1
|
Kumar V, Sinha AK, Uka A, Antonacci A, Scognamiglio V, Mazzaracchio V, Cinti S, Arduini F. Multi-potential biomarkers for seafood quality assessment: Global wide implication for human health monitoring. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Lu Z, Wang S, Ji C, Li F, Cong M, Shan X, Wu H. iTRAQ-based proteomic analysis on the mitochondrial responses in gill tissues of juvenile olive flounder Paralichthys olivaceus exposed to cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113591. [PMID: 31744679 DOI: 10.1016/j.envpol.2019.113591] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is an important heavy metal pollutant in the Bohai Sea. Mitochondria are recognized as the key target for Cd toxicity. However, mitochondrial responses to Cd have not been fully investigated in marine fishes. In this study, the mitochondrial responses were characterized in gills of juvenile flounder Paralichthys olivaceus treated with two environmentally relevant concentrations (5 and 50 μg/L) of Cd for 14 days by determination of mitochondrial membrane potential (MMP), observation of mitochondrial morphology and quantitative proteomic analysis. Both Cd treatments significantly decreased MMPs of mitochondria from flounder gills. Mitochondrial morphologies were altered in Cd-treated flounder samples, indicated by more and smaller mitochondria. iTRAQ-based proteomic analysis indicated that a total of 128 proteins were differentially expressed in both Cd treatments. These proteins were basically involved in various biological processes in gill mitochondria, including mitochondrial morphology and import, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), primary bile acid biosynthesis, stress resistance and apoptosis. These results indicated that dynamic regulations of energy homeostasis, cholesterol metabolism, stress resistance, apoptosis, and mitochondrial morphology in gill mitochondria might play significant roles in response to Cd toxicity. Overall, this study provided a global view on mitochondrial toxicity of Cd in flounder gills using iTRAQ-based proteomics.
Collapse
Affiliation(s)
- Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Ming Cong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Company R, Antúnez O, Cosson RP, Serafim A, Shillito B, Cajaraville M, Bebianno MJ, Torreblanca A. Protein expression profiles in Bathymodiolus azoricus exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:621-630. [PMID: 30658297 DOI: 10.1016/j.ecoenv.2019.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Proteomic changes in the "gill-bacteria complex" of the hydrothermal vent mussel B. azoricus exposed to cadmium in pressurized chambers ((Incubateurs Pressurises pour l'Observation en Culture d'Animaux Marins Profonds - IPOCAMP) were analyzed and compared with the non-exposed control group. 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) showed that less than 1.5% of the proteome of mussels and symbiotic bacteria were affected by a short-term (24 h) Cd exposure. Twelve proteins of the more abundant differentially expressed proteins of which six were up-regulated and six were down-regulated were excised, digested and identified by mass spectrometry. The identified proteins included structural proteins (actin/actin like proteins), metabolic proteins (calreticulin/calnexin, peptidyl-prolyl cis-trans isomerase, aminotransferase class-III, electron transfer flavoprotein, proteasome, alpha-subunit and carbonic anhydrase) and stress response proteins (chaperone protein htpG, selenium-binding protein and glutathione transferases). All differently expressed proteins are tightly connected to Cd exposure and are affected by oxidative stress. It was also demonstrated that B. azoricus was well adapted to Cd contamination therefore B. azoricus from hydrothermal vent areas may be considered a good bioindicator.
Collapse
Affiliation(s)
- Rui Company
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Oreto Antúnez
- Department of Functional Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Richard P Cosson
- EA 2160 - MMS (Mer, Molécules, Santé) Biologie Marine - ISOMer, University of Nantes BP 92208, F-44322 Nantes cedex 3, France
| | - Angela Serafim
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bruce Shillito
- UMR 7138, Systématique Adaptation et Evolution, CNRS/MNHN/IRD/UPMC,University Pierre et Marie Curie, Paris, France
| | - Miren Cajaraville
- Laboratory of Cell Biology and Histology, Department of Zoology and Cell Biology, University of the Basque Country, P.O BOX 644, E-48080 Bilbao, Spain
| | - Maria João Bebianno
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Amparo Torreblanca
- Department of Functional Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
4
|
Gandar A, Laffaille P, Marty-Gasset N, Viala D, Molette C, Jean S. Proteome response of fish under multiple stress exposure: Effects of pesticide mixtures and temperature increase. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:61-77. [PMID: 28109940 DOI: 10.1016/j.aquatox.2017.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL-1 and 42μgL-1) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes in pathways involved in metabolism, cell structure and cell cycle, with possible deleterious outcomes at higher biological scales and (2) that increasing temperature could affect the response of fish to pesticide exposure.
Collapse
Affiliation(s)
- Allison Gandar
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Pascal Laffaille
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Didier Viala
- Plate-Forme 'Exploration du Métabolisme', Centre de Clermont-Ferrand, Theix, 63122, Saint Genès Champanelle, France; UMR 1213 Herbivores, INRA, VetAgro Sup, NRA Theix, 63122, Saint Genès Champanelle, France
| | - Caroline Molette
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326 Castanet-Tolosan, France
| | - Séverine Jean
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
5
|
Zhang YW, Yan L, Huang L, Huang HQ. Cerebral ganglion ultrastructure and differential proteins revealed using proteomics in the aplysiid (Notarcus leachii cirrosus Stimpson) under cadmium and lead stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:17-26. [PMID: 27414742 DOI: 10.1016/j.etap.2016.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) and lead (Pb) are both highly toxic metals in environments. However the toxicological mechanism is not clear. In this study, the aplysiid, Notarcus leachii cirrosus Stimpson (NLCS) was subjected to Cd (NLCS-Cd) or Pb (NLCS-Pb). The cerebral ganglion of NLCS was investigated with a transmission electron microscope. Next the differential proteins were separated and identified using proteomic approaches. Eighteen protein spots in NLCS-Cd and seventeen protein spots in NLCS-Pb were observed to be significantly changed. These protein spots were further excised in gels and identified. A hypothetical pathway was drawn to show the correlation between the partially identified proteins. The results indicated that damage to the cerebral ganglion was follows: cell apoptosis, lysosomes proliferation, cytoskeleton disruption, and oxidative stress. These phenomena and data indicated potential biomarkers for evaluating the contamination levels of Cd and Pb. This study provided positive insights into the mechanisms of Cd and Pb toxicity.
Collapse
MESH Headings
- Animals
- Aplysia/drug effects
- Aplysia/metabolism
- Biomarkers/analysis
- Biomarkers/metabolism
- Cadmium/pharmacokinetics
- Cadmium/toxicity
- Ecotoxicology/methods
- Electrophoresis, Gel, Two-Dimensional
- Ganglia, Invertebrate/drug effects
- Ganglia, Invertebrate/metabolism
- Ganglia, Invertebrate/ultrastructure
- Lead/pharmacokinetics
- Lead/toxicity
- Microscopy, Electron, Transmission
- Proteins/analysis
- Proteins/metabolism
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Water Pollutants, Chemical/pharmacokinetics
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Yi-Wei Zhang
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Li Yan
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Lin Huang
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China; Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - He-Qing Huang
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; Department of Chemistry, College of Chemistry & Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Peng HF, Bao XD, Zhang Y, Huang L, Huang HQ. Identification of differentially expressed proteins of brain tissue in response to methamidophos in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2015; 44:555-565. [PMID: 25827626 DOI: 10.1016/j.fsi.2015.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Methamidophos (MAP), an organophosphorus pesticide used around the world, has been associated with a wide spectrum of toxic effects on organisms in the environment. In this study, the flounder Paralichthys olivaceus was subjected to 10 mg/L MAP for 72 h and 144 h, and the morphological and proteomic changes in the brain were observed, analyzed and compared with those in the non-exposed control group. Under the light microscope and transmission electron microscope, MAP had evidently induced changes in or damage to the flounder tissues. Gas chromatography analysis demonstrated that the MAP residues were significantly accumulated in the flounder brain tissues. Proteomic changes in the brain tissue were revealed using two-dimensional gel electrophoresis and 27 protein spots were observed to be significantly changed by MAP exposure. The results indicated that the regulated proteins were involved in immune and stress responses, protein biosynthesis and modification, signal transduction, organismal development, and 50% of them are protease. qRT-PCR was used to further detect the corresponding change of transcription. These data may be beneficial to understand the molecular mechanism of MAP toxicity in flounder, be very useful for MAP-resistance screening in flounder culture. According to our results and analyzing, heat shock protein 90 (HSP90) and granzyme K (GzmK) had taken important part in immune response to MAP-stress and could be biomarkers for MAP-stress in flounder.
Collapse
Affiliation(s)
- Hui-Fang Peng
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Xiao-Dong Bao
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Yong Zhang
- Department of Chemistry, College of Chemistry & Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102, China
| | - Lin Huang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, USA
| | - He-Qing Huang
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; Department of Chemistry, College of Chemistry & Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Lü A, Hu X, Wang Y, Shen X, Li X, Zhu A, Tian J, Ming Q, Feng Z. iTRAQ analysis of gill proteins from the zebrafish (Danio rerio) infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2014; 36:229-239. [PMID: 24269520 DOI: 10.1016/j.fsi.2013.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
The gills are large mucosal surfaces and very important portals for pathogen entry in fish. The aim of this study was to determine the gill immune response at the protein levels, the differential proteomes of the zebrafish gill response to Aeromonas hydrophila infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1338 proteins were identified and classified into the categories primarily related to cellular process (15.36%), metabolic process (11.95%) and biological regulation (8.29%). Of these, 82 differentially expressed proteins were reliably quantified by iTRAQ analysis, 57 proteins were upregulated and 25 proteins were downregulated upon bacterial infection. Gene ontology (GO) enrichment analysis showed that approximately 33 (8.8%) of the differential proteins in gills were involved in the stress and immune responses. Several upregulated proteins were observed such as complement component 5, serpin peptidase inhibitor clade A member 7, annexin A3a, histone H4, glyceraldehyde 3-phosphate dehydrogenase, creatine kinase, and peroxiredoxin. These protein expression changes were further validated at the transcript level using microarray analysis. Moreover, complement and coagulation cascades, pathogenic Escherichia coli infection and phagosome were the significant pathways identified by KEGG enrichment analysis. This is first report on proteome of fish gills against A. hydrophila infection, which contribute to understanding the defense mechanisms of the gills in fish.
Collapse
Affiliation(s)
- Aijun Lü
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China.
| | - Xiucai Hu
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Wang
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaojing Shen
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Xue Li
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Aihua Zhu
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Tian
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Qinglei Ming
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhaojun Feng
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
8
|
Wu H, Ji C, Wei L, Zhao J. Evaluation of protein extraction protocols for 2DE in marine ecotoxicoproteomics. Proteomics 2013; 13:3205-10. [DOI: 10.1002/pmic.201200421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes; YICCAS; Yantai P. R. China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes; YICCAS; Yantai P. R. China
- The Graduate School of Chinese Academy of Sciences; Beijing P. R. China
| | - Lei Wei
- Key Laboratory of Coastal Zone Environmental Processes; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes; YICCAS; Yantai P. R. China
- The Graduate School of Chinese Academy of Sciences; Beijing P. R. China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes; YICCAS; Yantai P. R. China
| |
Collapse
|
9
|
Wanick RC, de Sousa Barbosa H, Frazão LR, Santelli RE, Arruda MAZ, Coutinho CC. Evaluation of differential protein expression in Haliclona aquarius and sponge-associated microorganisms under cadmium stress. Anal Bioanal Chem 2013; 405:7661-70. [DOI: 10.1007/s00216-013-6898-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
10
|
Peng XX. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:63-71. [PMID: 22484215 DOI: 10.1016/j.dci.2012.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals.
Collapse
Affiliation(s)
- Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
11
|
Jean N, Dumont E, Durrieu G, Balliau T, Jamet JL, Personnic S, Garnier C. Protein expression from zooplankton communities in a metal contaminated NW mediterranean coastal ecosystem. MARINE ENVIRONMENTAL RESEARCH 2012; 80:12-26. [PMID: 22776614 DOI: 10.1016/j.marenvres.2012.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 05/04/2012] [Accepted: 06/07/2012] [Indexed: 06/01/2023]
Abstract
Bidimensional and monodimensional polyacrylamide gel electrophoresis were used to study protein expression from zooplankton collected in thirteen stations of Toulon Bay (NW Mediterranean). In this ecosystem, Little Bay showed higher trace metal concentrations (13.5-23.8 nM for Cu, 0.73-1.24 nM for Pb, 27.8-58.7 nM for Zn) than Large Bay (Cu 2.2-15.6 nM; Pb 0.19-0.78 nM; Zn 9.0-38.8 nM). Trace metals positively correlated (p < 0.05) with expression of four zooplankton proteins (MW in kDa/pI: 25.0/5.6; 48.8/4.1; 38.2/4.4; 38.3/5.8) and with biomass of Oithona nana, predominant copepod in Little Bay. Sequencing by LC-MS/MS putatively provided zooplankton identity of these proteins: they were cytoskeleton actin, except one protein that was the chaperone calreticulin. We suggest that actin and calreticulin could be regarded as zooplankton markers of metal stress and be involved in a possible tolerance of O. nana to contamination, contributing to its development in a marine perturbed ecosystem.
Collapse
Affiliation(s)
- Natacha Jean
- Laboratoire Processus de Transfert et d'Echanges dans l'Environnement (EA 3819), Université du Sud Toulon - Var, BP 20132, 83 957 La Garde Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Rodrigues PM, Silva TS, Dias J, Jessen F. PROTEOMICS in aquaculture: applications and trends. J Proteomics 2012; 75:4325-45. [PMID: 22498885 DOI: 10.1016/j.jprot.2012.03.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 01/15/2023]
Abstract
Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Centro de Ciências do Mar do Algarve (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
13
|
Neave MJ, Streten-Joyce C, Nouwens AS, Glasby CJ, McGuinness KA, Parry DL, Gibb KS. The transcriptome and proteome are altered in marine polychaetes (Annelida) exposed to elevated metal levels. J Proteomics 2012; 75:2721-35. [PMID: 22484056 DOI: 10.1016/j.jprot.2012.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/13/2012] [Accepted: 03/20/2012] [Indexed: 01/09/2023]
Abstract
Polychaetes are often used in toxicological studies to understand mechanisms of resistance and for biomarker detection, however, we know of only a few genetic pathways involved in resistance. We found the marine polychaete Ophelina sp.1 (Opheliidae) in sediment containing high copper levels and investigated this phenomenon by measuring metal accumulation in the worms and changes in gene and protein expression. We sequenced the transcriptome of Ophelina sp.1 from both the impacted and reference sediments using 454-sequencing and analysed their proteomes using differential in gel electrophoresis (DIGE). We used the sequenced transcriptome to guide protein identification. Transcripts coding for the copper chaperone, Atox1, were up-regulated in the worms inhabiting the high copper sediment. In addition, genes coding for respiratory proteins, detoxification proteins and cytoskeletal proteins were significantly altered in metal-exposed worms; many of these changes were also detected in the proteome. This dual approach has provided a better understanding of heavy metal resistance in polychaetes and we now have a wider range of suitable indicator genes and proteins for future biomarker development.
Collapse
|
14
|
Hauser-Davis RA, de Campos RC, Ziolli RL. Fish metalloproteins as biomarkers of environmental contamination. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 218:101-123. [PMID: 22488605 DOI: 10.1007/978-1-4614-3137-4_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish are well-recognized bioindicators of environmental contamination. Several recent proteomic studies have demonstrated the validity and value of using fish in the search and discovery of new biomarkers. Certain analytical tools, such as comparative protein expression analyses, both in field and lab exposure studies, have been used to improve the understanding of the potential for chemical pollutants to cause harmful effects. The metallomic approach is in its early stages of development, but has already shown great potential for use in ecological and environmental monitoring contexts. Besides discovering new metalloproteins that may be used as biomarkers for environmental contamination, metallomics can be used to more comprehensively elucidate existing biomarkers, which may enhance their effectiveness. Unfortunately, metallomic profiling for fish has not been explored, because only a few fish metalloproteins have thus far been discovered and studied. Of those that have, some have shown ecological importance, and are now successfully used as biomarkers of environmental contamination. These biomarkers have been shown to respond to several types of environmental contamination, such as cyanotoxins, metals, and sewage effluents, although many do not yet possess any known function. Examples of successes include MMPs, superoxide dismutases, selenoproteins, and iron-bound proteins. Unfortunately, none of these have, as yet, been extensively studied. As data are developed for them, valuable new information on their roles in fish physiology and in inducing environmental effects should become available.
Collapse
Affiliation(s)
- Rachel Ann Hauser-Davis
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, CEP: 22453-900, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
15
|
Fent K, Sumpter JP. Progress and promises in toxicogenomics in aquatic toxicology: is technical innovation driving scientific innovation? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:25-39. [PMID: 22099342 DOI: 10.1016/j.aquatox.2011.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/04/2011] [Indexed: 05/08/2023]
Abstract
In the last decade, new technologies have been invented to analyze large amounts of information such as gene transcripts (transcriptomics), proteins (proteomics) and small cellular molecules (metabolomics). Many studies have been performed in the last few years applying these technologies to aquatic toxicology, mainly in fish. In this article, we summarize the current state of knowledge and question whether the application of modern technology for descriptive purposes truly represents scientific advancement in aquatic toxicology. We critically discuss the advantages and disadvantages of these technologies and emphasize the importance of these critical aspects. To date, these techniques have been used mainly as a proof of principle, demonstrating effects of model compounds. The potential to use these techniques to better analyze the mode-of-action of a toxicant or the effects of a compound within organisms has rarely been met. This is partly due to a lack of baseline data and the fact that the expression of mRNA and protein profiles is rarely linked to physiology or toxicologically meaningful outcomes. It seems premature to analyze mixtures or environmental samples until more is known about the expression profiles of individual toxicants. Gene transcription, protein, or metabolic data give only a partial view of these effects. Thus, we emphasize that data obtained by these technologies must be linked to physiological changes to fully understand their significance. The use of these techniques in aquatic toxicology is still in its infancy, data cannot yet be applied to environmental risk assessment or regulation until more emphasis is placed on interpreting the data within their physiological and toxicological contexts.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland.
| | | |
Collapse
|
16
|
Lu XJ, Chen J, Huang ZA, Zhuang L, Peng LZ, Shi YH. Influence of acute cadmium exposure on the liver proteome of a teleost fish, ayu (Plecoglossus altivelis). Mol Biol Rep 2011; 39:2851-9. [PMID: 21667247 DOI: 10.1007/s11033-011-1044-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 06/04/2011] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal that causes the disruption of a variety of physiological processes. In this study, the effect of Cd on liver proteome of ayu, Plecoglossus altivelis, was investigated by two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Twenty-three altered protein spots were successfully identified. They were involved in oxidative stress response, metal metabolism, methylation, and so on. The mRNA expression of 60S acidic ribosomal protein P0, heat shock protein 70, apolipoprotein A-I, betaine-homocysteine S-methyltransferase, parahox cluster neighbor, and transferrin was subsequently determined by real-time PCR. The mRNA expression of these genes was consistent with proteomic results. These findings enrich our knowledge on the influence of Cd toxicity to teleost fish, and may be worthy of further investigation to develop biomarkers.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Faculty of Life Science and Biotechnology, Ningbo University, Ningbo 315211, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Luque-Garcia JL, Cabezas-Sanchez P, Camara C. Proteomics as a tool for examining the toxicity of heavy metals. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Sanchez BC, Ralston-Hooper K, Sepúlveda MS. Review of recent proteomic applications in aquatic toxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:274-282. [PMID: 21072841 DOI: 10.1002/etc.402] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Over the last decade, the environmental sciences have witnessed an incredible movement towards the utilization of high-throughput molecular tools that are capable of detecting simultaneous changes of hundreds, and even thousands, of molecules and molecular components after exposure of organisms to different environmental stressors. These techniques have received a great deal of attention because they not only offer the potential to unravel novel mechanisms of physiological and toxic action but are also amenable to the discovery of biomarkers of exposure and effects. In this article, we review the state of knowledge of one of these tools in ecotoxicological research: proteomics. We summarize the state of proteomics research in fish, and follow with studies conducted with aquatic invertebrates. A brief discussion on proteomic methods is also presented. We conclude with some ideas for future proteomic studies with fish and aquatic invertebrates.
Collapse
|
19
|
|
20
|
Huang QY, Fang CW, Huang HQ. Alteration of heart tissue protein profiles in acute cadmium-treated scallops Patinopecten yessoensis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 60:90-98. [PMID: 20437039 DOI: 10.1007/s00244-010-9533-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 04/12/2010] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd) is an extremely toxic metal that induces a wide spectrum of toxic responses in organisms in the environment. In the present study, scallops (Patinopecten yessoensis), after acclimation for 1 week in the laboratory, were subjected to acute Cd chloride (CdCl₂) toxicity, and ultramorphological and proteomic changes in their heart tissues were analyzed and compared with those of the nonexposed control group. Electron microscopy showed that ultrastructures of the cytoplasm and mitochondria in scallop hearts were badly damaged, and two-dimensional gel electrophoresis showed 32 protein spots that were differentially expressed after exposure to 10 mg/l CdCl₂ for 24 h. Of these spots, 8 were upregulated, 16 were downregulated, and 8 showed low expression. Proteins from these spots were identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry and database searching. The results indicated that these proteins are involved in the regulation of cell structure, transport, signal transduction, and metabolism. Among other things, four proteins-identified as amino acid adenosine triphosphate (ATP)-binding cassette transporter, glycerol-3-phosphate dehydrogenase (nicotinamide adenine dinucleotide phosphate), nicotinamide adenine dinucleotide oxidase, and ATPase-were demonstrated to be especially associated with Cd toxicity. Some of the other proteins observed in this work are of particular interest in terms of their responses to Cd, which have not been reported previously. These data may provide novel biomarkers for monitoring the Cd contamination level of flowing seawater as well as provide useful insights into the mechanisms of Cd toxicity.
Collapse
Affiliation(s)
- Qing-Yu Huang
- Department of Biochemistry and Biotechnology, Xiamen University, China
| | | | | |
Collapse
|
21
|
Dorts J, Kestemont P, Dieu M, Raes M, Silvestre F. Proteomic Response to Sublethal Cadmium Exposure in a Sentinel Fish Species, Cottus gobio. J Proteome Res 2010; 10:470-8. [DOI: 10.1021/pr100650z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jennifer Dorts
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Patrick Kestemont
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Martine Raes
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Frédéric Silvestre
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| |
Collapse
|
22
|
Lemos MFL, Soares AMVM, Correia AC, Esteves AC. Proteins in ecotoxicology - how, why and why not? Proteomics 2010; 10:873-87. [PMID: 19953548 DOI: 10.1002/pmic.200900470] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The growing interest in the application of proteomic technologies to solve toxicology issues and its relevance in ecotoxicology research has resulted in the emergence of "ecotoxicoproteomics". There is a general consensus that ecotoxicoproteomics is a powerful tool to spot early molecular events involved in toxicant responses, which are responsible for the adverse effects observed at higher levels of biological organization, thus contributing to elucidate the mode of action of stressors and to identify specific biomarkers. Ultimately, early-warning indicators can then be developed and deployed in "in situ" bioassays and in environmental risk assessment. The number of field experiments or laboratory trials using ecologically relevant test-species and involving proteomics has been, until recently, insufficient to allow a critical analysis of the real benefits of the application of this approach to ecotoxicology. This article intends to present an overview on the applications of proteomics in the context of ecotoxicology, focusing mainly on the prospective research to be done in invertebrates. Although these represent around 95% of all animal species and in spite of the key structural and functional roles they play in ecosystems, proteomic research in invertebrates is still in an incipient stage. We will review applications of ecotoxicoproteomics by evaluating the technical methods employed, the organisms and the contexts studied, the advances achieved until now and lastly the limitations yet to overcome will be discussed.
Collapse
Affiliation(s)
- Marco F L Lemos
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
23
|
CHEN HB, HUANG L, Huang QY, LING XP, ZHU F, HUANG HQ. Selection and Identification of Differential Proteins of Liver Revealed with Proteomics in Achatina Fulica Under Induction of Cadmium. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1016/s1872-2040(08)60108-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|