1
|
S PV, Neralla M, V B, Satheesh T. Comparative Extraction and Bioactive Potential of the Leaf Extracts of Azadirachta indica for Combatting Postoperative Head and Neck Infections: An In Vitro Study. Cureus 2023; 15:e51303. [PMID: 38288224 PMCID: PMC10823300 DOI: 10.7759/cureus.51303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Surgical site infections (SSIs) following head and neck cancer surgery are very common postoperative sequelae. Delayed wound healing leads to a poor aesthetic outcome, delay in restarting oral intake, and delay in getting or starting adjuvant therapy. Antibiotic resistance is on the rise necessitating studies that use alternatives to combat the rising antibiotic resistance. Many plant compounds have been studied to explore the possibility. Neem (Azadirachta indica), a high medicinal value plant, possesses a vast array of phytocompounds, which are broadly grouped into isoprenoids and non-isoprenoids. These phytocompounds are crucial for its anti-inflammatory, antioxidant, antimicrobial, antipyretic, and various other pharmacological activities. MATERIALS AND METHODS In this study, we examined the impact of the extraction solvents on the bioactive potential of neem. Neem leaf samples were extracted with water and ethanol; followed by their biological activities like extraction yield, antioxidant, antimicrobial, and cytotoxicity studies were performed. The extraction yield was found to be higher in the ethanolic extract than in the aqueous extract, which also corroborates with increased antioxidant and antibacterial activity. Both the aqueous and ethanolic extracts of neem exhibited antibacterial activities against dental biofilm-producing pathogens like Staphylococcus aureus, Streptococcus mutans, Pseudomonas aeruginosa, and Escherichia coli. Results: Extraction yield was higher in the ethanolic extract of neem. Antioxidant activity was found to be higher in the ethanolic extract than in the aqueous extract. Neem extract has no toxicity, which was observed through hemolytic and zebrafish embryo toxicity assays. The ethanolic extract of neem was shown to be more effective against the Gram-positive and Gram-negative drug-resistant bacterial pathogen Discussion and conclusion: Thus, the utilization of neem extracts is certainly useful in controlling pathogenic bacterial growth in clinical applications. Further, a detailed mechanism of action of neem extract in bacterial growth inhibition at the molecular level is warranted to utilize their potential in disease management.
Collapse
Affiliation(s)
- Prateek Veerendrakumar S
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Mahathi Neralla
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Baskar V
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Tharini Satheesh
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Sarkar P, Dhara K, Guhathakurta H. Azadirachtin in the aquatic environment: Fate and effects on non-target fauna. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Abstract
The present-day inclination towards increased application of pesticides derived from natural sources is not without its own hazards. Such pesticides are indubitably less harmful compared to the newer classes of low persistence organophosphates; however, these pesticides may be hydrolyzed to yield secondary products which often exhibit significantly different toxicity. Additionally, studies show that the inert materials used in formulation can exhibit significant toxicity on their own. The toxicity of secondary products and inert materials are largely unknown since these molecules are largely uncharacterized. Azadirachtin is such a candidate pesticide. It is derived from the neem tree Azadirachta indica, and it ticks all the above boxes. In its pure form, formulation and crude extracts, it can generate ecotoxicological effects ranging from behavioural anomalies and physiological imbalances to growth suppression. Authors at various times have pointed out the ability of azadirachtin (or that of its metabolites’/break-down products’) to cause specific, documentable effects on growth and reproduction of non-target fauna. Since extensive reports are available on the toxicology of azadirachtin to terrestrial beneficial fauna like bees and earthworms, this review aims to present a coherent picture of the effects of azadirachtin on non-target aquatic organisms through a documentation of relevant reports published during the last three decades. It is hoped that this compilation will help sensitize public opinion about the erroneous supposition that pesticides derived from natural sources are not innately harmful to non-target biota.
Collapse
Affiliation(s)
| | - Kishore Dhara
- Office of the Deputy Director of Fisheries (Research & Training), Freshwater Fisheries Research & Training Centre , Directorate of Fisheries, Government of West Bengal , Kulia, Kalyani , Nadia, West Bengal , 741235 , India
| | | |
Collapse
|
3
|
Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022; 15:795285. [PMID: 35095438 PMCID: PMC8789748 DOI: 10.3389/fnbeh.2021.795285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a popular and valuable species used in many different biomedical research areas. The complex behavior that fish exhibit in response to different stimuli allows researchers to explore the biological and pharmacological basis of affective and mood disorders. In this sense, anxiety is commonly studied in preclinical research with animal models in rodents. During the last decade, those models have been successfully adapted to zebrafish. Stressful stimuli, such as novel environments, chemical substances, light conditions, and predator images, can trigger defensive behaviors considered indicators of an anxiety-like state. In the first stage, models were adapted and validated with different stressors and anxiolytic drugs with promising results and are now successfully used to generate scientific knowledge. In that sense, zebrafish allows several routes of administration and other methodological advantages to explore the anxiolytic effects of natural products in behavioral tests as novel tank, light-dark chamber, and black/white maze, among others. The present work will review the main findings on preclinical research using adult zebrafish to explore anxiolytics effects of natural products as plant secondary metabolites such as flavonoids, alkaloids and terpenes or standardized extracts of plants, among others. Scientific literature confirms the utility of zebrafish tests to explore anxiety-like states and anxiolytic-like effects of plant secondary metabolites, which represent a useful and ethical tool in the first stages of behavioral.
Collapse
Affiliation(s)
- Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Gabriel Guillén-Ruiz
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT) – Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/Área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | | |
Collapse
|
4
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
6
|
Azadirachta indica A. Juss. In Vivo Toxicity-An Updated Review. Molecules 2021; 26:molecules26020252. [PMID: 33419112 PMCID: PMC7825405 DOI: 10.3390/molecules26020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 01/12/2023] Open
Abstract
The Neem tree, Azadirachta indica A. Juss., is known for its large spectrum of compounds with biological and pharmacological interest. These include, among others, activities that are anticancer, antibacterial, antiviral, and anti-inflammatory. Some neem compounds are also used as insecticides, herbicides, and/or antifeedants. The safety of these compounds is not always taken into consideration and few in vivo toxicity studies have been performed. The current study is a literature review of the latest in vivo toxicity of A. indica. It is divided in two major sections-aquatic animals toxicity and mammalian toxicity-each related to neem's application as a pesticide or a potential new therapeutic drug, respectively.
Collapse
|
7
|
Lai YH, Audira G, Liang ST, Siregar P, Suryanto ME, Lin HC, Villalobos O, Villaflores OB, Hao E, Lim KH, Hsiao CD. Duplicated dnmt3aa and dnmt3ab DNA Methyltransferase Genes Play Essential and Non-Overlapped Functions on Modulating Behavioral Control in Zebrafish. Genes (Basel) 2020; 11:genes11111322. [PMID: 33171840 PMCID: PMC7695179 DOI: 10.3390/genes11111322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation plays several roles in regulating neuronal proliferation, differentiation, and physiological functions. The major de novo methyltransferase, DNMT3, controls the DNA methylation pattern in neurons according to environmental stimulations and behavioral regulations. Previous studies demonstrated that knockout of Dnmt3 induced mouse anxiety; however, controversial results showed that activation of Dnmt3 causes anxiolytic behavior. Thus, an alternative animal model to clarify Dnmt3 on modulating behavior is crucial. Therefore, we aimed to establish a zebrafish (Danio rerio) model to clarify the function of dnmt3 on fish behavior by behavioral endpoint analyses. We evaluated the behaviors of the wild type, dnmt3aa, and dnmt3ab knockout (KO) fish by the novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm locomotor activity, color preference, and short-term memory tests. The results indicated that the dnmt3aa KO fish possessed abnormal exploratory behaviors and less fear response to the predator. On the other hand, dnmt3ab KO fish displayed less aggression, fear response to the predator, and interests to interact with their conspecifics, loosen shoaling formation, and dysregulated color preference index ranking. Furthermore, both knockout fishes showed higher locomotion activity during the night cycle, which is a sign of anxiety. However, changes in some neurotransmitter levels were observed in the mutant fishes. Lastly, whole-genome DNA methylation sequencing demonstrates a potential network of Dnmt3a proteins that is responsive to behavioral alterations. To sum up, the results suggested that the dnmt3aa KO or dnmt3ab KO fish display anxiety symptoms, which supported the idea that Dnmt3 modulates the function involved in emotional control, social interaction, and cognition.
Collapse
Affiliation(s)
- Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Michael Edbert Suryanto
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Huan-Chau Lin
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Number 92, Section 2, Chungshan North Road, Taipei 10449, Taiwan;
| | - Omar Villalobos
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
| | - Oliver B. Villaflores
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Number 92, Section 2, Chungshan North Road, Taipei 10449, Taiwan;
- Department of Medicine, MacKay Medical College, Sanzhi Dist., New Taipei City 252, Taiwan
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| |
Collapse
|
8
|
Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 2018; 69:86-102. [PMID: 29990301 DOI: 10.2478/aiht-2018-69-3111] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.
Collapse
|
9
|
Leme E, Silva EP, Rodrigues PS, Silva IR, Martins MFM, Bondan EF, Bernardi MM, Kirsten TB. Billings reservoir water used for human consumption presents microbiological contaminants and induces both behavior impairments and astrogliosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:364-373. [PMID: 29902616 DOI: 10.1016/j.ecoenv.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
The Billings reservoir is the largest water-storage facility in the São Paulo Metropolitan Region, with only a small part of the reservoir used for water supply. Recently, the São Paulo Metropolitan Region has experienced the greatest water collapse ever recorded. Thus, the intensification of use of the Billings reservoir should be considered. The objective of this study was to evaluate the quality of the water from different areas of the Billings reservoir related to human consumption (water supply and fishing): Rio Pequeno, Rio Grande, and Bororé rivers. We performed microbiological and physical studies on one water sample collected at each of these sites. Adult zebrafish were exposed to such water samples and their behaviors were evaluated. Finally, we studied central glial fibrillary acidic protein (GFAP) expression, which is related to neuroinflammatory processes. Water samples from Rio Pequeno, Rio Grande, and Bororé presented microbiological contamination for Escherichia coli and heterotrophic bacteria. Water from the Rio Pequeno river induced both motor/exploratory impairments and anxiogenic-like behavior in zebrafish. Water from the Bororé river induced behaviors in zebrafish related to respiratory impairments (hypoxia) as well as higher alarm reaction. Zebrafish exposed to water from the Bororé also presented astrogliosis, which seems to have happened in detrimental of the high heterotrophic bacterial contamination. Rio Grande and Bororé water increased the lethality rates. Considering the present results of microbiological contaminants and behavior impairments, lethality, as well as astrogliosis in zebrafish, the water from Rio Pequeno, Rio Grande, and Bororé rivers should be considered unacceptable for human use in their untreated state. The Basic Sanitation Company of the State of Sao Paulo should consider adopting rigorous processes of microbiological water treatment. Authorization for fishing at Bororé river should be reconsidered.
Collapse
Affiliation(s)
- Ednilse Leme
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ericka P Silva
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Paula S Rodrigues
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Igor R Silva
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Maria F M Martins
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Eduardo F Bondan
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Maria M Bernardi
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago B Kirsten
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
10
|
Igor VFDS, Jonatas LD, Caio PF, Hady K, Jesus RRA, Josué AVM, Andrés N, José CTC. Use of zebrafish (Danio rerio) in experimental models for biological assay with natural products. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajpp2016.4662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Murussi CR, Menezes CC, Nunes MEM, Araújo MDCS, Quadros VA, Rosemberg DB, Loro VL. Azadirachtin, a neem-derived biopesticide, impairs behavioral and hematological parameters in carp (Cyprinus carpio). ENVIRONMENTAL TOXICOLOGY 2016; 31:1381-1388. [PMID: 25847134 DOI: 10.1002/tox.22143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Azadirachtin (Aza) is a promisor biopesticide used in organic production and aquaculture. Although this compound is apparently safe, there is evidence that it may have deleterious effects on fish. Behavioral and hematological tests are grouped into a set of parameters that may predict potential toxicity of chemical compounds. Here, we investigate the effects of Aza, in the commercial formulation Neenmax™ , on carp (Cyprinus carpio) by defining LC50 (96 h), and testing behavioral and hematological parameters. In our study, LC50 was estimated at 80 μL/L. We exposed carp to Aza at 20, 40, and 60 μL/L, values based on 25, 50, and 75% of LC50 , respectively. At 60 μL/L, Aza promoted significant changes in several parameters, increasing the distance traveled and absolute turn angle. In addition, the same concentration decreased the time spent immobile and the number of immobile episodes. Hematological parameters, such as hematocrit, hemoglobin, hematimetrics index, and red cell distribution, were decreased at 60 μL/L Aza exposure. In conclusion, our study demonstrates that 60 μL/L Aza altered locomotor activity, motor pattern, and hematological parameters, suggesting potential toxicity to carp after acute exposure. In addition, this is the first report that evaluates the actions of a chemical contaminant using automated behavioral tracking of carp, which may be a useful tool for assessing the potential toxicity of biopesticides in conjunction with hematological tests. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1381-1388, 2016.
Collapse
Affiliation(s)
- Camila R Murussi
- Departamento De Bioquímica E Biologia Molecular, Programa De Pós-Graduação Em Bioquímica Toxicológica, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Avenida Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Charlene C Menezes
- Departamento De Bioquímica E Biologia Molecular, Programa De Pós-Graduação Em Bioquímica Toxicológica, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Avenida Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Mauro E M Nunes
- Departamento De Bioquímica E Biologia Molecular, Programa De Pós-Graduação Em Bioquímica Toxicológica, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Avenida Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Maria do Carmo S Araújo
- Setor De Hematologia/Oncologia, Hospital Universitário De Santa Maria, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Vanessa A Quadros
- Departamento De Bioquímica E Biologia Molecular, Programa De Pós-Graduação Em Bioquímica Toxicológica, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Avenida Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Denis B Rosemberg
- Departamento De Bioquímica E Biologia Molecular, Programa De Pós-Graduação Em Bioquímica Toxicológica, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Avenida Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| | - Vania L Loro
- Departamento De Bioquímica E Biologia Molecular, Programa De Pós-Graduação Em Bioquímica Toxicológica, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Avenida Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| |
Collapse
|
12
|
Tierney KB. Chemical avoidance responses of fishes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:228-241. [PMID: 26970365 DOI: 10.1016/j.aquatox.2016.02.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/05/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The hydrosphere is a repository for all of our waste and mistakes, be they sewage, garbage, process-affected waters, runoff, and gases. For fish living in environments receiving undesirable inputs, moving away seems an obvious way to avoid harm. While this should occur, there are numerous examples where it will not. The inability to avoid harmful environments may lead to sensory impairments that in turn limit the ability to avoid other dangers or locate benefits. For avoidance to occur, the danger must first be perceived, which may not happen if the fish is 'blinded' in some capacity. Second, the danger must be recognized for what it is, which may also not happen if the fish is cognitively confused or impaired. Third, it is possible that the fish may not be able to leave the area, or worse, learns to prefer a toxic environment. Concerning generating regulations around avoidance, there are two possibilities: that an avoidance threshold be used to set guidelines for effluent release with the intention of driving fishes away; the second is to set a contaminant concentration that would not affect the avoidance or attraction responses to other cues. With the complexities of the modern world in which we release diverse pollutants, from light to municipal effluents full of 1000s of chemicals, to the diversity present in ecosystems, it is impossible to have avoidance data on every stimulus-species combination. Nevertheless, we may be able to use existing avoidance response data to predict the likelihood of avoidance of untested stimuli. Where we cannot, this review includes a framework that can be used to direct new research. This review is intended to collate existing avoidance response data, provide a framework for making decisions in the absence of data, and suggest studies that would facilitate the prediction of risk to fish health in environments receiving intentional and unintentional human-based chemical inputs.
Collapse
Affiliation(s)
- Keith B Tierney
- Department of Biological Sciences, University of Alberta, T6 G 2E9, Canada.
| |
Collapse
|
13
|
Murussi CR, Costa MD, Leitemperger JW, Flores-Lopes F, Menezes CC, Loebens L, de Avila LA, Rizzetti TM, Adaime MB, Zanella R, Loro VL. Acute exposure to the biopesticide azadirachtin affects parameters in the gills of common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2016; 180:49-55. [PMID: 26689640 DOI: 10.1016/j.cbpc.2015.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 01/29/2023]
Abstract
The biopesticide, azadirachtin (Aza) is less hazardous to the environment, but may cause several toxic effects in aquatic organisms. The Cyprinus carpio (n=12, for all concentrations) after 10days of acclimation under controlled conditions, were exposed at 20, 40, and 60μL/L of Aza during 96h. After this period, fish were anesthetized and euthanized then mucus layer and gills collected. In this study, the effects of exposure to different Aza concentrations were analysed through a set of biomarkers: Na(+)/K(+-)ATPase, lipid peroxidation (TBARS), protein carbonyl (PC), superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase (CAT), glutathione peroxidase (GPx), non-protein thiols (NPSH), ascorbic acid (AsA) and histological parameters and, yet, protein and glucose concentration in the surface area of mucous layer. Na(+)K(+-)ATPase was inhibited at 40 and 60μL/L compared to control. TBARS decreased at 40μL/L compared to control. PC, SOD and GST increased at 60μL/L in comparison to control. CAT increased at 20 and 60μL/L, and GPx increased in all Aza concentrations compared to control. NPSH decreased and AsA increased in all concentrations in comparison to control. Histological analyses demonstrated an increase in the intensity of the damage with increasing Aza concentration. Alterations in histological examination were elevation and hypertrophy of the epithelial cells of the secondary filament, hypertrophy and hyperplasia of the mucous and chlorate cells and lamellar aneurism. Glucose and protein concentrations in mucus layer increased at 60μL/L compared to control. In general, we suggest that 60μL/L Aza concentration affected several parameters causing disruptions carp metabolism.
Collapse
Affiliation(s)
- Camila R Murussi
- Programa de Pós-graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maiara D Costa
- Programa de Pós-graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jossiele W Leitemperger
- Programa de Pós-graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fábio Flores-Lopes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Charlene C Menezes
- Programa de Pós-graduação em Biodiversidade Animal, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luisa Loebens
- Programa de Pós-graduação em Biodiversidade Animal, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luis Antonio de Avila
- Programa de Pós-Graduação em Fitossanidade, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tiele M Rizzetti
- Laboratório de Análises de Resíduos de Pesticidas, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Martha B Adaime
- Laboratório de Análises de Resíduos de Pesticidas, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renato Zanella
- Laboratório de Análises de Resíduos de Pesticidas, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vania L Loro
- Programa de Pós-graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Biodiversidade Animal, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Zizza M, Canonaco M, Facciolo RM. Neurobehavioral alterations plus transcriptional changes of the heat shock protein 90 and hypoxia inducible factor-1α in the crucian carp exposed to copper. Neurotoxicology 2016; 52:162-75. [DOI: 10.1016/j.neuro.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
15
|
Santos-Fandila A, Vázquez E, Barranco A, Zafra-Gómez A, Navalón A, Rueda R, Ramírez M. Analysis of 17 neurotransmitters, metabolites and precursors in zebrafish through the life cycle using ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1001:191-201. [DOI: 10.1016/j.jchromb.2015.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 01/13/2023]
|