1
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Liu W, Semmouri I, Janssen CR, Asselman J. Temperature dependent sensitivity of the harpacticoid copepod Nitokra spinipes to marine algal toxins. CHEMOSPHERE 2024; 366:143420. [PMID: 39349068 DOI: 10.1016/j.chemosphere.2024.143420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Harmful algal blooms (HABs) - proliferated algae densities, often producing toxins - have increasingly been found in ocean and coastal areas. Recent studies show that rising temperatures contribute to HAB occurrence, but the broader influence of climate change on these outbreaks is less quantified. Of particular concern is the limited research on HAB toxin effects under varying temperatures, especially regarding primary consumers such as copepods, a crucial component of aquatic ecosystems. Therefore, we examined the impact of marine toxins on the harpacticoid copepod Nitokra spinipes, a model organism for marine ecotoxicology, in the context of climate change. We evaluated the toxicity of four purified, commonly occurring algal toxins, at three different temperatures in the laboratory. First, adult females were exposed to a concentration series of toxins at 15, 20, and 25 °C for 48 h. EC50 values of domoic acid ranged from 8.79 ± 1.93 μg L-1 to 25.97 ± 11.96 μg L-1. Nauplii, aged 48-72 h, were exposed at 18, 20 and 22 °C for the same duration. Less sensitive compared to adults, the EC50 of domoic acid in this case varied from 57.26 ± 6.82 μg L-1 to 97.24 ± 6.45 μg L-1. Both results indicated a temperature-dependent EC50. For the chronic toxicity tests, larval development ratio (LDR), brood size and inter-brood time of domoic acid (DA), yessotoxin (YTX), saxitoxin (STX), and microcystin-LR (MC-LR) were examined at 18, 20 and 22 °C. We observed that with increasing temperatures, LDR increased, whereas brood size significantly decreased as DA, YTX or STX concentrations rose. No interaction between temperature and algal toxins was found but a temperature dependent sensitivity of copepods towards DA, YTX and STX was revealed. Our research provides insights into the effects of long-term exposure to algal toxins on marine copepods and the potential impacts of climate warming.
Collapse
Affiliation(s)
- Wenxin Liu
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium.
| | - Ilias Semmouri
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Colin R Janssen
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| |
Collapse
|
3
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
4
|
Wu H, Prithiviraj B, Tan Z. Physiological Effects of Oxidative Stress Caused by Saxitoxin in the Nematode Caenorhabditis elegans. Mar Drugs 2023; 21:544. [PMID: 37888479 PMCID: PMC10608204 DOI: 10.3390/md21100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Saxitoxin (STX) causes high toxicity by blocking voltage-gated sodium channels, and it poses a major threat to marine ecosystems and human health worldwide. Our work evaluated the neurotoxicity and chronic toxicology of STX to Caenorhabditis elegans by an analysis of lifespan, brood size, growth ability, reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels, and the overexpression of green fluorescent protein (GFP). After exposure to a series of concentrations of STX for 24 h, worms showed paralysis symptoms and fully recovered within 6 h; less than 5% of worms died at the highest concentration of 1000 ng/mL for first larval stage (L1) worms and 10,000 ng/mL for fourth larval stage (L4) worms. Declines in lifespan, productivity, and body size of C. elegans were observed under the stress of 1, 10, and 100 ng/mL STX, and the lifespan was shorter than that in controls. With STX exposure, the productivity declined by 32-49%; the body size, including body length and body area, declined by 13-18% and 25-27%, respectively. The levels of ROS exhibited a gradual increase over time, accompanied by a positive concentration effect of STX resulting in 1.14-1.86 times higher levels compared to the control group in L4 worms. Conversely, no statistically significant differences were observed between L1 worms. Finally, after exposure to STX for 48 h, ATP levels and GFP expression in C. elegans showed a significant dose-dependent increase. Our study reports the first evidence that STX is not lethal but imposes substantial oxidative stress on C. elegans, with a dose-responsive relationship. Our results indicated that C. elegans is an ideal model to further study the mechanisms underlying the fitness of organisms under the stress caused by paralytic shellfish toxins including STX.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, NS B2N5E3, Canada;
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, NS B2N5E3, Canada;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Oliveira AF, Marques SC, Pereira JL, Azeiteiro UM. A review of the order mysida in marine ecosystems: What we know what is yet to be known. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106019. [PMID: 37207567 DOI: 10.1016/j.marenvres.2023.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
Mysids have a high ecological importance, particularly by their role in marine food chains as a link between the benthic and pelagic realms. Here we describe the relevant taxonomy, ecological aspects such as distribution and production, and their potential as ideal test organisms for environmental research. We also highlight their importance in estuarine communities, trophic webs, and their life history, while demonstrating their potential in addressing emergent problems. This review emphasizes the importance of mysids in understanding the impacts of climate change and their role in the ecology of estuarine communities. Although there is a dearth of research in genomic studies, this review emphasizes the relevance of mysids and their potential as a model organism in environmental assessment studies of prospective or retrospective nature and highlights the need for further research to enhance our understanding of this group's ecological significance.
Collapse
Affiliation(s)
- Ana Filipa Oliveira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Portugal.
| | - Sónia Cotrim Marques
- MARE / ARNET, School of Tourism and Maritime Technology, Polytechnic of Leiria, Portugal
| | - Joana Luísa Pereira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Portugal
| | - Ulisses Miranda Azeiteiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
6
|
Dean KJ, Alexander RP, Hatfield RG, Lewis AM, Coates LN, Collin T, Teixeira Alves M, Lee V, Daumich C, Hicks R, White P, Thomas KM, Ellis JR, Turner AD. The Common Sunstar Crossaster papposus-A Neurotoxic Starfish. Mar Drugs 2021; 19:695. [PMID: 34940694 PMCID: PMC8704474 DOI: 10.3390/md19120695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Saxitoxins (STXs) are a family of potent neurotoxins produced naturally by certain species of phytoplankton and cyanobacteria which are extremely toxic to mammalian nervous systems. The accumulation of STXs in bivalve molluscs can significantly impact animal and human health. Recent work conducted in the North Sea highlighted the widespread presence of various saxitoxins in a range of benthic organisms, with the common sunstar (Crossaster papposus) demonstrating high concentrations of saxitoxins. In this study, an extensive sampling program was undertaken across multiple seas surrounding the UK, with 146 starfish and 5 brittlestars of multiple species analysed for STXs. All the common sunstars analysed (n > 70) contained quantifiable levels of STXs, with the total concentrations ranging from 99 to 11,245 µg STX eq/kg. The common sunstars were statistically different in terms of toxin loading to all the other starfish species tested. Two distinct toxic profiles were observed in sunstars, a decarbomylsaxitoxin (dcSTX)-dominant profile which encompassed samples from most of the UK coast and an STX and gonyautoxin2 (GTX2) profile from the North Yorkshire coast of England. Compartmentalisation studies demonstrated that the female gonads exhibited the highest toxin concentrations of all the individual organs tested, with concentrations >40,000 µg STX eq/kg in one sample. All the sunstars, male or female, exhibited the presence of STXs in the skin, digestive glands and gonads. This study highlights that the common sunstar ubiquitously contains STXs, independent of the geographical location around the UK and often at concentrations many times higher than the current regulatory limits for STXs in molluscs; therefore, the common sunstar should be considered toxic hereafter.
Collapse
Affiliation(s)
- Karl J. Dean
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Ryan P. Alexander
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Robert G. Hatfield
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Adam M. Lewis
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Lewis N. Coates
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Tom Collin
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Mickael Teixeira Alves
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Vanessa Lee
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Caroline Daumich
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Ruth Hicks
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Peter White
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Krista M. Thomas
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3Z 3H1, Canada;
| | - Jim R. Ellis
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft NR33 0HT, UK;
| | - Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| |
Collapse
|
7
|
Marine invertebrate interactions with Harmful Algal Blooms - Implications for One Health. J Invertebr Pathol 2021; 186:107555. [PMID: 33607127 DOI: 10.1016/j.jip.2021.107555] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Harmful Algal Blooms (HAB) are natural atypical proliferations of micro or macro algae in either marine or freshwater environments which have significant impacts on human, animal and ecosystem health. The causative HAB organisms are primarily dinoflagellates and diatoms in marine and cyanobacteria within freshwater ecosystems. Several hundred species of HABs, most commonly marine dinoflagellates affect animal and ecosystem health either directly through physical, chemical or biological impacts on surrounding organisms or indirectly through production of algal toxins which transfer through lower-level trophic organisms to higher level predators. Traditionally, a major focus of HABs has concerned their natural production of toxins which bioaccumulate in filter-feeding invertebrates, which with subsequent trophic transfer and biomagnification cause issues throughout the food web, including the human health of seafood consumers. Whilst in many regions of the world, regulations, monitoring and risk management strategies help mitigate against the impacts from HAB/invertebrate toxins upon human health, there is ever-expanding evidence describing enormous impacts upon invertebrate health, as well as the health of higher trophic level organisms and marine ecosystems. This paper provides an overview of HABs and their relationships with aquatic invertebrates, together with a review of their combined impacts on animal, human and ecosystem health. With HAB/invertebrate outbreaks expected in some regions at higher frequency and intensity in the coming decades, we discuss the needs for new science, multi-disciplinary assessment and communication which will be essential for ensuring a continued increasing supply of aquaculture foodstuffs for further generations.
Collapse
|
8
|
Dean KJ, Hatfield RG, Lee V, Alexander RP, Lewis AM, Maskrey BH, Teixeira Alves M, Hatton B, Coates LN, Capuzzo E, Ellis JR, Turner AD. Multiple New Paralytic Shellfish Toxin Vectors in Offshore North Sea Benthos, a Deep Secret Exposed. Mar Drugs 2020; 18:E400. [PMID: 32751216 PMCID: PMC7460140 DOI: 10.3390/md18080400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
In early 2018, a large easterly storm hit the East Anglian coast of the UK, colloquially known as the 'Beast from the East', which also resulted in mass strandings of benthic organisms. There were subsequent instances of dogs consuming such organisms, leading to illness and, in some cases, fatalities. Epidemiological investigations identified paralytic shellfish toxins (PSTs) as the cause, with toxins present in a range of species and concentrations exceeding 14,000 µg STX eq./kg in the sunstar Crossaster papposus. This study sought to better elucidate the geographic spread of any toxicity and identify any key organisms of concern. During the summers of 2018 and 2019, various species of benthic invertebrates were collected from demersal trawl surveys conducted across a variety of locations in the North Sea. An analysis of the benthic epifauna using two independent PST testing methods identified a 'hot spot' of toxic organisms in the Southern Bight, with a mean toxicity of 449 µg STX eq./kg. PSTs were quantified in sea chervil (Alcyonidium diaphanum), the first known detection in the phylum bryozoan, as well as eleven other new vectors (>50 µg STX eq./kg), namely the opisthobranch Scaphander lignarius, the starfish Anseropoda placenta, Asterias rubens, Luidia ciliaris, Astropecten irregularis and Stichastrella rosea, the brittlestar Ophiura ophiura, the crustaceans Atelecyclus rotundatus and Munida rugosa, the sea mouse Aphrodita aculeata, and the sea urchin Psammechinus miliaris. The two species that showed consistently high PST concentrations were C. papposus and A. diaphanum. Two toxic profiles were identified, with one dominated by dcSTX (decarbamoylsaxitoxin) associated with the majority of samples across the whole sampling region. The second profile occurred only in North-Eastern England and consisted of mostly STX (Saxitoxin) and GTX2 (gonyautoxin 2). Consequently, this study highlights widespread and variable levels of PSTs in the marine benthos, together with the first evidence for toxicity in a large number of new species. These findings highlight impacts to 'One Health', with the unexpected sources of toxins potentially creating risks to animal, human and environmental health, with further work required to assess the severity and geographical/temporal extent of these impacts.
Collapse
Affiliation(s)
- Karl J. Dean
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Robert G. Hatfield
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Vanessa Lee
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Ryan P. Alexander
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Adam M. Lewis
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Benjamin H. Maskrey
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Mickael Teixeira Alves
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Benjamin Hatton
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK; (B.H.); (J.R.E.)
| | - Lewis N. Coates
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Elisa Capuzzo
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| | - Jim R. Ellis
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK; (B.H.); (J.R.E.)
| | - Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK; (R.G.H.); (V.L.); (R.P.A.); (A.M.L.); (B.H.M.); (M.T.A.); (L.N.C.); (E.C.); (A.D.T.)
| |
Collapse
|
9
|
SILVA ALLYSONQDA, NILIN JEAMYLLE, LOUREIRO SUSANA, COSTA-LOTUFO LETICIAV. Acute and chronic toxicity of the benzodiazepine diazepam to the tropical crustacean Mysidopsis juniae. ACTA ACUST UNITED AC 2020; 92:e20180595. [DOI: 10.1590/0001-3765202020180595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
|
10
|
De Rijcke M, Van Acker E, Nevejan N, De Schamphelaere KAC, Janssen CR. Toxic dinoflagellates and Vibrio spp. act independently in bivalve larvae. FISH & SHELLFISH IMMUNOLOGY 2016; 57:236-242. [PMID: 27554394 DOI: 10.1016/j.fsi.2016.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Harmful algal blooms (HABs) and marine pathogens - like Vibrio spp. - are increasingly common due to climate change. These stressors affect the growth, viability and development of bivalve larvae. Little is known, however, about the potential for interactions between these two concurrent stressors. While some mixed exposures have been performed with adult bivalves, no such work has been done with larvae which are generally more sensitive. This study examines whether dinoflagellates and bacteria may interactively affect the viability and immunological resilience of blue mussel Mytilus edulis larvae. Embryos were exposed to environmentally relevant concentrations (100, 500, 2500 & 12,500 cells ml(-1)) of a dinoflagellate (Alexandrium minutum, Alexandrium ostenfeldii, Karenia mikimotoi, Protoceratium reticulatum, Prorocentrum cordatum, P. lima or P. micans), a known pathogen (Vibrio coralliilyticus/neptunius-like isolate or Vibrio splendidus; 10(5) CFU ml(-1)), or both. After five days of exposure, significant (p < 0.05) adverse effects on larval viability and larval development were found for all dinoflagellates (except P. cordatum) and V. splendidus. Yet, despite the individual effect of each stressor, no significant interactions were found between the pathogens and harmful algae. The larval viability and the phenoloxidase innate immune system responded independently to each stressor. This independence may be related to a differential timing of the effects of HABs and pathogens.
Collapse
Affiliation(s)
- M De Rijcke
- Ghent University (UGent), Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Environmental Toxicology and Aquatic Ecology, 9000 Ghent, Belgium.
| | - E Van Acker
- Ghent University (UGent), Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Environmental Toxicology and Aquatic Ecology, 9000 Ghent, Belgium
| | - N Nevejan
- Ghent University (UGent), Faculty of Bioscience Engineering, Department of Animal Production, Laboratory of Aquaculture and ARC, 9000 Ghent, Belgium
| | - K A C De Schamphelaere
- Ghent University (UGent), Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Environmental Toxicology and Aquatic Ecology, 9000 Ghent, Belgium
| | - C R Janssen
- Ghent University (UGent), Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Environmental Toxicology and Aquatic Ecology, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Lasley-Rasher RS, Nagel K, Angra A, Yen J. Intoxicated copepods: ingesting toxic phytoplankton leads to risky behaviour. Proc Biol Sci 2016; 283:rspb.2016.0176. [PMID: 27122557 DOI: 10.1098/rspb.2016.0176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
Understanding interactions between harmful algal bloom (HAB) species and their grazers is essential for determining mechanisms of bloom proliferation and termination. We exposed the common calanoid copepod, Temora longicornis to the HAB species Alexandrium fundyense and examined effects on copepod survival, ingestion, egg production and swimming behaviour. A. fundyense was readily ingested by T. longicornis and significantly altered copepod swimming behaviour without affecting copepod survival or fitness. A. fundyense caused T. longicornis to increase their swimming speed, and the straightness of their path long after the copepods had been removed from the A. fundyense treatment. Models suggest that these changes could lead to a 25-56% increase in encounter frequency between copepods and their predators. This work highlights the need to determine how ingesting HAB species alters grazer behaviour as this can have significant impacts on the fate of HAB toxins in marine systems.
Collapse
Affiliation(s)
- Rachel S Lasley-Rasher
- School of Marine Sciences, University of Maine, Darling Marine Center, 193 Clarks Cove Road, Walpole, ME 04573, USA
| | - Kathryn Nagel
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Aakanksha Angra
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Jeannette Yen
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|