1
|
Tam LM, Rand MD. Review: myogenic and muscle toxicity targets of environmental methylmercury exposure. Arch Toxicol 2024; 98:1645-1658. [PMID: 38546836 PMCID: PMC11105986 DOI: 10.1007/s00204-024-03724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
A number of environmental toxicants are noted for their activity that leads to declined motor function. However, the role of muscle as a proximal toxicity target organ for environmental agents has received considerably less attention than the toxicity targets in the nervous system. Nonetheless, the effects of conventional neurotoxicants on processes of myogenesis and muscle maintenance are beginning to resolve a concerted role of muscle as a susceptible toxicity target. A large body of evidence from epidemiological, animal, and in vitro studies has established that methylmercury (MeHg) is a potent developmental toxicant, with the nervous system being a preferred target. Despite its well-recognized status as a neurotoxicant, there is accumulating evidence that MeHg also targets muscle and neuromuscular development as well as contributes to the etiology of motor defects with prenatal MeHg exposure. Here, we summarize evidence for targets of MeHg in the morphogenesis and maintenance of skeletal muscle that reveal effects on MeHg distribution, myogenesis, myotube formation, myotendinous junction formation, neuromuscular junction formation, and satellite cell-mediated muscle repair. We briefly recapitulate the molecular and cellular mechanisms of skeletal muscle development and highlight the pragmatic role of alternative model organisms, Drosophila and zebrafish, in delineating the molecular underpinnings of muscle development and MeHg-mediated myotoxicity. Finally, we discuss how toxicity targets in muscle development may inform the developmental origins of health and disease theory to explain the etiology of environmentally induced adult motor deficits and accelerated decline in muscle fitness with aging.
Collapse
Affiliation(s)
- Lok Ming Tam
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA.
- Clinical and Translational Science Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
2
|
Peppriell AE, Gunderson JT, Krout IN, Vorojeikina D, Rand MD. Latent effects of early-life methylmercury exposure on motor function in Drosophila. Neurotoxicol Teratol 2021; 88:107037. [PMID: 34656729 DOI: 10.1016/j.ntt.2021.107037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 12/27/2022]
Abstract
The developmental toxicant, methylmercury (MeHg), can elicit motor deficits that last well into adulthood. Recent studies using Drosophila showed that the developing musculature is sensitive to high doses of MeHg, where a larval feeding paradigm resulted in compromised myotendinous junction (MTJ) formation during development, by a mechanism involving the NG2 homologue, kon-tiki (kon). Low-dose exposures to MeHg that do not produce muscle pathology during development, nevertheless result in impaired flight behavior later in adult life. The present study evaluated the potential for relatively low-dose exposure to produce latent adult muscle pathology and motor impairments, as assayed by climbing and flight, as well as to evaluate molecular mechanisms that may contribute to motor deficits. Wildtype larvae were fed 0, 2, 2.5, or 5 μM MeHg laden food until eclosion. The effect of 5 μM MeHg on MTJ-related gene expression during pupal development was assessed via quantitative RT-qPCR analysis. Upon eclosion, adults were transferred to standard food bottles for 4, 11, or 30 days prior to motor testing. Survivorship (%) was determined from a subset of 200 flies per treatment. Average climbing speed (cm/s) was quantified 4-days post-eclosion (PE). Flight ability was assayed 11- or 30-days PE by measuring landing height (cm) of flies dropped into an adhesive-lined vertical column. In parallel, total body mercury was measured to estimate the influence of residual MeHg at the time of motor testing. Muscle morphology was assessed using immuno-fluorescence microscopy. Exposure to 5uM MeHg significantly reduced climbing speed, and flight ability 4 and 11 - days PE, respectively. While age-related flight deficits were seen in each sex, flight deficits due to MeHg persisted to 30-day PE timepoints exclusively in males. Expression of kon was upregulated across the window of pupal development essential to establishing adult MTJ. However, experimentally restricting the induction of comparable levels of kon to muscle during the same periods did not recapitulate the flight deficits, indicating that muscle-specific induction of kon alone is not sufficient to contribute to latent flight impairments. Adult flight muscle morphology of 11-day PE flies treated with 5 μM MeHg was indistinct from controls, implying muscle structure is not grossly perturbed to impair flight. Collectively, the current data suggest that developmental exposure to 5 μM MeHg reduces flight ability in each sex at 11 day-PE and that latent deficits at 30-day PE are male-specific. It remains to be determined whether the developing MTJ of Drosophila is a sensitive target of MeHg, and whether or not kon acts in conjunction with additional MTJ factors to constitute a MeHg target.
Collapse
Affiliation(s)
- Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; ICF International, Durham, NC, USA.
| | - Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ian N Krout
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
3
|
Mercury Accumulation and Elimination in Different Tissues of Zebrafish (Danio rerio) Exposed to a Mercury-Supplemented Diet. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9080882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we evaluated the bioaccumulation of mercury in zebrafish (Danio rerio) exposed to mercury-contaminated food for 21 days and the depuration of mercury for a subsequent post-exposure period of 28 days. Four tissues (muscle, liver, gills, and skin) were analyzed for mercury content. Overall, data indicated that Hg accumulation in the liver is faster than in other tissues. Furthermore, the liver is the tissue with the highest accumulation rate per day (0.021 µg Hg g−1 day−1), followed by muscle, skin, and gills. Conversely, the Hg depuration rates in different tissues showed the following order: gills > skin > muscle > liver. The bioaccumulation factor values of liver and muscle increased linearly during the uptake period. The ratios between mercury concentration in liver and muscle during the experiment also increased during the uptake period and remained higher than 1 during the elimination period, suggesting that Danio rerio needed more than 4 weeks of depuration. Finally, the distribution of Hg in the water column during the accumulation period is Hg particulate > Hg dissolved, and during the depuration period it is the opposite, mercury particulate < mercury dissolved. In conclusion, this study contributes to a better understanding of the differences in Hg dynamics during the accumulation and depuration stages in a model fish, also emphasizing the alterations on Hg available in the water column.
Collapse
|
4
|
Gouvêa AL, Gracindo Silva M, Cabral B, Martinez CG, Lauthartte LC, Rodrigues Bastos W, Kurtenbach E. Progressive resistance exercise prevents muscle strength loss due to muscle atrophy induced by methylmercury systemic intoxication. JCSM CLINICAL REPORTS 2021. [DOI: 10.1002/crt2.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- André Luiz Gouvêa
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | - Marcia Gracindo Silva
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | - Bruno Cabral
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | - Camila Guerra Martinez
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | | | - Waderley Rodrigues Bastos
- Laboratório de Biogeoquímica Ambiental Universidade Federal de Rondônia Porto Velho Rondônia 76801‐974 Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| |
Collapse
|
5
|
Peppriell AE, Gunderson JT, Vorojeikina D, Rand MD. Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology 2020; 443:152561. [PMID: 32800841 PMCID: PMC7530093 DOI: 10.1016/j.tox.2020.152561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant and developmental toxicant known to cause a variety of persistent motor and cognitive deficits. While previous research has focused predominantly on neurotoxic MeHg effects, emerging evidence points to a myotoxic role whereby MeHg induces defects in muscle development and maintenance. A genome wide association study for developmental sensitivity to MeHg in Drosophila has revealed several conserved muscle morphogenesis candidate genes that function in an array of processes from myoblast migration and fusion to myotendinous junction (MTJ) formation and myofibrillogenesis. Here, we investigated candidates for a role in mediating MeHg disruption of muscle development by evaluating morphological and functional phenotypes of the indirect flight muscles (IFMs) in pupal and adult flies following 0, 5, 10, and 15 μM MeHg exposure via feeding at the larval stage. Developmental MeHg exposure induced a dose-dependent increase in muscle detachments (myospheres) within dorsal bundles of the IFMs, which paralleled reductions eclosion and adult flight behaviors. These effects were selectively phenocopied by altered expression of kon-tiki (kon), a chondroitin sulfate proteoglycan 4/NG2 homologue and a central component of MTJ formation. MeHg elevated kon transcript expression at a crucial window of IFM development and transgene overexpression of kon could also phenocopy myosphere phenotypes and eclosion and flight deficits. Finally, the myosphere phenotype resulting from 10 μM MeHg was partially rescued in a background of reduced kon expression using a targeted RNAi approach. Our findings implicate a component of the MTJ as a MeHg toxicity target which broaden the understanding of how motor deficits can emerge from early life MeHg exposure.
Collapse
Affiliation(s)
- Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
6
|
Bailone RL, Aguiar LKD, Roca RDO, Borra RC, Corrêa T, Janke H, Fukushima HCS. “Zebrafish as an animal model for food safety research: trends in the animal research”. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1673173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ricardo Lacava Bailone
- Department of Federal Inspection Service, Ministry of Agriculture, Livestock and Supply of Brazil, Federal Inspection Service, São Carlos, Brazil
- Food Technology, Universidade Estadual Paulista Julio de Mesquita Filho, Sao Paulo, Brazil
| | - Luís Kluwe de Aguiar
- Department of Food Technology and Innovation, Harper Adams University, Edgmond, United Kingdom of Great Britain and Northern Ireland
| | - Roberto de Oliveira Roca
- Department of Food Economics, Sociology and Technology, Universidade Estadual Paulista Julio de Mesquita Filho, Sao Paulo, Brazil
| | - Ricardo Carneiro Borra
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Tatiana Corrêa
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Helena Janke
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
7
|
Culbreth M, Rand MD. Methylmercury modifies temporally expressed myogenic regulatory factors to inhibit myoblast differentiation. Toxicol In Vitro 2019; 63:104717. [PMID: 31706035 DOI: 10.1016/j.tiv.2019.104717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
Methylmercury (MeHg) is a pervasive environmental toxicant, with known detrimental effects on neurodevelopment. Despite a longstanding paradigm of neurotoxicity, where motor deficits are prevalent among those developmentally exposed, consideration of muscle as a MeHg target has received minimal investigation. Recent evidence has identified muscle-specific gene networks that modulate developmental sensitivity to MeHg toxicity. One such network is muscle cell differentiation. Muscle cell differentiation is a coordinated process regulated by the myogenic regulatory factors (MRFs): Myf5, MyoD, MyoG, and MRF4. A previous study demonstrated that MeHg inhibits muscle cell differentiation in vitro, concurrent with reduced MyoG expression. The potential for MeHg to modify the temporal expression of the MRFs to alter differentiation, however, has yet to be fully explored. Using the C2C12 mouse myoblast model, we examined MRF expression profiles at various stages subsequent to MeHg exposure to proliferating myoblasts. MeHg was seen to persistently alter myoblast differentiation capacity, as myod, myog, and mrf4 gene expression were all affected. Myog exhibited the most robust changes in expression across the various culture conditions, while myf5 was unaffected. Following MeHg exposure to myoblasts, where elevated p21 expression indicated departure from proliferation, cells failed to subsequently differentiate, even in the absence of MeHg, as reflected by a concurrent reduction in MRF4 and myosin heavy chain (MHC), markers of terminal differentiation. Our results indicate that within a brief window of exposure MeHg can disrupt the intrinsic myogenic differentiation program of proliferative myoblasts.
Collapse
Affiliation(s)
- Megan Culbreth
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America.
| |
Collapse
|
8
|
Prince LM, Rand MD. Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation. Toxicology 2018; 393:113-122. [PMID: 29104120 PMCID: PMC5757876 DOI: 10.1016/j.tox.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant, best known for its selective targeting of the developing nervous system. MeHg exposure has been shown to cause motor deficits such as impaired gait and coordination, muscle weakness, and muscle atrophy, which have been associated with disruption of motor neurons. However, recent studies have suggested that muscle may also be a target of MeHg toxicity, both in the context of developmental myogenic events and of low-level chronic exposures affecting muscle wasting in aging. We therefore investigated the effects of MeHg on myotube formation, using the C2C12 mouse myoblast model. We found that MeHg inhibits both differentiation and fusion, in a concentration-dependent manner. Furthermore, MeHg specifically and persistently inhibits myogenin (MyoG), a transcription factor involved in myocyte differentiation, within the first six hours of exposure. MeHg-induced reduction in MyoG expression is contemporaneous with a reduction of a number of factors involved in mitochondrial biogenesis and mtDNA transcription and translation, which may implicate a role for mitochondria in mediating MeHg-induced change in the differentiation program. Unexpectedly, inhibition of myoblast differentiation with MeHg parallels inhibition of Notch receptor signaling. Our research establishes muscle cell differentiation as a target for MeHg toxicity, which may contribute to the underlying etiology of motor deficits with MeHg toxicity.
Collapse
Affiliation(s)
- Lisa M Prince
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Department of Environmental Medicine, Rochester, NY, 14642, USA.
| | - Matthew D Rand
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Department of Environmental Medicine, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Gombeau K, de Oliveira RB, Sarrazin SLF, Mourão RHV, Bourdineaud JP. Protective Effects of Plathymenia reticulata and Connarus favosus Aqueous Extracts against Cadmium- and Mercury-Induced Toxicities. Toxicol Res 2018; 35:25-35. [PMID: 30766655 PMCID: PMC6354948 DOI: 10.5487/tr.2019.35.1.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
The extracts of Plathymenia reticulata and Connarus favosus are widely used in the folk medicine. The potential protective effects of these extracts have been evaluated against cadmium in the yeast Saccharomyces cerevisiae, and against mercurial contamination in zebrafish Danio rerio. In yeast, both extracts efficiently protected the Δycf1 mutant strain exposed to cadmium chloride restoring the growth, the expression of stress-response genes and decreasing the level of oxidative stress. In zebrafish, the supplementation of methylmercury-contaminated diet with both plant extracts similarly protected fish through the suppression of the methylmercury-induced lipid peroxidation, decrease of acetylcholinesterase activity, and restoring the expression levels of stress-response genes. This study particularly demonstrates the protective potential of both aqueous extracts against methylmercury, and could represent an interesting alternative for the Amazonian fish-eating communities to cope with the impact of chronic exposure to contaminated diets.
Collapse
Affiliation(s)
- Kewin Gombeau
- University of Bordeaux, CNRS, UMR 5805, EPOC, Arcachon Marine Station, 33120 Arcachon, France
| | - Ricardo Bezerra de Oliveira
- Federal University of Western Pará - UFOPA, PPGRNA, LABBEX, Tapajós Campus, Rua Vera Paz s/n, Bairro Salé, CEP, 68040-050, Caranazal, 88040-060 Santarém, Pará, Brazil
| | - Sandra Layse Ferreira Sarrazin
- Federal University of Western Pará - UFOPA, PPGRNA, LABBEX, Tapajós Campus, Rua Vera Paz s/n, Bairro Salé, CEP, 68040-050, Caranazal, 88040-060 Santarém, Pará, Brazil
| | - Rosa Helena Veras Mourão
- Federal University of Western Pará - UFOPA, PPGRNA, LABBEX, Tapajós Campus, Rua Vera Paz s/n, Bairro Salé, CEP, 68040-050, Caranazal, 88040-060 Santarém, Pará, Brazil
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR 5805, EPOC, Arcachon Marine Station, 33120 Arcachon, France
| |
Collapse
|
10
|
Prince LM, Rand MD. Notch Target Gene E(spl)mδ Is a Mediator of Methylmercury-Induced Myotoxicity in Drosophila. Front Genet 2018; 8:233. [PMID: 29379520 PMCID: PMC5775289 DOI: 10.3389/fgene.2017.00233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 01/09/2023] Open
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant and neurotoxicant that has long been known to cause a variety of motor deficits. These motor deficits have primarily been attributed to MeHg targeting of developing neurons and induction of oxidative stress and calcium dysregulation. Few studies have looked at how MeHg may be affecting fundamental signaling mechanisms in development, particularly in developing muscle. Studies in Drosophila recently revealed that MeHg perturbs embryonic muscle formation and upregulates Notch target genes, reflected predominantly by expression of the downstream transcriptional repressor Enhancer of Split mdelta [E(spl)mδ]. An E(spl)mδ reporter gene shows expression primarily in the myogenic domain, and both MeHg exposure and genetic upregulation of E(spl)mδ can disrupt embryonic muscle development. Here, we tested the hypothesis that developing muscle is targeted by MeHg via upregulation of E(spl)mδ using genetic modulation of E(spl)mδ expression in combination with MeHg exposure in developing flies. Developmental MeHg exposure causes a decreased rate of eclosion that parallels gross disruption of indirect flight muscle (IFM) development. An increase in E(spl) expression across the pupal stages, with preferential E(spl)mδ upregulation occurring at early (p5) stages, is also observed. E(spl)mδ overexpression in myogenic lineages under the Mef2 promoter was seen to phenocopy eclosion and IFM effects of developmental MeHg exposure; whereas reduced expression of E(spl)mδ shows rescue of eclosion and IFM morphology effects of MeHg exposure. No effects were seen on eclosion with E(spl)mδ overexpression in neural and gut tissues. Our data indicate that muscle development is a target for MeHg and that E(spl)mδ is a muscle-specific mediator of this myotoxicity. This research advances our knowledge of the target pathways that mediate susceptibility to MeHg toxicity, as well as a potential muscle development-specific role for E(spl)mδ.
Collapse
Affiliation(s)
- Lisa M Prince
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Matthew D Rand
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
11
|
Dubińska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Jagla K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int J Mol Sci 2016; 17:E1941. [PMID: 27869769 PMCID: PMC5133936 DOI: 10.3390/ijms17111941] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Anna Lewicka
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Krzysztof Jagla
- GReD-Genetics, Reproduction and Development Laboratory, INSERM U1103, CNRS UMR6293, University of Clermont-Auvergne, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
12
|
Komoike Y, Matsuoka M. [Application of Zebrafish Model to Environmental Toxicology]. Nihon Eiseigaku Zasshi 2016; 71:227-235. [PMID: 27725426 DOI: 10.1265/jjh.71.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, a tropical freshwater fish, the zebrafish, has been generally used as a useful model organism in various fields of life science worldwide. The zebrafish model has also been applied to environmental toxicology; however, in Japan, it has not yet become widely used. In this review, we will introduce the biological and historical backgrounds of zebrafish as an animal model and their breeding. We then present the current status of toxicological experiments using zebrafish that were treated with some important environmental contaminants, including cadmium, organic mercury, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and tributyltin. Finally, the future possible application of genetically modified zebrafish to the study of environmental toxicology is discussed.
Collapse
Affiliation(s)
- Yuta Komoike
- Department of Hygiene and Public Health I, Tokyo Women's Medical University
| | | |
Collapse
|
13
|
Gentès S, Maury-Brachet R, Feng C, Pedrero Z, Tessier E, Legeay A, Mesmer-Dudons N, Baudrimont M, Maurice L, Amouroux D, Gonzalez P. Specific Effects of Dietary Methylmercury and Inorganic Mercury in Zebrafish (Danio rerio) Determined by Genetic, Histological, and Metallothionein Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14560-14569. [PMID: 26509634 DOI: 10.1021/acs.est.5b03586] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A multidisciplinary approach is proposed here to compare toxicity mechanisms of methylmercury (MeHg) and inorganic mercury (iHg) in muscle, liver, and brain from zebrafish (Danio rerio). Animals were dietary exposed to (1) 50 ng Hg g(-1), 80% as MeHg; (2) diet enriched in MeHg 10000 ng Hg g(-1), 95% as MeHg; (3) diet enriched in iHg 10000 ng Hg g(-1), 99% as iHg, for two months. Hg species specific bioaccumulation pathways were highlighted, with a preferential bioaccumulation of MeHg in brain and iHg in liver. In the same way, differences in genetic pattern were observed for both Hg species, (an early genetic response (7 days) for both species in the three organs and a late genetic response (62 days) for iHg) and revealed a dissimilar metabolization of both Hg species. Among the 18 studied genes involved in key metabolic pathways of the cell, major genetic responses were observed in muscle. Electron microscopy revealed damage mainly because of MeHg in muscle and also in liver tissue. In brain, high MeHg and iHg concentrations induced metallothionein production. Finally, the importance of the fish origin in ecotoxicological studies, here the seventh descent of a zebrafish line, is discussed.
Collapse
Affiliation(s)
- Sophie Gentès
- Université de Bordeaux, EPOC, UMR CNRS 5805 , Place du Dr B. Peyneau, F-33120 Arcachon, France
| | - Régine Maury-Brachet
- Université de Bordeaux, EPOC, UMR CNRS 5805 , Place du Dr B. Peyneau, F-33120 Arcachon, France
| | - Caiyan Feng
- Laboratoire de Chimie Analytique, Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), CNRS-UPPA-UMR-5254, Hélioparc, 2 Avenue du Président Pierre Angot, F-64053 Pau, France
| | - Zoyne Pedrero
- Laboratoire de Chimie Analytique, Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), CNRS-UPPA-UMR-5254, Hélioparc, 2 Avenue du Président Pierre Angot, F-64053 Pau, France
| | - Emmanuel Tessier
- Laboratoire de Chimie Analytique, Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), CNRS-UPPA-UMR-5254, Hélioparc, 2 Avenue du Président Pierre Angot, F-64053 Pau, France
| | - Alexia Legeay
- Université de Bordeaux, EPOC, UMR CNRS 5805 , Place du Dr B. Peyneau, F-33120 Arcachon, France
| | - Nathalie Mesmer-Dudons
- Université de Bordeaux, EPOC, UMR CNRS 5805 , Place du Dr B. Peyneau, F-33120 Arcachon, France
| | - Magalie Baudrimont
- Université de Bordeaux, EPOC, UMR CNRS 5805 , Place du Dr B. Peyneau, F-33120 Arcachon, France
| | - Laurence Maurice
- Observatoire Midi-Pyrénées, Laboratoire de Geosciences Environnement Toulouse, Université Paul Sabatier Toulouse III , 14 avenue Edouard Belin, 31400 Toulouse, France
- GET, IRD , F-31400 Toulouse, France
| | - David Amouroux
- Laboratoire de Chimie Analytique, Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), CNRS-UPPA-UMR-5254, Hélioparc, 2 Avenue du Président Pierre Angot, F-64053 Pau, France
| | | |
Collapse
|
14
|
Claveau J, Monperrus M, Jarry M, Baudrimont M, Gonzalez P, Cavalheiro J, Mesmer-Dudons N, Bolliet V. Methylmercury effects on migratory behaviour in glass eels (Anguilla anguilla): an experimental study using isotopic tracers. Comp Biochem Physiol C Toxicol Pharmacol 2015; 171:15-27. [PMID: 25797033 DOI: 10.1016/j.cbpc.2015.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 01/19/2023]
Abstract
The effect of methylmercury (MeHg) on glass eels' propensity to migrate, mitochondrial activity and antioxidative defence systems was investigated. Marine glass eels were first sorted in an experimental flume according to their response to dusk. Fish responding to the decrease in light intensity by ascending in the water column and moving with or against the flow were considered as having a high propensity to migrate (migrant). Glass eels still sheltering at the end of the 24 h catching period were considered as having a low propensity to migrate and were called non-migrant. Migrant and non-migrant glass eels were then individually tagged and exposed to isotopically enriched (201)MeHg (50 ng L(-1)) for 11 days. The effect of contamination was studied on muscle fibre structure, and the expression level of genes involved in mitochondrial activity and antioxidative defence systems. To investigate the effect of MeHg on glass eel behaviour, migrant and non-migrant glass eels were sorted again and the bioaccumulation of (201)MeHg and its demethylation product ((201)Hg(II)) were determined for each individual. MeHg exposure increased activity in non-migrant glass eels but not migratory behaviour. Contamination affected mitochondrial structure and metabolism and suggests a higher oxidative stress and activation of antioxidative defence systems in non-migrant glass eels. Overall, our results suggest that exposure to MeHg might induce an increase in energy expenditure and a higher vulnerability to predation in non-migrant glass eels in the wild.
Collapse
MESH Headings
- Anguilla/physiology
- Animal Migration/drug effects
- Animals
- Atlantic Ocean
- Biotransformation
- Energy Metabolism/drug effects
- France
- Gene Expression Regulation, Enzymologic/drug effects
- Mercury Isotopes
- Methylmercury Compounds/metabolism
- Methylmercury Compounds/toxicity
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/ultrastructure
- Models, Biological
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Oxidants/pharmacokinetics
- Oxidants/toxicity
- Oxidative Stress
- Oxidoreductases/chemistry
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phototrophic Processes/drug effects
- Tissue Distribution
- Toxicokinetics
- Water Pollutants, Chemical/metabolism
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Julie Claveau
- INRA, UMR 1224 Ecobiop, Aquapôle, 64310 Saint Pée sur Nivelle, France; Université de Pau et des Pays de L'Adour, UMR 1224 Ecobiop, UFR Sciences et Techniques Côte Basque, Anglet, France.
| | - Mathilde Monperrus
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2 av. P. Angot, 64053 9 Pau cedex 9, France.
| | - Marc Jarry
- INRA, UMR 1224 Ecobiop, Aquapôle, 64310 Saint Pée sur Nivelle, France; Université de Pau et des Pays de L'Adour, UMR 1224 Ecobiop, UFR Sciences et Techniques Côte Basque, Anglet, France.
| | - Magalie Baudrimont
- Université de Bordeaux, UMR 5805 EPOC, Team Aquatic Ecotoxicology, Place du Dr Peyneau, 33120 Arcachon, France.
| | - Patrice Gonzalez
- Université de Bordeaux, UMR 5805 EPOC, Team Aquatic Ecotoxicology, Place du Dr Peyneau, 33120 Arcachon, France.
| | - Joana Cavalheiro
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2 av. P. Angot, 64053 9 Pau cedex 9, France.
| | - Nathalie Mesmer-Dudons
- Université de Bordeaux, UMR 5805 EPOC, Team Aquatic Ecotoxicology, Place du Dr Peyneau, 33120 Arcachon, France.
| | - Valérie Bolliet
- INRA, UMR 1224 Ecobiop, Aquapôle, 64310 Saint Pée sur Nivelle, France; Université de Pau et des Pays de L'Adour, UMR 1224 Ecobiop, UFR Sciences et Techniques Côte Basque, Anglet, France.
| |
Collapse
|
15
|
Zhao F, Malm SW, Hinchman AN, Li H, Beeks CG, Klimecki WT. Arsenite-induced pseudo-hypoxia results in loss of anchorage-dependent growth in BEAS-2B pulmonary epithelial cells. PLoS One 2014; 9:e114549. [PMID: 25513814 PMCID: PMC4267735 DOI: 10.1371/journal.pone.0114549] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
Abstract
Epidemiology studies have established a strong link between lung cancer and arsenic exposure. Currently, the role of disturbed cellular energy metabolism in carcinogenesis is a focus of scientific interest. Hypoxia inducible factor-1 alpha (HIF-1A) is a key regulator of energy metabolism, and it has been found to accumulate during arsenite exposure under oxygen-replete conditions. We modeled arsenic-exposed human pulmonary epithelial cells in vitro with BEAS-2B, a non-malignant lung epithelial cell line. Constant exposure to 1 µM arsenite (As) resulted in the early loss of anchorage-dependent growth, measured by soft agar colony formation, beginning at 6 weeks of exposure. This arsenite exposure resulted in HIF-1A accumulation and increased glycolysis, similar to the physiologic response to hypoxia, but in this case under oxygen-replete conditions. This "pseudo-hypoxia" response was necessary for the maximal acquisition of anchorage-independent growth in arsenite-exposed BEAS-2B. The HIF-1A accumulation and induction in glycolysis was sustained throughout a 52 week course of arsenite exposure in BEAS-2B. There was a time-dependent increase in anchorage-independent growth during the exposure to arsenite. When HIF-1A expression was stably suppressed, arsenite-induced glycolysis was abrogated, and the anchorage-independent growth was reduced. These findings establish that arsenite exerts a hypoxia-mimetic effect, which plays an important role in the subsequent gain of malignancy-associated phenotypes.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Scott W. Malm
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Alyssa N. Hinchman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Connor G. Beeks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Walter T. Klimecki
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
16
|
Monteiro DA, Thomaz JM, Rantin FT, Kalinin AL. Cardiorespiratory responses to graded hypoxia in the neotropical fish matrinxã (Brycon amazonicus) and traíra (Hoplias malabaricus) after waterborne or trophic exposure to inorganic mercury. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:346-355. [PMID: 23891784 DOI: 10.1016/j.aquatox.2013.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
The growing Hg input in aquatic environments results in high accumulation of mercury in fish tissue and their consumers, which poses a serious risk to humans and ecosystems. The aim of this study was to evaluate the effects of the inorganic mercury exposure on cardiorespiratory responses in two species of neotropical fish ecologically distinct, matrinxã (Brycon amazonicus) and traíra (Hoplias malabaricus). Matrinxãs were exposed to a nominal and sublethal concentration of 0.15 mgL(-1) of HgCl2 for 96 h. Traíras were exposed to trophic doses (each 4 days, during 30 days) of inorganic Hg (0.45 mg as total Hg) using juvenile B. amazonicus as prey vehicle. The metabolic rate (VO2), critical oxygen tensions (PcO2), gill ventilation (VG), tidal volume (VT), respiratory frequency (fR), O2 extraction from the ventilatory current (EO2), and heart rate (fH) were measured under normoxia (140 mm Hg) and graded hypoxia (120, 100, 80, 60, 40, 20, and 10 mm Hg). Regarding matrinxã specifically, the critical point highlighted was tachypnea. In traíras, bradypnea, decreased metabolic rate and O2 extraction, severe bradycardia, and elevated tidal volume were observed in normoxia. Both acute and sub-chronic exposures increased the critical tension of O2 values in more than 100%. In addition, Hg exposures modulated hypoxia-induced responses resulting in impairment of cardio-respiratory system of both species. Thus, mercury, via food or water, decreases the plasticity of the cardiorespiratory responses reducing the survival chances of B. amazonicus and H. malabaricus under hypoxic conditions frequently observed in theirs wild habitats.
Collapse
Affiliation(s)
- Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | |
Collapse
|
17
|
Genotoxic effects of exposure to waterborne uranium, dietary methylmercury and hyperoxia in zebrafish assessed by the quantitative RAPD-PCR method. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:55-60. [DOI: 10.1016/j.mrgentox.2013.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/05/2013] [Accepted: 05/09/2013] [Indexed: 11/23/2022]
|
18
|
Liu Q, Basu N, Goetz G, Jiang N, Hutz RJ, Tonellato PJ, Carvan MJ. Differential gene expression associated with dietary methylmercury (MeHg) exposure in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:740-51. [PMID: 23529582 PMCID: PMC3664064 DOI: 10.1007/s10646-013-1066-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2013] [Indexed: 05/04/2023]
Abstract
The objective of this study was to identify and evaluate conserved biomarkers that could be used in most species of teleost fish at most life-stages. We investigated the effects of sublethal methylmercury (MeHg) exposure on developing rainbow trout and zebrafish. Juvenile rainbow trout and young adult zebrafish were fed food with MeHg added at 0, 0.5, 5, and 50 ppm. Atomic absorption spectrometry was applied to measure whole body total Hg levels, and pathologic analysis was performed to identify MeHg-induced toxicity. Fish at 6 weeks were sampled from each group for microarray analysis using RNA from whole fish. MeHg-exposed trout and zebrafish did not show overt signs of toxicity or pathology, nor were significant differences seen in mortality, length, mass, or condition factor. The accumulation of MeHg in trout and zebrafish exhibited dose- and time-dependent patterns during 6 weeks, and zebrafish exhibited greater assimilation of total Hg than rainbow trout. The dysregulated genes in MeHg-treated fish have multiple functional annotations, such as iron ion homeostasis, glutathione transferase activity, regulation of muscle contraction, troponin I binding and calcium-dependent protein binding. Genes were selected as biomarker candidates based on their microarray data and their expression was evaluated by QPCR. Unfortunately, these genes are not good consistent biomarkers for both rainbow trout and zebrafish from QPCR evaluation using individual fish. Our conclusion is that biomarker analysis for aquatic toxicant assessment using fish needs to be based on tissue-, sex- and species-specific consideration.
Collapse
Affiliation(s)
- Qing Liu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI
| | - Niladri Basu
- School of Public Health, University of Michigan, 6634 SPH Tower, 1415 Washington Heights, Ann Arbor, MI
| | - Giles Goetz
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle WA
| | - Nan Jiang
- Roche NimbleGen, Inc., 504 South Rosa Road, Madison, WI
| | - Reinhold J. Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee
| | - Peter J. Tonellato
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI
- Department of Pathology, Beth Israel Deaconess Medical Center
- Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA
| | - Michael J. Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI
| |
Collapse
|
19
|
Bourdineaud JP, Rossignol R, Brèthes D. Zebrafish: a model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics. Int J Biochem Cell Biol 2012; 45:16-22. [PMID: 22842533 DOI: 10.1016/j.biocel.2012.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 07/18/2012] [Indexed: 12/26/2022]
Abstract
Mercury, anthropogenic release of uranium (U), and nanoparticles constitute hazardous environmental pollutants able to accumulate along the aquatic food chain with severe risk for animal and human health. The impact of such pollutants on living organisms has been up to now approached by classical toxicology in which huge doses of toxic compounds, environmentally irrelevant, are displayed through routes that never occur in the lifespan of organisms (for instance injecting a bolus of mercury to an animal although the main route is through prey and fish eating). We wanted to address the effect of such pollutants on the muscle and brain mitochondrial bioenergetics under realistic conditions, at unprecedented low doses, using an aquatic model animal, the zebrafish Danio rerio. We developed an original method to measure brain mitochondrial respiration: a single brain was put in 1.5 mL conical tube containing a respiratory buffer. Brains were gently homogenized by 13 strokes with a conical plastic pestle, and the homogenates were immediately used for respiration measurements. Skinned muscle fibers were prepared by saponin permeabilization. Zebrafish were contaminated with food containing 13 μg of methylmercury (MeHg)/g, an environmentally relevant dose. In permeabilized muscle fibers, we observed a strong inhibition of both state 3 mitochondrial respiration and cytochrome c oxidase activity after 49 days of MeHg exposure. We measured a dramatic decrease in the rate of ATP release by skinned muscle fibers. Contrarily to muscles, brain mitochondrial respiration was not modified by MeHg exposure although brain accumulated twice as much MeHg than muscles. When zebrafish were exposed to 30 μg/L of waterborne U, the basal mitochondrial respiratory control ratio was decreased in muscles after 28 days of exposure. This was due to an increase of the inner mitochondrial membrane permeability. The impact of a daily ration of food containing gold nanoparticles of two sizes (12 and 50 nm) was investigated at a very low dose for 60 days (40 ng gold/fish/day). Mitochondrial dysfunctions appeared in brain and muscle for both tested sizes. In conclusion, at low environmental doses, dietary or waterborne heavy metals impinged on zebrafish tissue mitochondrial respiration. Due to its incredible simplicity avoiding tedious and time-consuming mitochondria isolation, our one-pot method allowing brain respiratory analysis should give colleagues the incentive to use zebrafish brain as a model in bioenergetics. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR 5805, Station marine d'Arcachon, Place du Dr Peyneau, 33120 Arcachon, France.
| | | | | |
Collapse
|
20
|
Al-Subiai SN, Arlt VM, Frickers PE, Readman JW, Stolpe B, Lead JR, Moody AJ, Jha AN. Merging nano-genotoxicology with eco-genotoxicology: an integrated approach to determine interactive genotoxic and sub-lethal toxic effects of C(60) fullerenes and fluoranthene in marine mussels, Mytilus sp. Mutat Res 2012; 745:92-103. [PMID: 22230430 DOI: 10.1016/j.mrgentox.2011.12.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
Abstract
Whilst there is growing concern over the potential detrimental impact of engineered nanoparticles (ENPs) on the natural environment, little is known about their interactions with other contaminants. In the present study, marine mussels (Mytilus sp.) were exposed for 3 days to C(60) fullerenes (C(60); 0.10-1 mg l(-1)) and a model polycyclic aromatic hydrocarbon (PAH), fluoranthene (32-100 μg l(-1)), either alone or in combination. The first two experiments were conducted by exposing the organisms to different concentrations of C(60) and fluoranthene alone, in order to determine the effects on total glutathione levels (as a measure of generic oxidative stress), genotoxicity (DNA strand breaks using Comet assay in haemocytes), DNA adduct analyses (using (32)P-postlabelling method) in different organs, histopathological changes in different tissues (i.e. adductor muscle, digestive gland and gills) and physiological effects (feeding or clearance rate). Subsequently, in the third experiment, a combined exposure of C(60) plus fluoranthene (0.10 mg l(-1) and 32 μg l(-1), respectively) was carried out to evaluate all endpoints mentioned above. Both fluoranthene and C(60) on their own caused concentration-dependent increases in DNA strand breaks as determined by the Comet assay. Formation of DNA adducts however could not be detected for any exposure conditions. Combined exposure to C(60) and fluoranthene additively enhanced the levels of DNA strand breaks along with a 2-fold increase in the total glutathione content. In addition, significant accumulation of C(60) was observed in all organs, with highest levels in digestive gland (24.90 ± 4.91μg C(60) g(-1) ww). Interestingly, clear signs of abnormalities in adductor muscle, digestive gland and gills were observed by histopathology. Clearance rates indicated significant differences compared to the control with exposure to C(60), and C(60)/fluoranthene combined treatments, but not after fluoranthene exposure alone. This study demonstrated that at the selected concentrations, both C(60) and fluoranthene evoke toxic responses and genetic damage. The combined exposure produced enhanced damage with additive rather than synergistic effects.
Collapse
Affiliation(s)
- Sherain N Al-Subiai
- School of Biomedical & Biological Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Morphological evidence of neurotoxicity in retina after methylmercury exposure. Neurotoxicology 2012; 33:407-15. [DOI: 10.1016/j.neuro.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 11/20/2022]
|
22
|
Cambier S, Gonzalez P, Mesmer-Dudons N, Brèthes D, Fujimura M, Bourdineaud JP. Effects of dietary methylmercury on the zebrafish brain: histological, mitochondrial, and gene transcription analyses. Biometals 2011; 25:165-80. [PMID: 21947502 DOI: 10.1007/s10534-011-9494-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 09/07/2011] [Indexed: 11/26/2022]
Abstract
The neurotoxic compound methylmercury (MeHg) is a commonly encountered pollutant in the environment, and constitutes a hazard for wildlife and human health through fish consumption. To study the neurotoxic impact of MeHg on piscivorous fish, we contaminated the model fish species Danio rerio for 25 and 50 days with food containing 13.5 μg/g dry weight (dw) of MeHg (0.6 μg MeHg/fish/day), an environmentally relevant dose leading to brain mercury concentrations of 30 ± 4 μg of Hg g(-1) (dw) after 25 days of exposure and 46 ± 7 μg of Hg g(-1) (dw) after 50 days. Brain mitochondrial respiration was not modified by exposure to MeHg, contrary to what happens in skeletal muscles. A 6-fold increase in the expression of the sdh gene encoding the succinate dehydrogenase Fe/S protein subunit was detected in the contaminated brain after 50 days of exposure. An up regulation of 3 genes, atp2b3a, atp2b3b, and slc8a2b, encoding for calcium transporters was noticed after 25 days of exposure but the atp2b3a and atp2b3b were repressed and the slc8a2b gene expression returned to its basal level after 50 days, suggesting a perturbation of calcium homeostasis. After 50 days, we detected the up regulation of glial fibrillary acidic protein and glutathione S-transferase genes (gfap and gst), along with a repression of the glutathione peroxidase gene gpx1. These results match well with a MeHg-induced onset of oxidative stress and inflammation. A transmission electron microscopic observation confirmed an impairment of the optical tectum integrity, with a decrease of the nucleal area in contaminated granular cells compared to control cells, and a lower density of cells in the contaminated tissue. A potential functional significance of such changes observed in optical tectum when considering wild fish contaminated in their natural habitat might be an impaired vision and therefore a lowered adaptability to their environment.
Collapse
Affiliation(s)
- Sébastien Cambier
- Arcachon Marine Station, UMR 5805, CNRS, Université de Bordeaux, Place du Dr Peyneau, 33120, Arcachon, France
| | | | | | | | | | | |
Collapse
|
23
|
Bowling AM, Hammerschmidt CR, Oris JT. Necrophagy by a benthic omnivore influences biomagnification of methylmercury in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 102:134-141. [PMID: 21356175 DOI: 10.1016/j.aquatox.2011.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/05/2011] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
Omnivory has an important role in the movement of energy, nutrients, and contaminants between benthic and pelagic food webs. While top-predator fish are known to supplement a mostly piscivorous diet with benthic organisms, a more obscure benthic-pelagic coupling occurs when benthic invertebrates forage on fish carcasses, referred to as necrophagy. The combination of these two benthic-pelagic links, top-predator fish feeding on benthic organisms that have fed on dead fish, can generate a trophic feedback cycle that conserves energy and nutrients and may have implications for biomagnification of methylmercury (MeHg) in fish. We investigated the role of necrophagy by crayfish (Procambarus clarkii), via a trophic feedback cycle, on the biomagnification of MeHg in largemouth bass (Micropterus salmoides), a cosmopolitan top predator fish known to feed on crayfish. Controlled laboratory tests quantified the uptake of MeHg by both organisms from artificial and natural food (whole crayfish or bass tissue). Assimilation efficiency (AE) of MeHg was greater for bass fed crayfish (79±0.5%) than those fed artificial food (60±3%). Furthermore, AE of MeHg was greatest for largemouth bass fed crayfish that fed on MeHg-dosed dead fish (i.e., trophic feedback cycle; 94±17%). A model, parameterized with results of the laboratory experiments, was used to make steady-state projections of MeHg biomagnification factors. Model projections also indicate that MeHg biomagnification would be greatest for largemouth bass from a trophic feedback cycle. These results suggest that food web ecology has an important role in determining MeHg levels in predatory fish and underscore the need for further investigation into the magnitude that necrophagy may affect MeHg biomagnification in aquatic systems.
Collapse
Affiliation(s)
- Anna M Bowling
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
24
|
|
25
|
Paul-Pont I, Gonzalez P, Baudrimont M, Nili H, de Montaudouin X. Short-term metallothionein inductions in the edible cockle Cerastoderma edule after cadmium or mercury exposure: discrepancy between mRNA and protein responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:260-267. [PMID: 20045202 DOI: 10.1016/j.aquatox.2009.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/26/2009] [Accepted: 12/05/2009] [Indexed: 05/28/2023]
Abstract
Metallothioneins (MT) are essential metal binding proteins involved in metal homeostasis and detoxification in living organisms. Numerous studies have focused on MT response to metal exposure and showed an important variability according to species, metal, concentration and time of exposure. In this study, the expression of one isoform of MT gene (Cemt1) and associated MT protein synthesis were determined after 1, 3, 9, 24, 72 and 168h of cadmium (Cd) or mercury (Hg) exposures in gills of the cockle Cerastoderma edule. This experiment, carried out in laboratory conditions, revealed that in Cd-exposed cockles, induction of Cemt1 is time-dependent following a "pulse-scheme" with significant upregulation at 24h and 168h intersected by time point (72h) with significant downregulation. MT protein concentration increases with time in gills of exposed cockles in relation with the progressive accumulation of Cd in soluble fraction. On contrary, Hg exposure does not lead to any induction of Cemt1 mRNA expression or MT protein synthesis compared to control, despite a higher accumulation of this metal in gills of cockles compared to Cd. The localization of Hg (85-90%) is in insoluble fraction, whereas MT was located in the cytoplasm of cells. This gives us a first clue to understand the inability of Hg to activate MT synthesis. However, other biochemical processes probably occur in gills of C. edule since the remaining soluble fraction of Hg exceeds MT sequestration ability. Finally, since one of the first main targets of metal toxicity in cells was the mitochondria, some genes involved in mitochondria metabolism were also analyzed in order to assess potential differences in cellular damages between two metal exposures. Indeed, until T(168), no impact on mitochondrial genes was shown following Hg exposure, despite the complete lack of MT response. This result indicated the presence of other effective cellular ligands which sequester the cytosolic fraction of this metal and consequently inhibit metal reactivity. Such competition mechanisms with other cytosolic ligands more sensitive to Hg were particularly argued in the discussion.
Collapse
Affiliation(s)
- Ika Paul-Pont
- Université Bordeaux 1 - CNRS, UMR 5805 EPOC, CNRS, Station Marine d'Arcachon, Place du Dr. Peyneau, Arcachon, France.
| | | | | | | | | |
Collapse
|
26
|
Cambier S, Gonzalez P, Durrieu G, Maury-Brachet R, Boudou A, Bourdineaud JP. Serial analysis of gene expression in the skeletal muscles of zebrafish fed with a methylmercury-contaminated diet. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:469-475. [PMID: 20039754 DOI: 10.1021/es901980t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mercury (Hg) is a widespread environmental contaminant and its organic form, methylmercury (MeHg), has been known as a potent neurotoxic since the Minamata tragedy. In the Amazonian basin, gold mining leads to MeHg biomagnification all along the food web, culminating in piscivorous fish, ultimately responsible for contamination of human beings through fish consumption. In order to assess the biological impact of dietary MeHg on fish at the genome scale, we contaminated zebrafish with MeHg-contaminated food for 25 days (13.5 microg of Hg/g of food). A serial analysis of gene expression (SAGE) was conducted on the skeletal muscle because this tissue does not perform MeHg demethylation, and 19171 SAGE tags were sequenced from the control library versus 22 261 from the MeHg-contaminated library, corresponding to 5280 different transcripts. Among those identified, 60 genes appeared up-regulated and 15 down-regulated by more than 2 times. A net impact of MeHg was noticed on 14 ribosomal protein genes, indicating a perturbation of protein synthesis. Several genes involved in mitochondrial metabolism, the electron transport chain, endoplasmic reticulum (ER) function, detoxification, and general stress responses were differentially regulated, suggesting an onset of oxidative stress and ER stress. Several other genes for which expression varied with MeHg contamination could be clustered in various compartments of the cell's life, such as lipid metabolism, calcium homeostasis, iron metabolism, muscle contraction, and cell cycle regulation. This study reveals the effectiveness of the SAGE approach to acquire a better understanding of the MeHg global effects. Furthermore, this is the first time that the SAGE was used to characterize the effect of a toxicant at the genome scale in an aquatic organism.
Collapse
Affiliation(s)
- Sébastien Cambier
- Universite de Bordeaux 1, UMR 5805 CNRS, Station Marine d'Arcachon, place du Dr. Peyneau, Arcachon, 33120, France
| | | | | | | | | | | |
Collapse
|