1
|
Abramov AY, Myers I, Angelova PR. Carbon Monoxide: A Pleiotropic Redox Regulator of Life and Death. Antioxidants (Basel) 2024; 13:1121. [PMID: 39334780 PMCID: PMC11428877 DOI: 10.3390/antiox13091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Despite recent technological progress, carbon monoxide poisoning is still one of the leading causes of domestic and industrial morbidity and mortality. The brain is particularly vulnerable to CO toxicity, and thus the majority of survivors develop delayed movement and cognitive complications. CO binds to haemoglobin in erythrocytes, preventing oxygen delivery to tissues, and additionally inhibits mitochondrial respiration. This renders the effect of CO to be closely related to hypoxia reperfusion injury. Oxygen deprivation, as well as CO poisoning and re-oxygenation, are shown to be able to activate the production of reactive oxygen species and to induce oxidative stress. Here, we review the role of reactive oxygen species production and oxidative stress in the mechanism of neuronal cell death induced by carbon monoxide and re-oxygenation. We discuss possible protective mechanisms used by brain cells with a specific focus on the inhibition of CO-induced ROS production and oxidative stress.
Collapse
Affiliation(s)
| | | | - Plamena R. Angelova
- UCL Queen Square Institute of Neurology, Department of Clinical and Movement Neurosciences, Queen Square, London WC1N3BG, UK; (A.Y.A.); (I.M.)
| |
Collapse
|
2
|
Song H, Yue A, Zhou X, Zhao W, Han W, Li Q. The Combination of Zhuli Decoction and N-butylphthalide Inhibits Cell Apoptosis Induced by CO Poisoning through the PI3K/AKT/GSK-3β Signaling Pathway. Neurochem Res 2024; 49:2148-2164. [PMID: 38822986 DOI: 10.1007/s11064-024-04179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Carbon monoxide poisoning (COP) represents a significant global health burden, characterized by its morbidity and high mortality rates. The pathogenesis of COP-induced brain injury is complex, and effective treatment modalities are currently lacking. In this study, we employed network pharmacology to identify therapeutic targets and associated signaling pathways of Zhuli Decoction (ZLD) for COP. Subsequently, we conducted both in vitro and in vivo experiments to validate the therapeutic efficacy of ZLD in combination with N-butylphthalide (NBP) for acute COP-induced injury. Our network pharmacology analysis revealed that the primary components of ZLD exerted therapeutic effects through the modulation of multiple targets and pathways. The in vitro and in vivo experiments demonstrated that the combination of NBP and ZLD effectively inhibited apoptosis and up-regulated the activities of P-PI3K (Tyr458), P-AKT (Ser473), P-GSK-3β (Ser9), and Bcl-2, thus leading to the protection of neuronal cells and improvement in cognitive function in rats following COP, which was better than the effects observed with NBP or ZLD alone. The rescue experiment further showed that LY294002, a PI3K inhibitor, significantly attenuated the therapeutic efficacy of NBP + ZLD. The neuroprotection effects of NBP and ZLD against COP-induced brain injury are closely linked to the activation of the PI3K/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Huiping Song
- Emergency department, Shenzhen University General Hospital, Shenzhen, China
- Department of Traditional Chinese Medicine II, Rehabilitation University Qingdao Central Hospital (Qingdao Central Hospital), Qingdao, China
| | - Aochun Yue
- Emergency department, Shenzhen University General Hospital, Shenzhen, China
| | - Xudong Zhou
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiwei Zhao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Wei Han
- Emergency department, Shenzhen University General Hospital, Shenzhen, China
| | - Qin Li
- Emergency department, Shenzhen University General Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Feng Y, Wu C, Song B, Zhang Y, Jiang M, Qi Z, Chen L, Li A, Ye H, Liu B, Feng Y, Ji X, Ma Z, Li M. Investigation of neuroprotective effects of H 2 by CiteSpace-based bibliometric analysis. Brain Circ 2024; 10:229-239. [PMID: 39526111 PMCID: PMC11542759 DOI: 10.4103/bc.bc_111_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND AIMS Neuroprotection plays an important role in the treatment of brain disorders. In recent years, studies using rat models and clinical trials have demonstrated the positive effects of hydrogen treatment on neurological disorders and brain injuries. Hence, it is of great significance to shed light on this issue. In this article, CiteSpace is employed for visualization and bibliometric analysis of the research frontiers and evolving trends related to the neuroprotective effect of hydrogen. METHODS All articles published from 2009 to 2023 that discussed the neuroprotective effects of hydrogen in cerebrovascular diseases were retrieved from the Web of Science. Using CiteSpace, a visualization analysis was conducted on aspects such as countries, institutions, authors, keywords, and Co cited references, which enables an intuitive observation of current research hotspots. RESULTS After manual screening, a total of 106 articles were retrieved. Over time, The number of publications has increased annually. Regarding national contributions, the top three countries with the highest number of publications include China, the United States, and Japan. The Second Military Medical University is the institution that publishes the most articles and has significant influence in the field of hydrogen neuroprotection. Sun, Xuejun and Domoki, Ferenc were the most productive. The most common keywords include hydrogen, oxidative stress, inflammation, and apoptosis. Potential areas of focus for future research consist of early brain injury, hydrogen, ischemia-reperfusion injury and hypothermia treatment. CONCLUSION The bibliometric study presented herein offers insights into the current status and trends of research on hydrogen in the field of cerebrovascular diseases. Future research trends suggest that hydrogen contributes significantly to the cerebrovascular domain through its anti-inflammatory, antioxidative, and anti-apoptotic mechanisms. This study can aid researchers in identifying hot topics and exploring new research directions.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chuanjie Wu
- Department of Neurology, Beijing Institute of Geriatrics , Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Baoying Song
- Department of Neurology, Beijing Institute of Geriatrics , Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Neurology, Beijing Institute of Geriatrics , Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miaowen Jiang
- Department of Neurology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhengfei Qi
- Department of Neurology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Le Chen
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Anzhi Li
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hanming Ye
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Biluo Liu
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yu Feng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xunming Ji
- Department of Neurology, Beijing Institute of Geriatrics , Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhengfei Ma
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming Li
- Department of Neurology, Beijing Institute of Geriatrics , Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Kwon DA, Bak SB, Kim YS, Kim SK, Lee HS. Antioxidant and Anti-Fatigue Effects of a Standardized Botanical Extract Fraction (HemoHIM) in Forced-Exercised Aged Mice. J Med Food 2024; 27:502-509. [PMID: 38669056 DOI: 10.1089/jmf.2023.k.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
HemoHIM is a standardized medicinal herbal preparation consisting of extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas that possesses immune regulatory activities. This study aimed to research the potential antioxidant effects of HemoHIM and its capacity for reducing fatigue in aged mice subjected to forced exercise. After administering HemoHIM 125 (500 mg/kg orally) for 4 weeks in 8-month-old female C57BL/6 mice (4 groups of 10 mice), various parameters were evaluated. The analyses revealed that HemoHIM enhanced swimming time and grip strength. In addition, it significantly reduced serum lactate levels and increased liver glutathione peroxidase (GPx) levels after exercise challenge. The expression levels of antioxidant enzymes and factors, including nuclear factor erythroid 2-related factor-2 (Nrf-2), heme oxygenase 1, superoxide dismutase, GPx, and glutathione reductase, were significantly higher in liver and muscle tissues of mice treated with HemoHIM. These results indicate that HemoHIM might function as an anti-fatigue and antioxidant agent by modulating the Nrf-2 signaling pathway.
Collapse
Affiliation(s)
- Da-Ae Kwon
- G-Project Team, Food Science R&D Center, Kolmar BNH Co., Ltd., Seoul, Korea
| | - Su-Bin Bak
- G-Project Team, Food Science R&D Center, Kolmar BNH Co., Ltd., Seoul, Korea
| | - Yong Sang Kim
- Food Safety Team, Kolmar BNH Co., Ltd., Sejong-Si, Korea
| | - Seul-Ki Kim
- Center for Nonclinical Development, HK inno.N, Gyeonggi-do, Korea
| | - Hak Sung Lee
- G-Project Team, Food Science R&D Center, Kolmar BNH Co., Ltd., Seoul, Korea
| |
Collapse
|
5
|
Gong Q, Wang X, Liu Y, Yuan H, Ge Z, Li Y, Huang J, Liu Y, Chen M, Xiao W, Liu R, Shi R, Wang L. Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. TOXICS 2024; 12:328. [PMID: 38787107 PMCID: PMC11126064 DOI: 10.3390/toxics12050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin's effect and mechanism in acute hepatic injury. Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When the first dose was given, CCl4 was given immediately after administration of different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury following allicin treatment. This inhibition was evidenced by notable reductions in serum levels of transaminases, specifically aspartate transaminase, along with mitigated histological damage to the liver. In this protective process, allicin plays the role of reducing the amounts or the expression levels of proinflammatory cytokines, IL-1β, IL-6. Furthermore, allicin recovered the activities of the antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis, alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of allicin as a hepatoprotective agent.
Collapse
Affiliation(s)
- Qianmei Gong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongshi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Heling Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zifeng Ge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhou Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjun Xiao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Ruiting Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Rongmei Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Song H, Yue A, Zhou X, Han W, Li Q. Evidence of clinical efficacy and pharmacological mechanism of N-butylphthalide in the treatment of delayed encephalopathy after acute carbon monoxide poisoning. Front Neurol 2023; 14:1119871. [PMID: 37006490 PMCID: PMC10060646 DOI: 10.3389/fneur.2023.1119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveBased on network meta-analysis (NMA) and network pharmacology approaches, we explored the clinical efficacy of different regimens, and clarified the pharmacological mechanisms of N-butylphthalide (NBP) in the treatment of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP).MethodsFirstly, NMA was conducted to obtain the ranking of the efficacy of different regimens for the treatment of DEACMP. Secondly, the drug with a relatively high efficacy ranking was selected and its mechanism of treatment for DEACMP was identified through a network pharmacology analysis. By the use of protein interaction and enrichment analysis, the pharmacological mechanism was predicted, and molecular docking was subsequently carried out to verify the reliability of the results.ResultsA total of 17 eligible randomized controlled trials (RCTs) involving 1293 patients and 16 interventions were eventually included in our analysis from NMA. Mesenchymal stem cells (MSCs) + NBP significantly increased mini-mental state examination (MMSE) and Barthel index (BI) scores; NBP + dexamethasone (DXM) was the most effective treatment in improving the activity of daily living (ADL) scores; NBP significantly decreased national institutes of health stroke scale (NIHSS) scores; Xingzhi-Yinao granules (XZYN) had more advantages in improving Montreal cognitive assessment (MoCA) scores, translational direct current stimulation (tDCS) had a significant effect in improving P300 latency and P300 amplitude and Kinnado + Citicoline had the most obvious effect in improving malondialdehyde (MDA). Meanwhile, by network pharmacology analysis, 33 interaction genes between NBP and DEACMP were obtained, and 4 of them were identified as possible key targets in the process of MCODE analysis. 516 Gene ontology (GO) entries and 116 Kyoto Encyclopedia of Gene and Genome (KEGG) entries were achieved by enrichment analysis. Molecular docking showed that NBP had good docking activity with the key targets.ConclusionThe NMA screened for regimens with better efficacy for each outcome indicator in order to provide a reference for clinical treatment. NBP can stably bind ALB, ESR1, EGFR, HSP90AA1, and other targets, and may play a role in neuroprotection for patients with DEACMP by modulating Lipid and atherosclerosis, IL-17 signaling pathway, MAPK signaling pathway, FoxO signaling pathway, PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Huiping Song
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
| | - Aochun Yue
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
- Centre of Integrated Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xudong Zhou
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
| | - Qin Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
- Department of Integrated Chinese and Western Medicine, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- *Correspondence: Qin Li
| |
Collapse
|
7
|
Baharara H, Ghasemi H, Samadi S, Roohshad B, Jomehzadeh V, Ravankhah Moghaddam K, Mohammadpour AH, Arasteh O. The effect of preconditioning agents on cardiotoxicity and neurotoxicity of carbon monoxide poisoning in animal studies: a systematic review. Drug Chem Toxicol 2023; 46:256-270. [PMID: 35616381 DOI: 10.1080/01480545.2021.2021931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Carbon monoxide (CO) poisoning is a common intoxication and many people die yearly due to CO poisoning and preconditioning agents attenuate brain and cardiac injury caused by intoxication. It is critical to fully understand the efficacy of new methods to directly target the toxic effect of CO, such as conditioning agents, which are currently under development. This study aims to systematically investigate current evidence from animal experiments and the effects of administration preconditions in acute and late phases after CO poisoning on cardiotoxicity and neurotoxicity. METHODS Four databases (PubMed, Embase, Scopus, and Web of Science) were systematically searched without language restrictions, and hand searching was conducted until November 2021. We included studies that compare preconditioning agents with the control group after CO poisoning in animals. The SYRCLE RoB tool was used for risk of bias assessments. RESULTS Thirty-seven studies were included in the study. Erythropoietin, granulocyte colony-stimulating factor (GCSF), hydrogen-rich saline, and N-butylphthalide (NBP) were found to have positive effects on reducing neurotoxicity and cardiotoxicity. As other preconditions have fewer studies, no valuable results can be deduced. Most of the studies were unclear for sources of bias. DISCUSSION Administration of the examined preconditioning agents including NBP, hydrogen-rich saline, and GCSF in acute and late phases could attenuate neurotoxicity and cardiotoxicity of CO poisoned animals. For a better understanding of mechanisms and activities, and finding new and effective preconditioning agents, further preclinical and clinical studies should be performed to analyze the effects of preconditioning agents.
Collapse
Affiliation(s)
- Hamed Baharara
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Ghasemi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Samadi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahar Roohshad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Jomehzadeh
- Department of Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Tang S, Wang K, Qi X. Neuro-protective effects of n-butylphthalide on carbon monoxide poisoning rats by modulating IL-2, AKT and BCL-2. J Toxicol Sci 2023; 48:495-505. [PMID: 37661366 DOI: 10.2131/jts.48.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Acute carbon monoxide poisoning (CO-poisoning) causes neurotoxicity by inducing necrosis, apoptosis, lipid peroxidation, and oxidative stress. DL-3-n-butylphthalide (NBP) is a synthetic compound originally extracted from the seeds of Chinese celery and based on pure l-3-n-butylphthalide. In ischemia/reperfusion, it exerts neuroprotective effects through its anti-apoptotic, anti-necrotic and antioxidant properties, and activation of pro-survival pathways. Our study performed bioinformatic analysis to identify the differential expression genes. CO-poisoning patients' blood was collected to confirm the findings. Male rats were exposed to CO 3000 ppm for 40 min, and NBP (100 mg/kg/day) was continuously injected intraperitoneally immediately after poisoning and for the next 15 days. After NBP treatment, the rats were evaluated by Morris water maze test. At the end of experiments, blood and brain tissues of the rats were collected to evaluate the expression levels of IL-2, AKT and BCL-2. We found that IL-2 was elevated in CO-poisoning patients and animal models. Brain tissue damage in CO-poisoning rats was significantly alleviated after NBP treatment. Furthermore, NBP increased the expression of IL-2, AKT and BCL-2 in rat CO-poisoning model. NBP showed neuroprotective action by increasing IL-2, AKT, and BCL-2 expressions.
Collapse
Affiliation(s)
- Shengtao Tang
- The Second School of Clinical Medicine, Southern Medical University, China
- Department of Neurology, The First People's Hospital of Chenzhou, China
| | - Kunyu Wang
- Department of Neurology, The First Teaching Hospital of Jilin University, China
| | - Xiaokun Qi
- The Second School of Clinical Medicine, Southern Medical University, China
- Department of Neurology, The Sixth Medical Center of the General Hospital of the Chinese People's Liberation Army, China
| |
Collapse
|
9
|
Han J, Shi X, Xu J, Lin W, Chen Y, Han B, Wang Y, Xu J. DL-3-n-butylphthalide prevents oxidative stress and atherosclerosis by targeting Keap-1 and inhibiting Keap-1/Nrf-2 interaction. Eur J Pharm Sci 2022; 172:106164. [DOI: 10.1016/j.ejps.2022.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
|
10
|
Zhou XD, Wang JL, Guo DD, Jiang WW, Li ZK, Wang L, Zou Y, Bi MJ, Li Q. Neuroprotective effect of targeted regulatory Nrf2 gene on rats with acute brain injury induced by carbon monoxide poisoning. ENVIRONMENTAL TOXICOLOGY 2021; 36:1742-1757. [PMID: 34032369 DOI: 10.1002/tox.23295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Oxidative stress has been considered as an important cause of neurocyte damage induced by carbon monoxide (CO) poisoning; however, the precise mechanisms are not fully understood. The study aimed to elucidate the molecular mechanism and the neuroprotective effect of targeted regulatory nuclear factor erythroid2-related factor 2 (Nrf2) gene on acute brain injury in CO poisoning rats. An acute CO poisoning rat model was established by CO inhalation in hyperbaric oxygen chamber and followed by the administration of Nrf2 gene-loaded lentivirus. Mitochondrial membrane potential (ΔΨM), the levels of Nrf2, glutamate-cysteine ligase catalytic subunit (GCLC), catalase (CAT) and glutathione peroxidase (GSH-Px), and cell apoptosis were determined in brain tissue in rats. We found that CO poisoning could decrease ΔΨm of cells, slightly increase the expressions of Nrf2 and GCLC at mRNA and protein levels, reduce CAT and GSH-Px, and thus initiate apoptosis process. The Nrf2 gene treatment could obviously enhance the expressions of Nrf2 at mRNA and protein levels, and increase the concentrations of CAT and GSH-Px, maintain the ΔΨm of cells in brain tissue, significantly inhibit cell apoptosis as compared with the CO poisoning group (p < .05). These findings suggest that CO poisoning could induce oxidative stress and impair mitochondrial function of cells in brain tissue. The administration of Nrf2 gene could notably strengthen the antioxidant capacity of cells through regulating the downstream genes of Nrf2/antioxidant responsive element signal pathway, and positively protect cells against brain injury induced by acute severe CO poisoning.
Collapse
Affiliation(s)
- Xu-Dong Zhou
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
| | - Jing-Lin Wang
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Da-Dong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wen-Wen Jiang
- Centre of Integrated Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ze-Kun Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
- Centre of Integrated Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Li Wang
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Yong Zou
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Ming-Jun Bi
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Qin Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
11
|
Wei X, Luo C, He Y, Huang H, Ran F, Liao W, Tan P, Fan S, Cheng Y, Zhang D, Lin J, Han L. Hepatoprotective Effects of Different Extracts From Triphala Against CCl 4-Induced Acute Liver Injury in Mice. Front Pharmacol 2021; 12:664607. [PMID: 34290606 PMCID: PMC8287969 DOI: 10.3389/fphar.2021.664607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Background:Triphala is a traditional polyherbal formula used in Indian Ayurvedic and Chinese Tibetan medicine. A wide range of biological activities have been attributed to Triphala, but the impact of various extraction methods on efficacy has not been determined. Purpose: The study aimed to evaluate Triphala extracts obtained by various methods for their hepatoprotective effects and molecular mechanisms in a mouse model of carbon tetrachloride (CCl4)-induced liver injury. Methods: HPLC fingerprinting was used to characterize the chemical characteristics of Triphala extracts obtained by (a) 0.5 h ultrasonication, (b) 2 h reflux, and (c) 4 h reflux. Hepatoprotective efficacy was evaluated in a mouse model of CCl4-induced liver damage. Serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured, as well as the liver antioxidant and inflammatory markers malondialdehyde superoxide dismutase glutathione peroxidase (GSH-Px), TNF-α, and IL-6. Gene and protein expression of Nrf-2 signaling components Nrf-2, heme oxygenase (HO-1), and NADPH Quinone oxidoreductase (NQO-1) in liver tissue were evaluated by real-time PCR and western blotting. Results: Chemical analysis showed a clear difference in content between extracts produced by ultrasonic and reflux methods. The pharmacological analysis showed that all three Triphala extracts reduced ALT, AST, MDA, TNF-α, and IL-6 levels and increased SOD and GSH-Px. Triphala extracts also induced transcript and protein expression of Nrf-2, HO-1, and NQO-1. Conclusion: Triphala extract prevents CCl4-induced acute liver injury. The ultrasonic extract of Triphala was most effective, suggesting that hepatoprotection may be related to the larger tannins via activation of Nrf-2 signaling.
Collapse
Affiliation(s)
- Xichuan Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, China
| | - Sanhu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Yuan Cheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Luo R, Zhu L, Zeng Z, Zhou R, Zhang J, Xiao S, Bi W. Dl-butylphthalide inhibits rotenone-induced oxidative stress in microglia via regulation of the Keap1/Nrf2/HO-1 signaling pathway. Exp Ther Med 2021; 21:597. [PMID: 33884035 PMCID: PMC8056112 DOI: 10.3892/etm.2021.10029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Activated microglia are a source of superoxide which often increases oxidative stress in the brain microenvironment, increase production of reactive oxygen species (ROS) and directly or indirectly lead to dopaminergic neuronal death in the substantia nigra. Thus superoxide contributes to the pathogenesis of Parkinson's disease (PD). Evidence suggests that mitochondria are the main source of ROS, which cause oxidative stress in cells. Levels of ROS are thus associated with the function of the mitochondrial complex. Therefore, protecting the mitochondrial function of microglia is important for the treatment of PD. Dl-butylphthalide (NBP), a compound isolated from Chinese celery seeds, has been approved by the China Food and Drug Administration for the treatment of acute ischemic stroke. Recently, NBP demonstrated therapeutic potential for PD. However, the mechanism underlying its neuroprotective effect remains unclear. The present study aimed to investigate the effect of NBP on rotenone-induced oxidative stress in microglia and its underlying mechanisms. The results demonstrated that NBP treatment significantly increased mitochondrial membrane potential and decreased ROS level in rotenone-induced microglia. Western blot analysis showed that NBP treatment promoted entry of nuclear respiratory factor-2 (Nrf2) into the nucleus, increased heme oxygenase-1 (HO-1) expression and decreased the level of the Nrf2 inhibitory protein, Kelch-like ECH-associated protein 1. Overall, the findings indicated that NBP inhibited rotenone-induced microglial oxidative stress via the Keap1/Nrf2/HO-1 pathway, suggesting that NBP may serve as a novel agent for the treatment of PD.
Collapse
Affiliation(s)
- Rixin Luo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhaohao Zeng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Ruiyi Zhou
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiawei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
13
|
Marco-Contelles J, Zhang Y. From Seeds of Apium graveolens Linn. to a Cerebral Ischemia Medicine: The Long Journey of 3- n-Butylphthalide. J Med Chem 2020; 63:12485-12510. [PMID: 32672958 DOI: 10.1021/acs.jmedchem.0c00887] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
3-n-Butylphthalide (NBP) as well as its derivatives and analogues (NBPs), in racemic or enantiomerically pure forms, possess potent and diverse pharmacological properties and have shown a great potential therapeutic interest for many human conditions, especially for cerebral ischemia. This Perspective outlines the synthesis and therapeutic applications of NBPs.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006-Madrid, Spain
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China.,Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
14
|
Zhang J, Guo Y, Li W, Li G, Chen Y. The Efficacy of N-Butylphthalide and Dexamethasone Combined with Hyperbaric Oxygen on Delayed Encephalopathy After Acute Carbon Monoxide Poisoning. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1333-1339. [PMID: 32308366 PMCID: PMC7135188 DOI: 10.2147/dddt.s217010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
Abstract
Background Carbon monoxide (CO) poisoning is a common health problem among people in many countries, primarily because of its severe clinical effects and high toxicological morbidity and mortality. Acute brain injury and delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) are the most common neurological complications. This study was performed to assess the efficacy of N-butylphthalide (NBP) and dexamethasone (DXM) combined with hyperbaric oxygen (HBO) in patients with DEACMP. Patients and Methods A total of 171 patients with DEACMP were recruited and assigned to the combined therapy group (receiving NBP and DXM 5 mg/day plus HBO therapy) or the control group (HBO therapy as monotherapy). Conventional treatments were provided for all patients. The cognition and movement changes in patients were evaluated by the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA) scale and the Barthel index of activities of daily living (ADL) before and after the treatment at 1 month, 3 months, and 1 year, respectively. Results At 1 month, 3 months, and 1 year after the treatment, the MMSE, MoCA and ADL scores were all significantly higher in the combined therapy group than those in the control group. There were no significant alterations in blood glucose, blood lipids, or liver and kidney function during the whole treatment session. Some patients experienced loss of appetite, mild headache and minor skin irritations. However, these patients recovered by themselves and needed no additional medications or special treatment. Conclusion These results indicated that NBP and DXM combined with HBO for the treatment of DEACMP can significantly improve the cognitive and motor functions of patients and is very safe.
Collapse
Affiliation(s)
- Jiefang Zhang
- Intensive Care Unit, Heze Municipal Hospital, Heze City, Shandong Province, People's Republic of China
| | - Yuewen Guo
- Emergency Department, Heze Municipal Hospital, Heze City, Shandong Province, People's Republic of China
| | - Wenyao Li
- Intensive Care Unit, Heze Municipal Hospital, Heze City, Shandong Province, People's Republic of China
| | - Guangli Li
- Department of Pharmacy, Heze Municipal Hospital, Heze City, Shandong Province, People's Republic of China
| | - Yankun Chen
- Department of Neurology, Heze Municipal Hospital, Heze City, Shandong Province, People's Republic of China
| |
Collapse
|
15
|
Luo R, Wangqin R, Zhu L, Bi W. Neuroprotective mechanisms of 3-n-butylphthalide in neurodegenerative diseases. Biomed Rep 2019; 11:235-240. [PMID: 31798868 PMCID: PMC6873419 DOI: 10.3892/br.2019.1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Since 3-n-butylphthalide (NBP) was approved by the China Food and Drug Administration for the treatment of acute ischemia stroke in 2002, a number of studies have investigated NBP worldwide. In recent years, NBP has also demonstrated potential as treatment of several neurodegenerative diseases, which has increased the interest in its mechanisms of protection and action. Clinical studies and studies that used cell or animal models, have directly demonstrated neuroprotective effects of NBP via the following mechanisms: i) Inhibiting the inflammatory reaction; ii) reducing mitochondrial oxidative stress; iii) regulating apoptosis and autophagy; iv) inducing resistance to endoplasmic reticulum stress; and v) decreasing abnormal protein deposition. Therefore, NBP may be a potential drug for neurodegenerative diseases, and it is particularly important to identify the mechanism of NBP as it may assist with the development of new drugs for neurodegeneration. The present review summarizes the neuroprotective mechanisms of NBP and discusses new perspectives and prospects. The aim of the current review is to provide a new summary regarding NBP and its associated mechanisms.
Collapse
Affiliation(s)
- Rixin Luo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Runqi Wangqin
- Department of Neurology, Duke University Medical Center, Durham, NC 27705, USA
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
16
|
Chen XQ, Qiu K, Liu H, He Q, Bai JH, Lu W. Application and prospects of butylphthalide for the treatment of neurologic diseases. Chin Med J (Engl) 2019; 132:1467-1477. [PMID: 31205106 PMCID: PMC6629339 DOI: 10.1097/cm9.0000000000000289] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE The 3-N-butylphthalide (NBP) comprises one of the chemical constituents of celery oil. It has a series of pharmacologic mechanisms including reconstructing microcirculation, protecting mitochondrial function, inhibiting oxidative stress, inhibiting neuronal apoptosis, etc. Based on the complex multi-targets of pharmacologic mechanisms of NBP, the clinical application of NBP is increasing and more clinical researches and animal experiments are also focused on NBP. The aim of this review was to comprehensively and systematically summarize the application of NBP on neurologic diseases and briefly summarize its application to non-neurologic diseases. Moreover, recent progress in experimental models of NBP on animals was summarized. DATA SOURCES Literature was collected from PubMed and Wangfang database until November 2018, using the search terms including "3-N-butylphthalide," "microcirculation," "mitochondria," "ischemic stroke," "Alzheimer disease," "vascular dementia," "Parkinson disease," "brain edema," "CO poisoning," "traumatic central nervous system injury," "autoimmune disease," "amyotrophic lateral sclerosis," "seizures," "diabetes," "diabetic cataract," and "atherosclerosis." STUDY SELECTION Literature was mainly derived from English articles or articles that could be obtained with English abstracts and partly derived from Chinese articles. Article type was not limited. References were also identified from the bibliographies of identified articles and the authors' files. RESULTS NBP has become an important adjunct for ischemic stroke. In vascular dementia, the clinical application of NBP to treat severe cognitive dysfunction syndrome caused by the hypoperfusion of brain tissue during cerebrovascular disease is also increasing. Evidence also suggests that NBP has a therapeutic effect for neurodegenerative diseases. Many animal experiments have found that it can also improve symptoms in other neurologic diseases such as epilepsy, cerebral edema, and decreased cognitive function caused by severe acute carbon monoxide poisoning. Moreover, NBP has therapeutic effects for diabetes, diabetes-induced cataracts, and non-neurologic diseases such as atherosclerosis. Mechanistically, NBP mainly improves microcirculation and protects mitochondria. Its broad pharmacologic effects also include inhibiting oxidative stress, nerve cell apoptosis, inflammatory responses, and anti-platelet and anti-thrombotic effects. CONCLUSIONS The varied pharmacologic mechanisms of NBP involve many complex molecular mechanisms; however, there many unknown pharmacologic effects await further study.
Collapse
Affiliation(s)
- Xi-Qian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | |
Collapse
|
17
|
Zhang P, Chen L, Wang X, Chen J, Xu S, Ye L, Yao Y. Simultaneous Determination of Night Effective Constituents and Correlation Analysis of Multiconstituents and Antiplatelet Aggregation Bioactivity In Vitro in Chuanxiong Rhizoma Subjected to Different Decoction Times. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:8970624. [PMID: 31886025 PMCID: PMC6893248 DOI: 10.1155/2019/8970624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 10/26/2019] [Indexed: 05/14/2023]
Abstract
Several effective constituents, such as vanillin, ferulic acid, senkyunolide I, senkyunolide H, coniferyl ferulate, Z-ligustilide, butylphthalide, senkyunolide A, and levistilide A, are unstable and possess mutual transformation relationships in Chuanxiong Rhizoma (CR). Traditional Chinese medicine mainly involves decoction, and the content of effective constituents and antiplatelet aggregation bioactivity (AAB) in CR may vary with different decoction time (10 min, 20 min, 30 min, 40 min, 50 min, and 60 min). Here, we showed that coniferyl ferulate and levistilide A were detected in CR material, but not in the decoction. The effective components possessed transformation and degradation in CR decoction of different times. The effective components and the strength of AAB at 10 and 20 minutes were the strongest, followed by 30-50 minutes, and 60 minutes were the weakest by analysis of SIMCA-PLS in CR decoction of different times. In the Pearson correlation analysis, there were correlations (P < 0.05) between effective components, which were ferulic acid and senkyunolide I (coefficient was 0.976), ferulic acid and senkyunolide H (coefficient was 0.972), senkyunolide I and senkyunolide H (coefficient was 0.982), senkyunolide A and butylphthalide (coefficient was 0.974), senkyunolide A and Z-ligustilide (coefficient was 0.947), and butylphthalide and Z-ligustilide (coefficient was 0.993). Effective components (ferulic acid, senkyunolide I, and senkyunolide H) and AAB were correlated and the Pearson correlation coefficients were respectively 0.965, 0.973, and 0.999. In the stepwise regression analysis, senkyunolide H and senkyunolide I were correlated with AAB (P < 0.05). Senkyunolide H (H) was positively correlated with AAB, senkyunolide I (I) was negatively correlated with AAB, and its expression was AAB = 1.187 ∗ H - 0.199 ∗ I - 0.422. These findings indicate that there are some correlations between effective components and AAB in CR.
Collapse
Affiliation(s)
- Peihua Zhang
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Linming Chen
- Kangmei Pharmaceutical Co., Ltd., Puning 515300, China
| | - Xiaoxiao Wang
- Deyang Food and Drug Safety Inspection and Testing Center, Deyang 61800, China
| | - Jinpei Chen
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shungui Xu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ling Ye
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yixin Yao
- Kangmei Pharmaceutical Co., Ltd., Puning 515300, China
| |
Collapse
|
18
|
Huang L, Wang S, Ma F, Zhang Y, Peng Y, Xing C, Feng Y, Wang X, Peng Y. From stroke to neurodegenerative diseases: The multi-target neuroprotective effects of 3-n-butylphthalide and its derivatives. Pharmacol Res 2018; 135:201-211. [DOI: 10.1016/j.phrs.2018.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
|
19
|
Bi M, Li Q, Guo D, Ding X, Bi W, Zhang Y, Zou Y. Sulphoraphane Improves Neuronal Mitochondrial Function in Brain Tissue in Acute Carbon Monoxide Poisoning Rats. Basic Clin Pharmacol Toxicol 2017; 120:541-549. [PMID: 27983767 DOI: 10.1111/bcpt.12728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) poisoning is one of the leading causes of toxicity-related mortality and morbidity worldwide, primarily manifested by acute and delayed central nervous system (CNS) injuries and other organ damages. However, its definite pathogenesis is poorly understood. The aim of this study was to explore the pathogenesis of the ultrastructural and functional impairment of mitochondria and the protection of sulphoraphane (SFP) at different dosages on hippocampus neurons in rats after exposure to CO. We found that CO poisoning could induce advanced cognitive dysfunction, while the mitochondrial ultrastructure of neurons in rats of the CO poisoning group was seriously damaged and mitochondrial membrane potential (ΔΨm) was accordingly reduced by transmission electron microscopy (TEM) and JC-1 fluorescent probe assay. CO poisoning could also increase the expressions of both nuclear factor erythroid 2-related factor 2 (Nrf-2) and thioredoxin-1 (Trx-1) proteins and their mRNA in brain tissue with immunohistochemistry and quantitative PCR (qPCR) techniques. Early administration of either middle-dose or high-dose SFP could efficiently improve mitochondrial structure and function and enhance the antioxidative stress ability, thus exerting a positive effect against brain damage induced by acute CO poisoning.
Collapse
Affiliation(s)
- Mingjun Bi
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Emergency Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Ding
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Clinical Medicine, Qingdao University Medical College, Qingdao, China
| | - Weikang Bi
- Department of Clinical Medicine, Qingdao University Medical College, Qingdao, China
| | - Yueheng Zhang
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
20
|
Xiang W, Xue H, Wang B, Li Y, Zhang J, Jiang C, Pang J. Efficacy of N-Butylphthalide and Hyperbaric Oxygen Therapy on Cognitive Dysfunction in Patients with Delayed Encephalopathy After Acute Carbon Monoxide Poisoning. Med Sci Monit 2017; 23:1501-1506. [PMID: 28352069 PMCID: PMC5383010 DOI: 10.12659/msm.899499] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Delayed encephalopathy after acute carbon monoxide (CO) poisoning (DEACMP) is one of the most serious complications after CO poisoning. This study was conducted to explore the efficacy of the combined application of N-Butylphthalide and hyperbaric oxygenation therapy (HBO) on cognitive dysfunction in patients with DEACMP. Material/Methods A total of 184 patients with DEACMP were randomly assigned to either receive HBO or N-Butylphthalide and HBO. Meanwhile, all patients received conventional treatment. The total remission rate (RR) was used to assess the clinical efficacy. The Mini-Mental State Examination (MMSE) was used to assess the cognitive function, and the National Institutes of Health Stroke Scale (NIHSS) was used to assess the neurological function. Results Finally, there were 90 and 94 patients in the control and experimental groups, respectively. After eight weeks of treatment, the total RR in the experimental group (47.9%) was significantly higher than that in the control group (33.3%). Compared to the control group, significantly more patients in the experimental group had MMSE scores of 24–30. The lower NIHSS score in the experimental group showed that N-Butylphthalide had the effect of preservation and restoration of neurological function. No obvious drug toxicity or liver and kidney dysfunction was observed, and there was no significant change in the level of blood glucose and blood lipids. Conclusions These results indicated that the combined application of N-Butylphthalide and HBO could significantly improve the cognitive dysfunction of patients with DEACMP and have great clinical efficacy, which should be further studied.
Collapse
Affiliation(s)
- Wenping Xiang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China (mainland)
| | - Hui Xue
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China (mainland)
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China (mainland)
| | - Yuechun Li
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China (mainland)
| | - Jun Zhang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China (mainland)
| | - Changchun Jiang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China (mainland)
| | - Jiangxia Pang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China (mainland)
| |
Collapse
|
21
|
Bi MJ, Sun XN, Zou Y, Ding XY, Liu B, Zhang YH, Guo DD, Li Q. N-Butylphthalide Improves Cognitive Function in Rats after Carbon Monoxide Poisoning. Front Pharmacol 2017; 8:64. [PMID: 28232802 PMCID: PMC5298996 DOI: 10.3389/fphar.2017.00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Cognitive impairment is the most common neurologic sequelae after carbon monoxide (CO) poisoning, and the previous investigations have demonstrated that N-Butylphthalide (NBP) could exert a broad spectrum of neuroprotective properties. The current study aimed to investigate the effect of NBP on cognitive dysfunction in rats after acute severe CO poisoning. Rats were randomly divided into a normal control group, a CO poisoning group and a CO+NBP group. The animal model of CO poisoning was established by exposure to CO in a chamber, and then all rats received hyperbaric oxygen therapy once daily, while rats in CO+NBP group were administered orally NBP (6 mg/ 100g) by gavage twice a day additionally. The results indicated that CO poisoning could induce cognitive impairment. The ultrastructure of hippocampus was seriously damaged under transmission electron microscopy, and the expressions of calpain 1 and CaMK II proteins were significantly elevated after CO exposure according to the analysis of immunofluorescence staining and western blot. NBP treatment could evidently improve cognitive function, and maintain ultrastructure integrity of hippocampus. The expression levels of both calpain 1 and CaMK II proteins in CO+NBP group were considerably lower than that of CO poisoning group (P < 0.05). Taken together, this study highlights the molecular mechanism of cognitive dysfunction in rats after CO exposure via the upregulation of both calpain 1 and CaMK II proteins. The administration of NBP could balance the expressions of calpain 1 and CaMK II proteins and improve cognitive function through maintaining ultrastructural integrity of hippocampus, and thus may play a neuroprotective role in brain tissue in rats with CO poisoning.
Collapse
Affiliation(s)
- Ming-Jun Bi
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China; Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China
| | - Xian-Ni Sun
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| | - Xiao-Yu Ding
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China; Department of Integration of Chinese and Western Clinical Medicine, Qingdao University Medical CollegeQingdao, China
| | - Bin Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine Jinan, China
| | - Yue-Heng Zhang
- Department of Clinical Medicine, Binzhou Medical University Yantai, China
| | - Da-Dong Guo
- Eye Institute, Shandong University of Traditional Chinese Medicine Jinan, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| |
Collapse
|
22
|
Wang H, Li Y, Wu Q, Xu C, Liu Q. Combination of butylphthalide with umbilical mesenchymal stem cells for the treatment of delayed encephalopathy after carbon monoxide poisoning. Medicine (Baltimore) 2016; 95:e5412. [PMID: 27930518 PMCID: PMC5265990 DOI: 10.1097/md.0000000000005412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Delayed encephalopathy after carbon monoxide (CO) poisoning (DEACMP) is still a clinical challenge. This study aimed to investigate the efficacy of combined therapy of mesenchymal stem cell (MSC) transplantation and butylphthalide in DEACMP patients.Forty-two DEACMP patients were treated with 1 of the 3 therapies: combined therapy of MSC transplantation and butylphthalide; MSC transplantation alone; or hyperbaric oxygen therapy. The MSCs were alternatively injected into the subarachnoid space and the carotid artery using a self-made high-pressure injector. The Mini-Mental State Examination and the Barthel index of activities of daily living were administered before the treatment, and at 1 month, 3 months, and 6 months after the treatment. Computed tomography and magnetic resonance imaging results before and after the treatment were compared.At 1 month, 3 months, and 6 months after the treatment, the Mini-Mental State Examination scores and the Barthl scores were significantly higher in patients with the combined therapy of MSC transplantation and butylphthalide than those in patients with MSC transplantation alone or hyperbaric oxygen therapy (all P < 0.0001). No significant adverse events occurred.The combination of MSC transplantation and butylphthalide is safe and effective in treating DEACMP.
Collapse
|
23
|
Bi M, Zhang M, Guo D, Bi W, Liu B, Zou Y, Li Q. N-Butylphthalide Alleviates Blood-Brain Barrier Impairment in Rats Exposed to Carbon Monoxide. Front Pharmacol 2016; 7:394. [PMID: 27833554 PMCID: PMC5080372 DOI: 10.3389/fphar.2016.00394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022] Open
Abstract
Carbon monoxide (CO) poisoning is one of the most important health concerns and may result in neuropathologic changes and neurologic sequelae. However, few studies have addressed the correlation between CO poisoning and blood–brain barrier (BBB) impairment. In this study, we investigated the effects of N-butylphthalide (NBP) on the expressions of zonula occludens-1 (ZO-1), claudin-5 and aquaporin-4 (AQP-4) proteins in a CO poisoning rat model. The results indicated that the brain water content was obviously increased, and the tight junctions between endothelial cells were disrupted, resulting in significant cerebral edema and BBB dysfunction in a rat model of CO poisoning. Meanwhile, the ultrastructure of endothelial cells and pericytes was seriously damaged, and the expressions of ZO-1 and claudin-5 were decreased at an early stage (<7 days). NBP treatment could efficiently maintain the ultrastructural and functional integrity of BBB, alleviate cerebral edema. Besides, NBP could also markedly increase the levels of both ZO-1 and claudin-5 proteins compared with those in rats exposed to CO (P < 0.05), whereas NBP had no apparent regulatory effect on AQP-4 expression. Taken together, this study highlights the importance of ZO-1 and claudin-5 proteins in maintaining BBB ultrastructure and function after CO poisoning. NBP, as a novel treatment approach, may effectively inhibit the down-regulation of ZO-1 and claudin-5 proteins (but not AQP-4), thereby preserving the barrier function and reducing cerebral edema after CO poisoning.
Collapse
Affiliation(s)
- Mingjun Bi
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China; Emergency Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China
| | - Mingwei Zhang
- Affiliated Shouguang People's Hospital of Weifang Medical College Weifang, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine Jinan, China
| | - Weikang Bi
- Department of Clinical Medicine, Qingdao University Medical College Qingdao, China
| | - Bin Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine Jinan, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| |
Collapse
|