1
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Pu W, Chu X, Xu S, Dai X, Xiao L, Cui T, Huang B, Hu G, Zhang C. Molybdenum exposure induces inflammatory response via the regulatory effects of lncRNA-00072124/miR-308/OSMR crosstalk on JAK/STAT axis in duck kidneys. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169374. [PMID: 38104808 DOI: 10.1016/j.scitotenv.2023.169374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Molybdenum (Mo) is an essential nutrient in living organisms. Although numerous researchers have noticed the health damage caused by excessive Mo, the underlying mechanism of excessive Mo-induced nephrotoxicity remains poorly understood. A gene crosstalk called competitive endogenous RNAs (ceRNAs) can interpret many regulatory mechanisms molecularly. But there are few researches have tried to explain the damage mechanism of excess Mo to organisms through ceRNAs network. To clarify this, the study explored the changes in lncRNAs and miRNAs expression profiles in the kidney of ducks exposed to excess Mo for 16 weeks. The sequencing results showed that Mo exposure caused differential expression of 144 lncRNAs and 14 miRNAs. The occurrence of inflammation through the JAK/STAT axis was observed and the lncRNA-00072124/miR-308/OSMR axis was verified by a double luciferase reporter assay. Overexpression of miR-308 and RNA interference of OSMR reduced Mo-induced inflammatory factors, while miR-308 knockdown showed the opposite effect. Simultaneously, lncRNA-00072124 affected OSMR function as a ceRNA. Taken together, these results concluded that Mo exposure activated the JAK/STAT axis and induced inflammation mediated by the lncRNA-00072124/miR-308/OSMR crosstalk. The results might provide new views for revealing the toxic effects of excess Mo in duck kidneys.
Collapse
Affiliation(s)
- Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Shiwen Xu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Li Xiao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
3
|
Liu H, Dai X, Xu S, Guo H, Zhu J, Wang S, Wu Y, Zhang C. Co-exposure to molybdenum and cadmium evokes necroptosis and decreases apoptosis in duck myocardium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166074. [PMID: 37544436 DOI: 10.1016/j.scitotenv.2023.166074] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Superfluous molybdenum (Mo) and cadmium (Cd) in the environment are detrimental to organisms through their accumulation. The NF-κB/TNF-α axis plays a vital part in regulating necroptosis and apoptosis. However, the impacts of Mo and/or Cd on myocardium injury in ducks and the function of NF-κB/TNF-α axis are not clear in the process. In this research, ducks exposed to different dosages of Mo and/or Cd were applied as the study object. The findings substantiated that the accumulation of Mo and/or Cd caused elements imbalance and necroptosis in myocardial tissue. As p-NF-κB/TNF-α expression up-regulated, RIPK1/RIPK3/p-MLKL expression significantly increased in all treatment groups, while the expression of c-caspase-8/3 markedly decreased. Moreover, apoptosis rate obviously decreased in Cd treated groups and clearly elevated in Mo group. Mitochondria-mediated apoptosis was activated by excessive Mo and inhibited by Mo + Cd, but Cd exposure alone had little effect on it. Collectively, our research confirmed that Mo and/or Cd evoked necroptosis via NF-κB/TNF-α axis, and decreased death receptor-mediated apoptosis in duck myocardium, the impacts of Mo and/or Cd on mitochondrial-mediated apoptosis were different. These results are significant for studying toxicology of Mo and/or Cd and preserving the ecosystem.
Collapse
Affiliation(s)
- Hang Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shiwen Xu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sunan Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yuning Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Lu J, Wu J, Gong L, Cheng Y, Yuan Q, He Y. Combined toxicity of polystyrene microplastics and sulfamethoxazole on zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19273-19282. [PMID: 34714475 DOI: 10.1007/s11356-021-17198-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Despite extensive investigation on the toxicity of microplastics (MPs), an emerging global concern, little is known about the combined toxicity of MPs and co-occurring pollutants in aquatic environments. In this study, the combined toxicity of polystyrene MPs and sulfamethoxazole (SMZ) antibiotics was explored in zebrafish embryos in terms of the developmental, physiological, and endocrine toxicities. Exposure to PS and SMZ induced mortality (rate: 25.0 ± 7.5%) and malformation (rate: 20~35%) at multiple regions and stages of zebrafish development. Physiological toxicity was also induced as shown by the significant decrease in fetal movement (by 31.1~37.0%) and swimming frequency (by 26.9~36.8%) and the increase in heartbeat rate (by 19.0~20.9%). Finally, PS and SMZ exposure also induced extensive endocrine toxicities in zebrafish as confirmed by increases in various biomarkers including vitellogenin, 17β-estradiol, testosterone, and triiodothyronine. The combination index showed that antagonistic effects were present between PS and SMZ toxicity, which slightly decreased their combined toxicity. This study aims to further understand the combined toxicity of MPs and co-occurring pollutants in aquatic environments.
Collapse
Affiliation(s)
- Jiarui Lu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Jie Wu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lulin Gong
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yide He
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
5
|
Cao P, Nie G, Luo J, Hu R, Li G, Hu G, Zhang C. Cadmium and molybdenum co-induce pyroptosis and apoptosis by PTEN/PI3K/AKT axis in the liver of ducks. Food Funct 2022; 13:2142-2154. [DOI: 10.1039/d1fo02855c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd) and excessive molybdenum (Mo) have adverse impacts on animals. However, the hepatotoxicity co-induced by Cd and Mo in ducks has not been fully elucidated. In order to explore...
Collapse
|
6
|
Wang X, Hu R, Wang C, Wei Z, Pi S, Li Y, Li G, Yang F, Zhang C. Nrf2 axis and endoplasmic reticulum stress mediated autophagy activation is involved in molybdenum and cadmium co-induced hepatotoxicity in ducks. J Inorg Biochem 2022; 229:111730. [DOI: 10.1016/j.jinorgbio.2022.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
7
|
Wang C, Nie G, Yang F, Chen J, Zhuang Y, Dai X, Liao Z, Yang Z, Cao H, Xing C, Hu G, Zhang C. Molybdenum and cadmium co-induce oxidative stress and apoptosis through mitochondria-mediated pathway in duck renal tubular epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121157. [PMID: 31518807 DOI: 10.1016/j.jhazmat.2019.121157] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 05/16/2023]
Abstract
High doses of molybdenum (Mo) and cadmium (Cd) cause adverse reactions on animals, but the joint toxic effects of Mo and Cd on duck renal tubular epithelial cells are not fully illustrated. To investigate the combined effects of Mo and Cd on oxidative stress and mitochondrial apoptosis in primary duck renal tubular epithelial cells, the cells were either treated with (NH4)6Mo7O24·4H2O (480, 960 μM Mo), 3CdSO4·8H2O (2.5, 5.0 μM Cd) or combination of Mo and Cd for 12 h, and then the joint cytotoxicity was evaluated. The results demonstrated that Mo or/and Cd exposure could induce release of intracellular lactate dehydrogenase, reactive oxygen species generation, acidification, increase levels of malondialdehyde and [Ca2+]i, decrease levels of glutathione, glutathione peroxidase, catalase, superoxide dismutase, total antioxidant capacity, Na+/K+-ATPase, Ca2+-ATPase, and mitochondrial membrane potential; upregulate mRNA levels of Caspase-3, Bak-1, Bax, and cytochrome C, inhibit Bcl-2 mRNA level, and induce cell apoptosis in a dose-dependent manner. Furthermore, the changes of these indicators in co-treated groups were more remarkable. The results indicated that exposure to Mo or/and Cd could induce oxidative stress and apoptosis via the mitochondrial pathway in duck renal tubular epithelial cells and the two metals may have a synergistic effect.
Collapse
Affiliation(s)
- Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jian Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhiyue Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhi Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
8
|
Dai X, Nie G, Cao H, Xing C, Hu G, Zhang C. In vivo assessment of molybdenum and cadmium co-induced the mRNA levels of heat shock proteins, inflammatory cytokines and apoptosis in shaoxing duck (Anas platyrhyncha) testicles. Poult Sci 2019; 98:5424-5431. [DOI: 10.3382/ps/pez328] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
|
9
|
Teng X, Zhang W, Song Y, Wang H, Ge M, Zhang R. Protective effects of Ganoderma lucidum triterpenoids on oxidative stress and apoptosis in the spleen of chickens induced by cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23967-23980. [PMID: 31222655 DOI: 10.1007/s11356-019-05638-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a heavy metal that poses a huge potential threat to human and animal health. Therefore, it is necessary to study its damage mechanism. In the present study, we have examined the protective effects of Ganoderma lucidum triterpenoids on oxidative stress and apoptosis in the spleen of chickens induced by Cd. One hundred and twenty healthy Hailan white chickens (7-day-old) were randomly divided into the following four groups: control group, Cd group, triterpenoid group, and Cd-triterpenoid group. The chickens were euthanized on the 20th, 40th, and 60th days, and the spleens were removed. Cd and malondialdehyde (MDA) content, antioxidant enzyme (superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)) activities, and inflammatory factor (tumor necrosis factor alpha (TNF-α) and interleukin (IL-1β and IL-6)) and apoptotic factor (caspase-3, BAX, and Bcl-2) expressions were detected. The results showed that Ganoderma lucidum triterpenoids could reduce the content of Cd and MDA; increase the antioxidant enzyme activities (SOD and GSH-Px); decrease the expression of inflammatory factors (TNF-α) and interleukin (IL-1β and IL-6); increase the expression of apoptotic factor (Bcl-2); and decrease the expression of apoptotic factors (caspase-3 and Bax). It showed that the triterpenoids of Ganoderma lucidum had significant protective effects on oxidative stress and apoptosis of chicken spleen, which provided a theoretical basis for further prevention and treatment of cadmium poisoning.
Collapse
Affiliation(s)
- Xiangqi Teng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Weiqian Zhang
- Quality and Standard Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yangyang Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Xie W, Lv A, Li R, Tang Z, Ma D, Huang X, Zhang R, Ge M. Agaricus blazei Murill Polysaccharides Protect Against Cadmium-Induced Oxidative Stress and Inflammatory Damage in Chicken Spleens. Biol Trace Elem Res 2018; 184:247-258. [PMID: 29032405 DOI: 10.1007/s12011-017-1189-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/08/2017] [Indexed: 02/06/2023]
Abstract
Agaricus blazei Murill polysaccharide (ABP) has exhibited antioxidant and immunoregulatory activity. The aim of this study was to investigate the effect of ABP on cadmium (Cd)-induced antioxidant functions and inflammatory damage in chicken spleens. In this study, groups of 7-day-old chickens were fed with normal saline (0.2 mL single/day), CdCl2 (140 mg/kg/day), ABP (30 mg/mL, 0.2 mL single/day), and Cd + ABP (140 mg/kg/day + 0.2 mL ABP). Spleens were separated on the 20th, 40th, and 60th day for each group. The Cd contents, expression of melanoma-associated differentiation gene 5 (MDA5) and its downstream signaling molecules (interferon promoter-stimulating factor 1 (IPS-1), transcription factors interferon regulatory factor 3 (IRF3), and nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB)), the content of cytokines (interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and beta interferon (IFN-β)), protein levels of heat shock proteins (HSPs), levels of malondialdehyde (MDA), activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and histopathological changes of spleens were detected on the 20th, 40th, and 60th day. The results showed that ABP significantly reduced the accumulation of Cd in the chicken spleens and reduced the expression of MDA5, IPS-1, IRF-3, and NF-κB; their downstream inflammatory cytokines, IL-1β, IL-6, TNF-α, and IFN-β; and the protein levels of HSPs (HSP60, HSP70, and HSP90) in spleens. The activities of antioxidant enzymes (SOD and GSH-Px) significantly increased, and the level of MDA decreased in the ABP + Cd group. The results indicate that ABP has a protective effect on Cd-induced damage in chicken spleens.
Collapse
Affiliation(s)
- Wanqiu Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Ai Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Ruyue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Zequn Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China.
| |
Collapse
|
11
|
Terpilowska S, Siwicki AK. Interactions between chromium(III) and iron(III), molybdenum(III) or nickel(II): Cytotoxicity, genotoxicity and mutagenicity studies. CHEMOSPHERE 2018; 201:780-789. [PMID: 29550572 DOI: 10.1016/j.chemosphere.2018.03.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to examine the effect of chromium(III) and iron(III) and molybdenum(III) and nickel(II) and their combinations on cyto-, genotoxicity and mutagenicity in BALB/3T3 and HepG2 cells. The results obtained from cytotoxicity assays indicate that there are differences between BALB/3T3 and HepG2 cell lines in their sensitivity to chromium chloride, iron chloride, molybdenum trioxide and nickel chloride. The statistically significant increase of DNA damage of all used microelements in both cell lines was observed. The micronucleus assay performed with the use of all concentrations shows statistically significant induction of chromosomal aberrations in all tested microelements in both cell lines. Moreover, treated cells display characteristic apoptosis in comparison to control cells. In all tested microelements, the increase of number of reverse mutations was observed with and without metabolic activation. Additions of Cr(III) at 200 μM plus Fe(III) at 1000 μM showed synergistic effect in decrease of cell viability and increase of comets, micronuclei and number of revertants in both cell lines. In case of Cr(III) at 200 μM plus Mo(III) at 1000 μM, a protective effect of chromium against molybdenum at 1000 μM toxicity in both cell lines (assessed by MTT, LDH and NRU, comet, micronucleus and Ames assays) was observed. The protective effect of Cr(III) in decrease of cell viability was observed in pair of Cr(III) at 200 μM and Ni(II) at 1000 μM in BALB/3T3 and HepG2 cell lines assessed by MTT, LDH and NRU, comet, micronucleus and Ames assays.
Collapse
Affiliation(s)
- Sylwia Terpilowska
- Laboratory of Environmental Biology, Institute of Environmental Engineering, The John Paul II Catholic University of Lublin, Raclawickie 14 Av., 20-950 Lublin, Poland.
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-957 Olsztyn, Poland.
| |
Collapse
|
12
|
Chen M, Li X, Fan R, Yang J, Jin X, Hamid S, Xu S. Cadmium induces BNIP3-dependent autophagy in chicken spleen by modulating miR-33-AMPK axis. CHEMOSPHERE 2018; 194:396-402. [PMID: 29223809 DOI: 10.1016/j.chemosphere.2017.12.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd), a widespread environmental pollutant, has toxic effects on organs including spleen. However, the underlying mechanisms of Cd induced spleen toxicity and the roles of micro-RNA (miRNA) in this process remain poorly understood. To investigate this, cadmium chloride (CdCl2, 10 mg/kg) was administered in the diet of chickens for 90 days. Electron microscopy, qPCR and Western blot were performed. Results showed that Cd exposure suppressed miR-33-5q which increased the levels of AMPK. Subsequently, significant decrease in AKT/mTOR signaling and HSP70 were observed. Concurrently, levels of NF-κB, p-JNK/JNK increased significantly. Moreover, the expression of BNIP3 and other autophagy markers (LC3-I, LC3-II, Beclin-1) increased significantly. Additionally, the levels of ions (Ca, Cr, Se, Sr, Sn, Ba) and (Na, Mg, V, Fe, Mo, Cu, Zn, Cd) significantly decreased and increased, respectively. Taken together, we conclude that Cd induced the deregulation of miR-33-AMPK axis led to BNIP3-dependent autophagy in chicken spleen through AKT/mTOR and HSP70-NF-κB/JNK signal pathways. In-addition Cd could affect ion homeostasis in chicken spleen.
Collapse
Affiliation(s)
- Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ruifeng Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Sattar Hamid
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Zhang R, Yi R, Bi Y, Xing L, Bao J, Li J. The Effect of Selenium on the Cd-Induced Apoptosis via NO-Mediated Mitochondrial Apoptosis Pathway in Chicken Liver. Biol Trace Elem Res 2017; 178:310-319. [PMID: 28062951 DOI: 10.1007/s12011-016-0925-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
Abstract
Cd-induced apoptosis and the protective effects of Se against Cd-induced injury have been reported in previous studies. However, little is known regarding the effects of Cd-induced apoptosis in hepatic cells and the antagonistic effects of Se on Cd in poultry. In the present study, 128 healthy 31-week-old laying hens were randomly divided into four groups, which were fed basic diets, with the addition of Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or Se + Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. Ultrastructural changes, nitric oxide (NO) concentrations, inducible nitric oxide synthase (iNOS) activities, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and the expression of iNOS and apoptosis-related genes in livers were determined. It was observed that Cd treatment significantly increased the concentrations of NO and iNOS activity in chicken livers. The production of excessive NO initiated the mitochondrial apoptotic pathway. Exposure to Cd increased the mRNA and the protein expression levels of iNOS, caspase-3, Bax, p53, and Cyt-c. Furthermore, the ratio of Bax/Bcl-2 increased, while the expression of Bcl-2 decreased. Treatment with Se significantly alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein expression levels of iNOS, caspase-3, Bax, and Cyt-c. It indicated that Cd induced NO-mediated apoptosis through the mitochondrial apoptotic pathway and Se exerted antagonizing effects. The present study provides new insights as to how Se affects Cd-induced toxicity in the chicken liver.
Collapse
Affiliation(s)
- Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ran Yi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
14
|
Cao H, Xing C, Zhuang Y, Gu X, Luo J, Guo X, Liu P, Zhang C, Hu G. Effect of Stress from Cadmium Combined with Different Levels of Molybdenum on Serum Free Radical and Expression of Related Apoptosis Genes in Goat Livers. Biol Trace Elem Res 2016; 172:346-353. [PMID: 26758867 DOI: 10.1007/s12011-015-0610-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is one of the major transitional metals which have toxic effects in animals. The toxicity of simple Cd or Mo has been researched frequently. However, the toxicity of Mo combined with Cd was rarely studied. To investigate the toxicity of Mo combined with Cd in liver of goats, 36 Boer goats were randomly divided into four groups and assigned with one of the three oral treatments of CdCl2 (0.5 mg kg(-1) Cd) and [(NH4)6Mo7O24·4H2O] (15 mg kg(-1) Mo, group I; 30 mg kg(-1) Mo, group II; 45 mg kg(-1) Mo, group III), while the control group received deionized water. Blood samples were collected on days 0, 10, 20, 30, 40, and 50 to determine antioxidant indices in serum. In addition, liver tissues were collected on days 0, 25, and 50 for detecting the messenger RNA (mRNA) expression levels of Bcl-2 and Bax. Moreover, liver tissues at 50 days were subjected to histopathological analysis with the optical microscope. The results revealed a significant increase (P < 0.05 or P < 0.01) in the levels of nitric oxide (NO), malonaldehyde (MDA), and the activity of nitrix oxide synthase (NOS) and a significant decline (P < 0.05) in the activities of total superoxide dismutase (T-SOD) and total antioxidative capacity (T-AOC). The mRNA expression level of Bcl-2 was suppressed (P < 0.05), while the expression of Bax was increased (P < 0.05) in liver. The histopathological changes were observed in the liver of goats including a small amount of erythrocyte, the unclear structure of hepatic cord and hepatic sinusoid, granular degeneration, vacuolar degeneration, and steatosis. In conclusion, combined chronic toxicity of Cd with different levels of Mo might induce goat liver cell apoptosis and cause oxidative stress in serum, and it showed a possible synergistic relationship between the two elements.
Collapse
Affiliation(s)
- Huabin Cao
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Chenghong Xing
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Yu Zhuang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Xiaolong Gu
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Junrong Luo
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Xiaoquan Guo
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Ping Liu
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China.
| | - Guoliang Hu
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
15
|
Xiao Q, Zhang C, Gu X, Zhuang Y, Luo J, Liu P, Guo X, Hu G, Cao H. Varying Dietary Levels of Molybdenum Inducing Cell Apoptosis of Spleen Under Cadmium Stress in Caprine. Biol Trace Elem Res 2016; 172:127-133. [PMID: 26585322 DOI: 10.1007/s12011-015-0565-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/10/2015] [Indexed: 01/24/2023]
Abstract
The present experiment aims at evaluating chronic toxic effects of the combination of cadmium (Cd) and molybdenum (Mo) according to residual element contents, apoptosis gene expression, and ultrastructure and histopathology changes of caprine spleen. In total, 36 Boer goats were randomly divided into four groups with the equal number in each group. The control group was orally administered with deionized water while the experimental groups I, II, and III were administered with the equal quantity of CdCl2 (1 mg kg(-1) BW) and (NH4)6·Mo7O24·4H2O including 15, 30, and 45 mg·Mo kg(-1) BW, respectively. Three individuals from each group were treated with euthanasia on days 0, 25, and 50. The data showed that the content of splenic residual Mo and Cd increased (P < 0.05) in the experimental groups on days 25 and 50, while no significant difference was observed in the content of Cu. The apoptosis-related gene expression levels including Bcl-2, Bax, Caspase-3, Smac, and ceruloplasmin (CP) were also determined. Results showed that significant reductions were observed in Bcl-2 and CP expressions (P < 0.01), while Caspase-3 gene was up-regulated (P < 0.05). However, no significant difference was observed in Smac and Bax expressions. Furthermore, on day 50, spleen tissues were presented to observe ultrastructural changes in lesions by means of transmission electron microscopy, with fragmentized nucleus, vesiculation of cytoplasm, mitochondria hyperplasia, and increasing lysosomes included. In addition, histopathology results corroborated the toxicity by showing cell hemorrhage, thickening central arteries, and enhanced capsule thickness. To sum up, our study revealed that the combination of Cd and Mo could induce remarkable damage to the spleen of goats by promoting cell apoptosis in the mitochondrial pathway and affecting the deposition of Mo and Cd.
Collapse
Affiliation(s)
- Qingyang Xiao
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Xiaolong Gu
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Yu Zhuang
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Junrong Luo
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Ping Liu
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Xiaoquan Guo
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China.
| | - Huabin Cao
- Institute of Animal Population Health, School of Animal Science and Technology, Changbei Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
16
|
Cao H, Xia B, Zhang M, Liao Y, Yang Z, Hu G, Zhang C. Changes of Antioxidant Function and the mRNA Expression Levels of Apoptosis Genes in Duck Ovaries Caused by Molybdenum or/and Cadmium. Biol Trace Elem Res 2016; 171:410-418. [PMID: 26446861 DOI: 10.1007/s12011-015-0514-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
To investigate the effects of molybdenum (Mo) combined with cadmium (Cd) on the antioxidant function and the mRNA expression levels of apoptosis-related genes in duck ovaries, 60 healthy 11-old-day female ducks were treated with hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) or/and cadmium sulfate (3CdSO4·8H2O) at different doses on a daily basis for 120 days. On the 120th day, ten female birds in each group were euthanized, and the ovaries and blood were collected to determine the antioxidant indexes and the mRNA expression levels of Bak-1, Bcl-2, and caspase-3 in ovaries. In addition, ovary tissues were subjected to histopathological analysis with optical microscope. The total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity decreased significantly (P < 0.01) in treated groups comparing with control while the nitric oxide synthase (NOS) activity increased (P < 0.01) both in ovary tissue and serum. The Bak-1 and caspase-3 expressions were upregulated while the Bcl-2 was downgraded by Mo or/and Cd. Biomolecules were affected in all metal-treated groups, whereas combined-treated animals showed greater effects. What is more, pathological damage in Mo and Cd combination treated groups was more severe. The results from the present study indicated that Mo or/and Cd caused oxidative stress and apoptosis in duck ovaries. Combination of Mo and Cd showed additive or synergistic effect leading to apoptosis and oxidative stress, and the pathway might be the mitochondrial pathway.
Collapse
Affiliation(s)
- Huabin Cao
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Bing Xia
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Mengmeng Zhang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Yilin Liao
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Zhi Yang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China.
| | - Caiying Zhang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|