| | - Bo Hu
- Department of Pathology, and the Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, 314001, ZJ, China.
| |
Collapse
|
5
|
Bao RK, Zheng SF, Wang XY. Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20342-20353. [PMID: 28707237 DOI: 10.1007/s11356-017-9422-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that can induce apoptosis. Selenium (Se) is a necessary trace element and can antagonize the toxicity of many heavy metals, including Cd. PI3K/AKT/Bcl-2 is a key survival signaling pathway that regulates cellular defense system against oxidative injury as well as cell proliferation, survival, and apoptosis. The antagonistic effects of Se on Cd-induced toxicity have been reported. However, little is known about the effect of Se on Cd-induced apoptosis in chicken kidneys via the PI3K/AKT/Bcl-2 signaling pathway. In the present study, we fed chickens with Se, Cd, or both Se and Cd supplements, and after 90 days of treatment, we detected the related index. The results showed that the activity of inducible nitric oxide synthase (iNOS) and concentration of nitric oxide (NO) were increased; activities of the mitochondrial respiratory chain complexes (complexes I, II, and V) and ATPases (the Na+-K+-ATPase, the Mg2+-ATPase, and the Ca2+-ATPase) were decreased; expression of PI3K, AKT, and Bcl-2 were decreased; and expression of Bax, Bak, P53, Caspase-3, Caspase-9, and cytochrome c (Cyt c) were increased. Additionally, the results of the TUNEL assay showed that the number of apoptotic cells was increased in the Cd group. By contrast, there was a significant improvement of the correlation indicators and occurrence of apoptosis in the Se + Cd group compared to the Cd group. In conclusion, our results confirmed that Se had a positive effect on ameliorating Cd-induced apoptosis in chicken kidney tissue by activating the PI3K/AKT/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Rong-Kun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education, Harbin, People's Republic of China.
| | - Shu-Fang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin-Yue Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
6
|
LIU XUEZHONG, ZHANG YIRAN, WANG YI, YAN YUAN, WANG JIAJING, GU JIANHONG, CHUN BIANJIAN, LIU ZONGPING. Investigation of cadmium-induced apoptosis and the protective effect of N-acetylcysteine in BRL 3A cells. Mol Med Rep 2016; 14:373-9. [DOI: 10.3892/mmr.2016.5218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/30/2015] [Indexed: 11/06/2022] Open
|
7
|
Zou H, Zhuo L, Han T, Hu D, Yang X, Wang Y, Yuan Y, Gu J, Bian J, Liu X, Liu Z. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells. Biochem Biophys Res Commun 2015; 459:713-9. [PMID: 25778869 DOI: 10.1016/j.bbrc.2015.03.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Liling Zhuo
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160, PR China
| | - Tao Han
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Di Hu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Xiaokang Yang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
8
|
Aly HA, Khafagy RM. Taurine reverses endosulfan-induced oxidative stress and apoptosis in adult rat testis. Food Chem Toxicol 2014; 64:1-9. [DOI: 10.1016/j.fct.2013.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022]
|
9
|
Gao D, Xu Z, Qiao P, Liu S, Zhang L, He P, Zhang X, Wang Y, Min W. Cadmium induces liver cell apoptosis through caspase-3A activation in purse red common carp (Cyprinus carpio). PLoS One 2013; 8:e83423. [PMID: 24349509 PMCID: PMC3861504 DOI: 10.1371/journal.pone.0083423] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/03/2013] [Indexed: 12/16/2022] Open
Abstract
Caspase-3, the essential effector caspase, plays a pivotal role during caspase-dependent apoptosis. In this study, we isolated and characterized caspase-3A gene from common carp. The common carp caspase-3A comprising 273 amino acids showed 71.8% sequence similarity and 59.3% sequence identity to human caspase-3. It exhibited an evolutionarily conserved structure of mammalian caspase-3 genes, including a pro-domain, a large subunit, a small subunit and other motifs such as the pentapeptide active-site motif (QACRG) and the putative cleavage sites at the aspartic acids. Phylogenetic analysis demonstrated that common carp caspase-3A formed a clade with cyprinid fish caspase-3. To assess whether caspase-3A is involved in cadmium (Cd)-induced cell apoptosis in common carp, a Cd exposure experiment was performed. TUNEL analysis showed that Cd triggered liver cell apoptosis; caspase-3A activity was markedly increased; its proenzyme level was significantly decreased, and the levels of its cleaved forms were markedly increased. However, real-time quantitative PCR analysis revealed that the mRNA transcript level of caspase-3A was not significantly elevated. Immunoreactivities were observed in the cytoplasm of hepatocytes by immunohistochemical detection. The findings indicates that Cd can trigger liver cell apoptosis through the activation of caspase-3A. Caspase-3A may play an essential role in Cd-induced apoptosis.
Collapse
Affiliation(s)
- Dian Gao
- Medical College of Nanchang University, Nanchang, PR China
- Institute of Immunotherapy, Nanchang University, Nanchang, PR China
| | - Zhen’e Xu
- Medical College of Nanchang University, Nanchang, PR China
- Institute of Immunotherapy, Nanchang University, Nanchang, PR China
| | - Panpan Qiao
- Medical College of Nanchang University, Nanchang, PR China
| | - Shen Liu
- Medical College of Nanchang University, Nanchang, PR China
| | - Li Zhang
- Medical College of Nanchang University, Nanchang, PR China
| | - Penghui He
- Medical College of Nanchang University, Nanchang, PR China
| | - Xiaoyan Zhang
- Medical College of Nanchang University, Nanchang, PR China
| | - Yannan Wang
- Medical College of Nanchang University, Nanchang, PR China
| | - Weiping Min
- Medical College of Nanchang University, Nanchang, PR China
- Institute of Immunotherapy, Nanchang University, Nanchang, PR China
- Jiangxi Academy of Medical Sciences, Nanchang, PR China
| |
Collapse
|
10
|
Gao D, Xu Z, Zhang X, Zhu C, Wang Y, Min W. Cadmium triggers kidney cell apoptosis of purse red common carp (Cyprinus carpio) without caspase-8 activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:728-737. [PMID: 23954723 DOI: 10.1016/j.dci.2013.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Caspase-8, the essential initiator caspase, is believed to play a pivotal role in death receptor-mediated apoptotic pathway. It also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid in mammals. However, its role in fish remains elusive in Cadmium-induced apoptotic pathway. In this study, we isolated the caspase-8 gene from common carp, one of the most important industrial aquatic animals in China using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of caspase-8 comprised 475 amino acids, which showed approximately 64.1% identity and 79.8% similarity to zebrafish (Danio rerio) caspase-8, possessed two conserved death effector domains, a large subunit and a small subunit. Phylogenetic analysis demonstrated that caspase-8 formed a clade with zebrafish caspase-8. In kidney, cadmium (Cd) exposure triggered apoptosis and increased caspase-3 and -9 activities, whereas it did not affect caspase-8 activity. Real-time quantitative PCR analysis revealed that caspase-8 transcriptional level was not significantly increased in kidney after exposure to Cd. Using Western blot analysis, no caspase-8 cleaved fragment was detected and no significant alteration of procaspase-8 level was found with the same Cd-treated condition. Moreover, the immunopositive staining was predominantly limited to the cytoplasm of renal tubular epithelial cells and no remarkable changes of immunoreactivities were observed using immunohistochemical detection after Cd treatment. The results reveal that Cd can trigger apoptosis, while it cannot activate caspase-8 in purse red common carp.
Collapse
Affiliation(s)
- Dian Gao
- Medical College of Nanchang University, Nanchang 330006, PR China; Institute of Immunotherapy, Nanchang University, Nanchang 330006, PR China
| | | | | | | | | | | |
Collapse
|
11
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
12
|
Liu D, Yang J, Li Y, Zhang M, Wang L. Cd-induced apoptosis through the mitochondrial pathway in the hepatopancreas of the freshwater crab Sinopotamon henanense. PLoS One 2013; 8:e68770. [PMID: 23894343 PMCID: PMC3718824 DOI: 10.1371/journal.pone.0068770] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/03/2013] [Indexed: 11/29/2022] Open
Abstract
Cd is one of the most common pollutants in the environment that also induces the apoptosis. To explore the mechanism of apoptosis in the hepatopancreas, freshwater crab S. henanense were treated with 0, 3.56, 7.12, 14.25, 28.49 and 56.98 mg/L Cd for 72 h. Apoptosis was noticeable in every treatment group and necrosis was observed clearly in the high concentration Cd groups. Classical apoptotic bodies were found by transmission electronic microscopy, which revealed chromatin condensation under nuclear membrane and mitochondrial membrane rupture. An increasing number of autolysosomes, damaged rough endoplamic reticulum and Golgi complex were observed as the Cd concentration increase. Brown colored apoptotic cells were detected by the TUNEL test in all Cd-treatment groups. The apoptosis index increased following the elevation of Cd concentration and got 32.9% in the highest Cd group. Caspase-9 and caspase-3 activities increased in the lower Cd treatment groups but no changes in the higher Cd concentration groups (comparing to the control group). The activity of caspase-8 did not change significantly. No significant change in the content of mitochondrial cytochrome c (cyt c) in Cd exposed groups except the decrease in the 56.98 mg/L group. In crabs treated with 3.56, 7.12 and 14.25 mg/L Cd, hyperpolarization of mitochondrial membrane potential (Δψm) significantly increased. These results implied that apoptosis in the hepatopancreas induced by Cd occurrs through the mitochondrial caspase-dependent pathway. However, whether there are other apoptotic pathways needs to be studied further.
Collapse
Affiliation(s)
- Dongmei Liu
- Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Jian Yang
- Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Yingjun Li
- Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Meng Zhang
- Institute of Molecular Biology, Nankai University, Tianjin, China
| | - Lan Wang
- Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
- * E-mail:
| |
Collapse
|
13
|
Nguyen KC, Willmore WG, Tayabali AF. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology 2013; 306:114-23. [PMID: 23485651 DOI: 10.1016/j.tox.2013.02.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 10/27/2022]
Abstract
The mechanisms of toxicity related to human hepatocellular carcinoma HepG2 cell exposures to cadmium telluride quantum dots (CdTe-QDs) were investigated. CdTe-QDs caused cytotoxicity in HepG2 cells in a dose- and time-dependent manner. Treated cells showed an increase in reactive oxygen species (ROS). Altered antioxidant levels were demonstrated by depletion of reduced glutathione (GSH), a decreased ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) and an increased NF-E2-related Factor 2 (Nrf2) activation. Enzyme assays showed that superoxide dismutase (SOD) activity was elevated whereas catalase (CAT) and glutathione-S-transferase (GST) activities were depressed. Further analyses revealed that CdTe-QD exposure resulted in apoptosis, indicated by changes in levels of caspase-3 activity, poly ADP-ribose polymerase (PARP) cleavage and phosphatidylserine externalization. Extrinsic apoptotic pathway markers such as Fas levels and caspase-8 activity increased as a result of CdTe-QD exposure. Involvement of the intrinsic/mitochondrial apoptotic pathway was indicated by decreased levels of B-cell lymphoma 2 (Bcl2) protein and mitochondrial cytochrome c, and by increased levels of mitochondrial Bcl-2-associated X protein (Bax) and cytosolic cytochrome c. Further, mitogen-activated protein kinases (MAPKs) such as c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinases (Erk1/2), and p38 were all activated. Our findings reveal that CdTe-QDs cause oxidative stress, interfere with antioxidant defenses and activate protein kinases, leading to apoptosis via both extrinsic and intrinsic pathways. Since the effects of CdTe-QDs on selected biomarkers were similar or greater compared to those of CdCl2 at equivalent concentrations of cadmium, the study suggests that the toxicity of CdTe-QDs arises from a combination of the effects of cadmium and ROS generated from the NPs.
Collapse
Affiliation(s)
- Kathy C Nguyen
- Biotechnology Laboratory, Mechanistic Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada
| | | | | |
Collapse
|
14
|
|
15
|
Liu D, Yan B, Yang J, Lei W, Wang L. Mitochondrial pathway of apoptosis in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense exposed to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:394-402. [PMID: 21831345 DOI: 10.1016/j.aquatox.2011.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 05/31/2023]
Abstract
Cadmium (Cd) is one of the most common toxic metals in water. To investigate the mechanism of Cd-induced apoptosis in the hepatopancreas, freshwater crabs Sinopotamon yangtsekiense were exposed to 0, 3.56, 7.12, 14.25, 28.49 and 56.98 mg/L Cd for 48 h. After a 48 h exposure, apoptosis and necroptosis were apparent in the group exposed to 28.49 mg/L Cd and only one case of necrosis was observed in the highest concentration of Cd. Electronic microscopy revealed chromatin condensation under nuclear membrane and mitochondrial membrane rupture in 14.25 and 28.49 mg/L Cd treatment groups. Brown colored apoptotic cells were detected with the TUNEL test in all Cd-treatment groups. The AI in 56.98 mg/L group was 1.4-fold greater than that in crabs exposed to 14.25mg/L Cd. Caspase-9, caspase-3, SDH and Ca(2+)-ATPase activities increased with increasing Cd concentration. However, the activities of caspase-8 and LDH did not change significantly compared with control group. These results implied that Cd induced apoptosis in the hepatopancreas occurs through a mitochondrial pathway.
Collapse
Affiliation(s)
- Dongmei Liu
- Laboratory of Bio-effect and Molecular Mechanism on Classical Environmental Pollutants, School of Life Science, Shanxi University, 96 Wucheng Road, Taiyuan 030006, Shanxi Province, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Braga MM, Dick T, Oliveira DL, Guerra AS, Leite MC, Ardais AP, Souza DO, Rocha JB. Cd modifies hepatic Zn deposition and modulates δ-ALA-D activity and MT levels by distinct mechanisms. J Appl Toxicol 2011; 32:20-5. [DOI: 10.1002/jat.1648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/22/2010] [Accepted: 11/23/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Marcos Martins Braga
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Tuiskon Dick
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Diogo Losch Oliveira
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Adriele Scopel Guerra
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Ana Paula Ardais
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - João B.T. Rocha
- Departamento de Química; Universidade Federal de Santa Maria; Santa Maria; RS; Brazil
| |
Collapse
|
17
|
Gebhardt R. Prevention of cadmium-induced toxicity in liver-derived cells by the combination preparation Hepeel(®). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:402-409. [PMID: 21783971 DOI: 10.1016/j.etap.2009.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 12/11/2008] [Accepted: 01/18/2009] [Indexed: 05/31/2023]
Abstract
Cadmium is a heavy metal of considerable environmental concern that causes liver damage. This study examined the possible prevention of cadmium toxicity in human HepG2 cells and primary rat hepatocytes by Hepeel(®), a combined preparation of tinctures from seven different plants. Hepeel(®) prevented cadmium chloride (CdCl(2))-induced cell death in both HepG2 cells and hepatocytes, and also reduced the loss of glutathione, lipid peroxidation, nuclear fragmentation, caspase activation and release of mitochondrial cytochrome C. To compare their relative efficacy, the seven constituent plant tinctures of Hepeel(®) were also separately tested. The tinctures China and Nux moschata, which exert solely anti-oxidative effects, failed to reduce cytotoxicity, and only protected against loss of glutathione and lipid peroxidation. In contrast, the tinctures Carduus marianus and Chelidonium, demonstrated anti-apoptotic effects, and protected HepG2 cells and primary hepatocytes against CdCl(2)-induced cell death. These results demonstrate how the effectiveness of Hepeel(®) is determined by the synergistic features of its constituent tinctures. Furthermore, we conclude that cadmium toxicity in the liver is mainly due to stimulation of the intrinsic apoptotic pathway, but may be intensified by increased oxidative stress.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|