1
|
Arslan G, Gökçe B, Muhammed MT, Albayrak Ö, Önkol T, Özçelik AB. Synthesis, DFT Calculations, and Molecular Docking Study of Acetohydrazide‐Based Sulfonamide Derivatives as Paraoxonase 1 Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Gülnur Arslan
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| | - Başak Gökçe
- Department of Biochemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Özlem Albayrak
- Department of Biochemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Tijen Önkol
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| | - Azime Berna Özçelik
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| |
Collapse
|
2
|
Türkeş C, Demir Y, Biçer A, Cin GT, Gültekin MS, Beydemir Ş. Exploration of Some Bis‐Sulfide and Bis‐Sulfone Derivatives as Non‐Classical Aldose Reductase İnhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Abdullah Biçer
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| | - Günseli Turgut Cin
- Department of Chemistry Faculty of Science Akdeniz University Antalya 07058 Turkey
| | | | - Şükrü Beydemir
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
3
|
Duran HE. Pyrimidines: Molecular docking and inhibition studies on carbonic anhydrase and cholinesterases. Biotechnol Appl Biochem 2023; 70:68-82. [PMID: 35112394 DOI: 10.1002/bab.2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The disease is characterized by dementia, memory impairment, cognitive impairment, and speech impairment. Cholinesterases (ChEs; AChE, acetylcholinesterase and BChE, butyrylcholinesterase) inhibitors and their benefits of cholinergic replacement in the treatment of AD have been researched and documented by scientists in various ways to date. Recent studies prove that human carbonic anhydrases (hCAs) are also one of the important targets in the treatment of AD. Therefore, the development of new agents that can simultaneously modulate the various mechanisms or targets involved in the AD pathway may be a powerful strategy to treat AD, the current disease. Considering these data, the effects of the pyrimidines (1-7) were investigated in this study for the discovery and development of multitargeted ChEs and hCAs inhibitors associated with AD. In addition, the molecular docking analysis of the 4-amino-2-choloropyrimidine (2) was performed to understand the binding interactions on the active site of the enzyme. All compounds (1-7) showed satisfactory enzyme inhibitory potency in micromolar concentrations against AChE, BChE, hCAI, and hCAII with KI values ranging from 0.099 to 0.241 μM, from 1.324 to 3.418 μM, from 0.201 to 0.884 μM, from 1.867 to 3.913 μM, respectively. Due to their ChEs and hCAs inhibition, these compounds (1-7) may be considered as leads for investigations in neurodegenerative diseases. All these results revealed that the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.201 ± 0.041 μM for hCA I), the 4-amino-6-hydroxypyrimidine (4) (KI value of 1.867 ± 0.296 μM for hCA II), the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.099 ± 0.008 μM for AChE), and the 4-amino-2-chloropyrimidine (2) (KI value of 1.324 ± 0.273 μM for BChE) from the pyrimidines in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against these enzymes, for the treatment of AD.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
4
|
Duran HE, Beydemir Ş. Recombinant human carbonic anhydrase VII: Purification, characterization, inhibition, and molecular docking studies. Biotechnol Appl Biochem 2023; 70:415-428. [PMID: 35638720 DOI: 10.1002/bab.2367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/01/2022] [Indexed: 11/05/2022]
Abstract
Human carbonic anhydrase VII (hCA VII), a cytosolic enzyme, defends against oxidative stress by preventing reactive oxygen species from forming. In our study, first, hCA VII was cloned into Escherichia coli (One Shot Mach1-T1R) strain by using cDNA of the human brain and successfully expressed. The integrity of the plasmid generated by colony PCR was checked, and after, for protein expression, the plasmid was transformed into E. coli BL21 (DE-3) strain. hCA VII expression was observed after 6 h of isopropyl-D-1-thiogalactopyranoside (IPTG) induction. The fusion protein containing hexahistidine (6xHis) was purified with 7.02 EU/mg of specific activity, had 48.07% of purification yield, and approximately 21-folds using a ProbondTM nickel chelating resin affinity column. Then, both molecular mass determination and purity control of the purified recombinant enzyme was done by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The mass of the SUMO-hCA VII fusion protein was calculated as 46.77 kDa. As a result of Western blot analysis using anti-His G-HRP antibody, the fusion protein was detected as approximately 45 kDa. Furthermore, the characterization assays and in vitro inhibition studies were done for the recombinant enzyme. KI values of these agents were found between 0.29 μM and 157.6 mM. Finally, molecular docking investigations of these antibiotics were undertaken to understand further the binding interactions on the active site of this recombinant enzyme.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
5
|
Demir Y, Ceylan H, Türkeş C, Beydemir Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J Biomol Struct Dyn 2022; 40:12008-12021. [PMID: 34424822 DOI: 10.1080/07391102.2021.1967195] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldose reductase (AR) and sorbitol dehydrogenase (SDH) are important enzymes of the polyol pathway. In the current study, inhibitory effects of vulpinic acid (VA) carnosic acid (CA) and usnic acid (UA) on purified AR and SDH enzymes were determined. These enzymes inhibition could be essential to prevent diabetic complications. AR and SDH enzymes were purified from sheep kidney. Then, VA, CA and UA were tested in various concentrations against these enzymes activity in vitro. KI values were found to be as 1.46 ± 0.04, 5.13 ± 0.25 and 11.71 ± 0.27 μΜ for VA, CA and UA, respectively, for AR. KI constants were found to be as 15.32 ± 0.34, 145.60 ± 2.17 and 213.40 ± 2.64 μΜ VA, CA and UA, respectively, for SDH. These findings indicate that VA, CA and UA could be useful in the treatment of diabetic complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Hamid Ceylan
- Faculty of Science, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
6
|
Çalışkan B, Demir Y, Türkeş C. Ophthalmic drugs: in vitro paraoxonase 1 inhibition and molecular docking studies. Biotechnol Appl Biochem 2022; 69:2273-2283. [PMID: 34786760 DOI: 10.1002/bab.2284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022]
Abstract
Glaucoma is a neuropathy disorder and is generally treated by drugs. Allergic conjunctivitis is a common ophthalmologic disease. Paraoxonase 1 (PON1) is an organophosphate hydrolyzer and antiatherogenic enzyme. PON1 is known for preventing atherosclerosis through lipid-modifying features, as well as which has decisive actions of antiapoptosis, anti-inflammatory, antithrombosis, and antiadhesion antioxidant activity properties. Thus, reducing the enzyme levels in hyperthyroidism, chronic renal failure, glaucoma, diabetes mellitus, and cardiovascular diseases is a significant risk. This study was tested some ophthalmic drugs used to treat the diseases, such as glaucoma and allergic conjunctivitis, mentioned above, travoprost, latanoprost, ketotifen, emedastine, and olopatadine, for their inhibition activities against PON1. These drugs displayed the potent inhibition effect with IC50 values ranging between 14.95 ± 0.15 and 299.60 ± 4.07 μM and KI constants ranging from 9.71 ± 2.63 to 261.50 ± 59.98 μM. Besides, the molecular docking analyses of the competitive inhibitors, travoprost, emedastine, and olopatadine, were performed to understand the binding interactions on the enzyme's binding site. According to both in vitro and in silico analysis results, travoprost had the most potent effect on PON1 enzyme activity.
Collapse
Affiliation(s)
- Büşra Çalışkan
- Department of Opthalmology, Kağızman State Hospital, Kağızman, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24100, Turkey
| |
Collapse
|
7
|
Korkmaz IN, Türkeş C, Demir Y, Öztekin A, Özdemir H, Beydemir Ş. Biological evaluation and in silico study of benzohydrazide derivatives as paraoxonase 1 inhibitors. J Biochem Mol Toxicol 2022; 36:e23180. [PMID: 35916346 DOI: 10.1002/jbt.23180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
Serum paraoxonase 1 (PON1) is found in all mammalian species and is a calcium-dependent hydrolytic enzyme. PON1 hydrolyze several substrates, including carbonates, esters, and organophosphates. In the current study, we aimed to investigate the effect of the presynthesized benzohydrazide derivatives (1-9) on PON1 activity. Benzohydrazide compounds moderate inhibited PON1 with the half-maximal inhibitory concentration values ranging from 76.04 ± 13.51 to 221.70 ± 13.59 μM and KI values ranging from 38.75 ± 12.21 to 543.50 ± 69.76 μM. Compound 4 (2-amino-4-chlorobenzohydrazide) showed the best inhibition (KI = 38.75 ± 12.21 μM). Molecular docking and ADME-Tox studies of benzohydrazide derivatives were also carried out. In this context, we hope that the results obtained in this study contribute to the determination of the side effects of current and new benzohydrazide-based pharmacological compounds to be developed.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Aykut Öztekin
- Department of Medical Services and Techniques, Vocational School of Health Services, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
8
|
Korkmaz IN, Türkeş C, Demir Y, Özdemir H, Beydemir Ş. Methyl benzoate derivatives: in vitro Paraoxonase 1 inhibition and in silico studies. J Biochem Mol Toxicol 2022; 36:e23152. [PMID: 35708184 DOI: 10.1002/jbt.23152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022]
Abstract
Paraoxonase 1 (PON1) can metabolize some compounds such as aromatic carboxylic acid and unsaturated aliphatic esters, arylesters, cyclic carbonate, plucuronide drugs, some carbamate insecticide classes, nerve gases, and lactone compounds. Methyl benzoate has recently been shown to display potent toxicity against several insect species. In the current study, we aimed to investigate the effect of the methyl benzoate compounds (1-17) on PON1 activity. Methyl benzoate compounds inhibited PON1 with KI values ranging from 25.10 ± 4.73 to 502.10 ± 64.72 μM. Compound 10 (methyl 4-amino-2-bromo benzoate) showed the best inhibition (KI = 25.10 ± 4.73 μM). Furthermore, using the ADME-Tox, Glide XP, and MM-GBSA tools of the Schrödinger Suite 2021-4, a complete ligand-receptor interaction prediction was performed to characterize the methyl benzoates (1-17), probable binding modalities versus the PON1.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
9
|
Söy&u H, Uluta Y, Köksa E. Inhibitory Effect of Methotrexate (MTX) Used in Human Cancer Treatment on Paraoxonase-1 (PON1). INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.942.946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Tokalı FS, Demir Y, Demircioğlu İH, Türkeş C, Kalay E, Şendil K, Beydemir Ş. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors. Drug Dev Res 2022; 83:586-604. [PMID: 34585414 DOI: 10.1002/ddr.21887] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
A series of novel sulfonates containing quinazolin-4(3H)-one ring derivatives was designed to inhibit aldose reductase (ALR2, EC 1.1.1.21). Novel quinazolinone derivatives (1-21) were synthesized from the reaction of sulfonated aldehydes with 3-amino-2-alkylquinazolin-4(3H)-ones in glacial acetic acid with good yields (85%-94%). The structures of the novel molecules were characterized using IR, 1 H-NMR, 13 C-NMR, and HRMS. All the novel quinazolinones (1-21) demonstrated nanomolar levels of inhibitory activity against ALR2 (KI s are in the range of 101.50-2066.00 nM). Besides, 4-[(2-isopropyl-4-oxoquinazolin-3[4H]-ylimino)methyl]phenyl benzenesulfonate (15) showed higher inhibitor activity inhibited ALR2 up to 7.7-fold compared to epalrestat, a standard inhibitor. Binding interactions between ALR2 and quinazolinones have been investigated using Schrödinger Small-Molecule Drug Discovery Suite 2021-1, reported possible inhibitor-ALR2 interactions. Both in vitro and in silico study results suggest that these quinazolin-4(3H)-one ring derivatives (1-21) require further molecular modification to improve their drug nominee potency as an ALR2 inhibitor.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | | | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Kıvılcım Şendil
- Department of Chemistry, Faculty of Arts and Science, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
11
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Yeni Y, Hacımüftüoğlu A, Ereminsoy E, Küfrevioğlu Öİ, Beydemir Ş. Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol Divers 2022; 26:2825-2845. [PMID: 35397086 PMCID: PMC8994094 DOI: 10.1007/s11030-022-10422-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Abstract The acetylcholinesterase and carbonic anhydrase inhibitors (AChEIs and hCAIs) remain key therapeutic agents for many bioactivities such as anti-Alzheimer and antiobesity antiepileptic, anticancer, antiinfective, antiglaucoma, and diuretic effects. Here, it has been attempted to discover novel multi-target AChEIs and hCAIs that are highly potent, orally bioavailable, may be brain penetrant, and have higher effectiveness at lower doses than tacrine and acetazolamide. After detailed investigations both in vitro and in silico, novel N-substituted sulfonyl amide derivatives (6a–j) were determined to be highly potent inhibitors for AChE and hCAs (KIs are in the range of 23.11–52.49 nM, 18.66–59.62 nM, and 9.33–120.80 nM for AChE, hCA I, and hCA II, respectively). Moreover, according to the cytotoxic effect studies, such as the ADME-Tox, cortex neuron cells, and neuroblastoma SH-SY5Y cell line, compounds 6a, 6d, and 6h, which are the most potent representative versus the target enzymes, were identified as orally bioavailable, highly selective, and brain preferentially distributed AChEIs and hCAIs. The docking studies revealed precise binding modes between 6a, 6d, and 6h and hCA II, hCA I, and AChE, respectively. The results presented here might provide a solid basis for further investigation into more potent AChEIs and hCAIs. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-022-10422-8.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Türkiye.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Türkiye
| | - Yeşim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ergün Ereminsoy
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Türkiye.,The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Türkiye
| |
Collapse
|
12
|
Soyut H. An in vitro Study: Inhibitory Effect of Carfilzomib on Human Serum Paraoxonase-1 (hPON1). INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.522.526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Türkeş C, Demir Y, Beydemir Ş. Infection Medications: Assessment In‐Vitro Glutathione S‐Transferase Inhibition and Molecular Docking Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202103197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
14
|
Yapar G, Esra Duran H, Lolak N, Akocak S, Türkeş C, Durgun M, Işık M, Beydemir Ş. Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorg Chem 2021; 117:105473. [PMID: 34768205 DOI: 10.1016/j.bioorg.2021.105473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023]
Abstract
Aldose reductase (ALR2), one of the metabolically important enzymes, catalyzes the formation of sorbitol from glucose in the polyol pathway. ALR2 inhibition is required to prevent diabetic complications. In the present study, the novel bis-hydrazone compounds bearing isovanillin moiety (GY1-12) were synthesized, and various chromatographic methods were applied to purify the ALR2 enzyme. Afterward, the inhibitory effect of the synthesized compounds on the ALR2 was screened in vitro. All the novel bis-hydrazones demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 12.55-35.04 nM, and 13.38-88.21 nM, respectively. Compounds GY-11, GY-7, and GY-5 against ALR2 were identified as the highly potent inhibitors, respectively, and were superior to the standard drug, epalrestat. Moreover, a comprehensive ligand-receptor interactions prediction was performed using ADME-Tox, Glide XP, and MM-GBSA modules of Schrödinger Small-Molecule Drug Discovery Suite to elucidate the novel bis-hydrazone derivatives, potential binding modes versus the ALR2. As a result, these compounds with ALR2 inhibitory effects may be potential alternative agents that can be used to treat or prevent diabetic complications.
Collapse
Affiliation(s)
- Gönül Yapar
- Department of Chemistry, Faculty of Arts and Sciences, İstanbul Technical University, İstanbul 34469, Turkey.
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa 63290, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey.
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
15
|
Soyut H. Investigation of Inhibition of Busulfan (Chemotherapeutic Drug) on Human Serum Paraoxonase-1 (PON1). INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.572.576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Türkeş C, Kesebir AÖ, Demir Y, Küfrevioğlu Öİ, Beydemir Ş. Calcium Channel Blockers: The Effect of Glutathione S‐Transferase Enzyme Activity and Molecular Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202103100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Arzu Öztürk Kesebir
- Department of Chemistry Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
17
|
Sever B, Türkeş C, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş. Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Arch Pharm (Weinheim) 2021; 354:e2100294. [PMID: 34569655 DOI: 10.1002/ardp.202100294] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/25/2023]
Abstract
New hybrid thiazolyl-pyrazoline derivatives (4a-k) were obtained through a facile and versatile synthetic procedure, and their inhibitory effects on the human carbonic anhydrase (hCA) isoforms I and II as well as on acetylcholinesterase (AChE) were determined. All new thiazolyl-pyrazolines showed activity at nanomolar levels as hCA I, hCA II, and AChE inhibitors, with KI values in the range of 13.35-63.79, 7.01-115.80, and 17.89-48.05 nM, respectively. 1-[4-(4-Cyanophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4f) and 1-(4-phenylthiazol-2-yl)-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4a) against hCAs and 1-[4-(4-chlorophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4d) and 1-[4-(4-nitrophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4b) against AChE were identified as highly potent inhibitors, superior to the standard drugs, acetazolamide and tacrine, respectively. Compounds 4a-k were also evaluated for their cytotoxic effects on the L929 mouse fibroblast (normal) cell line. Moreover, a comprehensive ligand-receptor interaction prediction was performed using the ADME-Tox, Glide XP, and MM-GBSA modules of the Schrödinger Small-Molecule Drug Discovery Suite to elucidate the potential binding modes of the new hybrid inhibitors against these metabolic enzymes.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
18
|
Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ, Beydemir Ş. Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies. J Biomol Struct Dyn 2021; 39:5449-5460. [PMID: 32691682 DOI: 10.1080/07391102.2020.1790422] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Sulfonamide derivatives exhibit a wide biological activity and can function as potential medical molecules in the development of a drug. Studies have reported that the compounds have an effect on many enzymes. In this study, the derivatives of amine sulfonamide (1i-11i) were prepared with reduced imine compounds (1-11) with NaBH4 in methanol. The synthesized compounds were fully characterized by spectral data and analytical. The effect of the synthesized derivatives on acetylcholinesterase (AChE), glutathione S-transferase (GST) and α-glycosidase (α-GLY) enzymes were determined. For the AChE and α-GLY, the most powerful inhibition was observed on 10 and 10i series with KI value in the range 2.26 ± 0.45-3.57 ± 0.97 and 95.73 ± 13.67-102.45 ± 11.72 µM, respectively. KI values of the series for GST were found in the range of 22.76 ± 1.23-49.29 ± 4.49. Finally, the compounds have a stronger inhibitor in lower concentrations by the attachment of functional electronegative groups such as two halogens (-Br and -CI), -OH to the benzene ring and -SO2NH2. The crystal structures of AChE, α-GLY, and GST in complex with selected derivatives 4 and 10 show the importance of the functional moieties in the binding modes within the receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Fikret Türkan
- Department of Medical Services and Techniques, Vocational School of Health Services, Iğdır University, Iğdır, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
19
|
Askin S, Tahtaci H, Türkeş C, Demir Y, Ece A, Akalın Çiftçi G, Beydemir Ş. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg Chem 2021; 113:105009. [PMID: 34052739 DOI: 10.1016/j.bioorg.2021.105009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Imidazole and thiadiazole derivatives display an extensive application in pharmaceutical chemistry, and they have been investigated as bioactive molecules for medicinal chemistry purposes. Classical carbonic anhydrase (CA) inhibitors are based on sulfonamide groups, but inhibiting all CA isoforms nonspecifically, thereby causing undesired side effects, is the main drawback of these types of inhibitors. Here we reported an investigation of novel 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (9a-k, 10a, and 11a) and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (12a-20a) that do not possess the zinc-binding sulfonamide group for the inhibition of human carbonic anhydrase (hCA, EC 4.2.1.1) I and II isoforms and also of acetylcholinesterase (AChE, EC 3.1.1.7). Imidazo[2,1-b][1,3,4]thiadiazoles demonstrated low nanomolar inhibitory activity against hCA I, hCA II, and AChE (KIs are in the range of 23.44-105.50 nM, 10.32-104.70 nM, and 20.52-54.06 nM, respectively). Besides, compound 9b inhibit hCA I up to 18-fold compared to acetazolamide, while compound 10a has a 5-fold selectivity towards hCA II. The synthesized compounds were also evaluated for their cytotoxic effects on the L929 mouse fibroblast cell line. Molecular docking simulations were performed to elucidate these inhibitors' potential binding modes against hCA I and II isoforms and AChE. The novel compounds reported here can represent interesting lead compounds, and the results presented here might provide further structural guidance to discover and design more potent hCA and AChE inhibitors.
Collapse
Affiliation(s)
- Sercan Askin
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan 75700, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey.
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
20
|
Türkeş C, Akocak S, Işık M, Lolak N, Taslimi P, Durgun M, Gülçin İ, Budak Y, Beydemir Ş. Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. J Biomol Struct Dyn 2021; 40:8752-8764. [PMID: 33950796 DOI: 10.1080/07391102.2021.1916599] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The underlying cause of many metabolic diseases is abnormal changes in enzyme activity in metabolism. Inhibition of metabolic enzymes such as cholinesterases (ChEs; acetylcholinesterase, AChE and butyrylcholinesterase, BChE) and α-glucosidase (α-GLY) is one of the accepted approaches in the treatment of Alzheimer's disease (AD) and diabetes mellitus (DM). Here we reported an investigation of a new series of novel ureido-substituted derivatives with sulfamethazine backbone (2a-f) for the inhibition of AChE, BChE, and α-GLY. All the derivatives demonstrated activity in nanomolar levels as AChE, BChE, and α-GLY inhibitors with KI values in the range of 56.07-204.95 nM, 38.05-147.04 nM, and 12.80-79.22 nM, respectively. Among the many strong N-(4,6-dimethylpyrimidin-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamide derivatives (2a-f) detected against ChEs, compound 2c, the 4-fluorophenylureido derivative, demonstrated the most potent inhibition profile towards AChE and BChE. A comprehensive ligand/receptor interaction prediction was performed in silico for the three metabolic enzymes providing molecular docking investigation using Glide XP, MM-GBSA, and ADME-Tox modules. The present research reinforces the rationale behind utilizing inhibitors with sulfamethazine backbone as innovative anticholinergic and antidiabetic agents with a new mechanism of action, submitting propositions for the rational design and synthesis of novel strong inhibitors targeting ChEs and α-GLY.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Yakup Budak
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
21
|
Akocak S, Taslimi P, Lolak N, Işık M, Durgun M, Budak Y, Türkeş C, Gülçin İ, Beydemir Ş. Synthesis, Characterization, and Inhibition Study of Novel Substituted Phenylureido Sulfaguanidine Derivatives as α‐Glycosidase and Cholinesterase Inhibitors. Chem Biodivers 2021; 18:e2000958. [DOI: 10.1002/cbdv.202000958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartın University Bartın 74100 Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| | - Mesut Işık
- Department of Bioengineering Faculty of Engineering Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| | - Mustafa Durgun
- Department of Chemistry Faculty of Arts and Sciences Harran University Şanlıurfa 63290 Turkey
| | - Yakup Budak
- Department of Chemistry Faculty of Arts and Sciences Gaziosmanpaşa University Tokat 60250 Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - İlhami Gülçin
- Department of Chemistry Faculty of Sciences Atatürk University Erzurum 25240 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
22
|
Çalışkan B, Öztürk Kesebir A, Demir Y, Akyol Salman İ. The effect of brimonidine and proparacaine on metabolic enzymes: Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase. Biotechnol Appl Biochem 2021; 69:281-288. [PMID: 33438819 DOI: 10.1002/bab.2107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress is to upregulate the pentose phosphate pathway (PPP). The PPP consists of two functional branches, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconaste dehydrogenase (6PGD). Glutathione reductase (GR) has a significant role in catalyzing an oxidized glutathione form into a reduced form. The purpose of this study is to investigate the effects of brimonidine and proparacaine on the activity of 6PGD, G6PD, and GR enzymes purified from human erythrocytes. Brimonidine displayed considerable inhibition profile against G6PD with IC50 value and KI constant of 29.93 ± 3.56 and 48.46 ± 0.66 μM, respectively. On the other hand, proparacaine had no inhibitory effect against G6PD. KI values were found to be 66.06 ± 0.78 and 811.50 ± 11.13 μM for brimonidine and proparacaine, respectively, for 6PGD. KI values were found to be 144.10 ± 2.01 and 1,654.00 ± 26.29 μM for brimonidine and proparacaine, respectively, for GR. Herein, also in silico molecular docking studies were performed between drugs and enzymes.
Collapse
Affiliation(s)
- Büşra Çalışkan
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Arzu Öztürk Kesebir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - İlknur Akyol Salman
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
23
|
Durgun M, Türkeş C, Işık M, Demir Y, Saklı A, Kuru A, Güzel A, Beydemir Ş, Akocak S, Osman SM, AlOthman Z, Supuran CT. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J Enzyme Inhib Med Chem 2020; 35:950-962. [PMID: 32249705 PMCID: PMC7170330 DOI: 10.1080/14756366.2020.1746784] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Sulphonamides are biologically important compounds with low toxicity, many bioactivities and cost-effectiveness. Eight sulphonamide derivatives were synthesised and characterised by FT-IR, 13C NMR, 1H NMR, LC-MS and elemental analysis. Their inhibitory effect on AChE, and carbonic anhydrase I and II enzyme activities was investigated. Their antioxidant activity was determined using different bioanalytical assays such as radical scavenging tests with ABTS•+, and DPPH•+ as well as metal-reducing abilities with CUPRAC, and FRAP assays. All compounds showed satisfactory enzyme inhibitory potency in nanomolar concentrations against AChE and CA isoforms with KI values ranging from 10.14 ± 0.03 to 100.58 ± 1.90 nM. Amine group containing derivatives showed high metal reduction activity and about 70% ABTS radical scavenging activity. Due to their antioxidant activity and AChE inhibition, these novel compounds may be considered as leads for investigations in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Ali Saklı
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Abdussamat Güzel
- Department of Pharmacy Services, Vocational School of Health Services, İnönü University, Malatya, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Sameh M. Osman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
24
|
Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir Ş. Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000282. [PMID: 33155700 DOI: 10.1002/ardp.202000282] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia, memory impairment, cognitive dysfunction, and speech impairment. The utility of cholinergic replacement by acetylcholinesterase (AChE) inhibitors in AD treatment has been well documented so far. Recently, studies have also evidenced that human carbonic anhydrases (hCAs) serve as an important target for AD treatment. In this direction, the improvement of new multitarget drugs, which can simultaneously modulate several mechanisms or targets included in the AD pathway, may be a potent strategy to treat AD. In light of these data for understanding and developing AD-related multitarget AChE and hCAs inhibitors, in this study, novel methylene-aminobenzoic acid and tetrahydroisoquinolynyl-benzoic acid derivatives (4a-g and 6a-g) were designed. The synthesized analogs were experimentally validated for their effects by in vitro and direct enzymatic tests. Also, the compounds were subjected to in silico monitoring with Schrödinger Suite software to assign binding affinities of potential derivatives based on Glide XP scoring, molecular mechanics-generalized Born surface area computing, and validation by molecular docking. The results revealed that 6c (1,3-dimethyldihydropyrimidine-2,4-(1H,3H)-dione-substituted, KI value of 33.00 ± 0.29 nM), 6e (cyclohexanone-substituted, KI value of 18.78 ± 0.09 nM), and 6f (2,2-dimethyl-1,3-dioxan-4-one-substituted, KI value of 13.62 ± 0.21 nM) from the benzoic acid derivatives in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against hCA I, hCA II, and AChE, respectively, for the treatment of AD.
Collapse
Affiliation(s)
- Muharrem Kalaycı
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
25
|
Kilic A, Beyazsakal L, Işık M, Türkeş C, Necip A, Takım K, Beydemir Ş. Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol 2020; 163:1970-1988. [DOI: 10.1016/j.ijbiomac.2020.09.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
|
27
|
Türkeş C, Demir Y, Beydemir Ş. Some calcium-channel blockers: kinetic and in silico studies on paraoxonase-I. J Biomol Struct Dyn 2020; 40:77-85. [DOI: 10.1080/07391102.2020.1806927] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cüneyt Türkeş
- Faculty of Pharmacy, Department of Biochemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Faculty of Pharmacy, Department of Biochemistry, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
28
|
Işık M, Beydemir Ş. The impact of some phenolic compounds on serum acetylcholinesterase: kinetic analysis of an enzyme/inhibitor interaction and molecular docking study. J Biomol Struct Dyn 2020; 39:6515-6523. [DOI: 10.1080/07391102.2020.1801509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
29
|
Demir Y, Türkeş C, Beydemir Ş. Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I. Anticancer Agents Med Chem 2020; 20:887-896. [DOI: 10.2174/1871520620666200218110645] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/15/2019] [Accepted: 01/27/2020] [Indexed: 01/28/2023]
Abstract
Background:
Currently, most of the drugs used in clinical applications show their pharmacological
influences by inhibiting or activating enzymes. Therefore, enzyme inhibitors have an essential place in the drug
design for many diseases.
Objective:
The current study aimed to contribute to this growing drug design field (i.e., medicine discovery and
development) by analyzing enzyme-drug interactions.
Methods:
For this reason, Paraoxonase-I (PON1) enzyme was purified from fresh human serum by using rapid
chromatographic techniques. Additionally, the inhibition effects of some antineoplastic agents were researched
on the PON1.
Results:
The enzyme was obtained with a specific activity of 2603.57 EU/mg protein. IC50 values for pemetrexed
disodium, irinotecan hydrochloride, dacarbazine, and azacitidine were determined to be 9.63μM,
30.13μM, 53.31μM, and 21.00mM, respectively. These agents found to strongly inhibit PON1, with Ki constants
ranging from 8.29±1.47μM to 23.34±2.71mM. Dacarbazine and azacitidine showed non-competitive inhibition,
while other drugs showed competitive inhibition. Furthermore, molecular docking was performed using maestro
for these agents. Among these, irinotecan hydrochloride and pemetrexed disodium possess the binding energy of
-5.46 and -8.43 kcal/mol, respectively.
Conclusion:
The interaction studies indicated that these agents with the PON1 possess binding affinity.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
30
|
Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, Gülçin İ, Durgun M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg Chem 2020; 100:103897. [PMID: 32413628 DOI: 10.1016/j.bioorg.2020.103897] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Some metabolic enzyme inhibitors can be used in the treatment of many diseases. Therefore, synthesis and determination of alternative inhibitors are essential. In this study, the inhibition effect of newly synthesized compounds on carbonic anhydrase (cytosolic isoforms, hCA I and hCA II), α-glycosidase (α-GLY), and acetylcholinesterase (AChE) were investigated. The possible binding mechanism of the compounds with a high inhibitory effect on the active site of the enzyme was demonstrated by molecular docking method. We investigated the inhibition effects of novel synthesized compounds (MZ1-MZ11) on metabolic enzymes such as α-GLY, AChE, and hCA I and II. The compound MZ6 for AChE, MZ8 for CA I and CA II and MZ7 for α-GLY showed a very active inhibition profile (KIs 51.67 ± 4.76 for hCA I, 40.35 ± 5.74 nM for hCA II, 41.74 ± 8.08 nM for α-GLY and 335.76 ± 46.91 nM for AChE). The novel synthesized compounds (MZ1-MZ11) have a higher enzyme (α-GLY, AChE, hCA I, and II) inhibitory potential than ACR, TAC, and AZA, respectively. The compounds may have the potential to be used as alternative medicines after further research in the treatment of many diseases such as diabetes, Alzheimer's disease, heart failure, ulcer, and epilepsy.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın 74100, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa 63300, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa 63290, Turkey
| |
Collapse
|
31
|
Işık M, Akocak S, Lolak N, Taslimi P, Türkeş C, Gülçin İ, Durgun M, Beydemir Ş. Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3‐diaryltriazene‐substituted sulfathiazole derivatives. Arch Pharm (Weinheim) 2020; 353:e2000102. [DOI: 10.1002/ardp.202000102] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health ServicesHarran UniversityŞanlıurfa Turkey
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAdıyaman UniversityAdıyaman Turkey
| | - Nabih Lolak
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAdıyaman UniversityAdıyaman Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartın UniversityBartın Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of PharmacyErzincan Binali Yıldırım UniversityErzincan Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of SciencesAtatürk UniversityErzurum Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and SciencesHarran UniversityŞanlıurfa Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- The Rectorate of Bilecik Şeyh Edebali UniversityBilecik Turkey
| |
Collapse
|
32
|
Istrefi Q, Türkeş C, Arslan M, Demir Y, Nixha AR, Beydemir Ş, Küfrevioğlu Öİ. Sulfonamides incorporating keteneN,S‐acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2020; 353:e1900383. [DOI: 10.1002/ardp.201900383] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Qëndresa Istrefi
- Department of Chemistry, Faculty of Mathematical and Natural SciencesUniversity of Prishtina Prishtina, Republic of Kosovo
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of PharmacyErzincan Binali Yıldırım University Erzincan Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and SciencesSakarya University Sakarya Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High SchoolArdahan University Ardahan Turkey
| | - Arleta R. Nixha
- Department of Chemistry, Faculty of Mathematical and Natural SciencesUniversity of Prishtina Prishtina, Republic of Kosovo
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of PharmacyAnadolu University Eskişehir Turkey
| | - Ömer İ. Küfrevioğlu
- Department of Chemistry, Faculty of SciencesAtatürk University Erzurum Turkey
| |
Collapse
|
33
|
Durgun M, Türkeş C, Işık M, Demir Y, Saklı A, Kuru A, Güzel A, Beydemir Ş, Akocak S, Osman SM, AlOthman Z, Supuran CT. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J Enzyme Inhib Med Chem 2020. [DOI: 10.1080/14756366.2020.1746784 pmid: 32249705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Ali Saklı
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Abdussamat Güzel
- Department of Pharmacy Services, Vocational School of Health Services, İnönü University, Malatya, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Sameh M. Osman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
34
|
Demir Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking,
ADME
and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug Dev Res 2020; 81:628-636. [DOI: 10.1002/ddr.21667] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High SchoolArdahan University Ardahan Turkey
| |
Collapse
|
35
|
Türkeş C, Demir Y, Beydemir Ş. Calcium channel blockers: molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. J Biomol Struct Dyn 2020; 39:1672-1680. [DOI: 10.1080/07391102.2020.1736631] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Cüneyt Türkeş
- Faculty of Pharmacy, Department of Biochemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Faculty of Pharmacy, Department of Biochemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
36
|
Işık M, Beydemir Ş, Demir Y, Durgun M, Türkeş C, Nasır A, Necip A, Akkuş M. Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int J Biol Macromol 2020; 146:1111-1123. [PMID: 31739032 DOI: 10.1016/j.ijbiomac.2019.09.237] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022]
Abstract
Sulfonamides known as inhibitors of many metabolic enzymes have been widely used as antimicrobial drugs for a long time. In the present study, we investigated in vitro inhibitory activities of benzenesulfonamide derivatives on human paraoxonase-I (hPON1). For this aim, PON1 was purified from human serum with a specific activity of 2603.57 EU/mg and 8.34% yield using simple chromatographic methods. The various concentrations of early-synthesized sixteen sulfonamide derivatives were tested on the paraoxonase activity. Ki values of compounds were found in the range of 0.28-357.70 µM. Compound H4 had the highest inhibitory activity on hPON1 as competitive. Estimated structure-activity relationship (SAR) for compounds was done based on different substituents and their positions in the compounds. Besides, the molecular docking analysis of compound H4 was performed to understand the binding interactions on the active site of the enzyme. According to these experimental results, compound H4 was a potential inhibitor of PON1.
Collapse
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Health Services Vocational School, Harran University, 63300 Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan 75700, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290 Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey
| | - Abdul Nasır
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Adem Necip
- Department of Pharmacy Services, Health Services Vocational School, Harran University, 63300 Şanlıurfa, Turkey
| | - Musa Akkuş
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
37
|
Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int J Biol Macromol 2020. [DOI: 10.1016/j.ijbiomac.2019.09.237 pmid: 31739032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Demir Y, Balcı N, Gürbüz M. Differential effects of selective serotonin reuptake inhibitors on paraoxonase-1 enzyme activity: An in vitro study. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108608. [PMID: 31422163 DOI: 10.1016/j.cbpc.2019.108608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
Paraoxonase-I (PON1) is a calcium-dependent hydrolytic enzyme, plays an important role in most antioxidant properties related to high-density lipoprotein (HDL). Antidepressant drugs are commonly employed in treatment of mood disorders and anxiety treatment. In this study, human serum PON1 was purified using simple reproducible procedures and the effects of some antidepressant drugs on its activity were determined. It was found that mirtazapine, aripiprazole, escitalopram, and risperidone exhibited potential inhibitory properties on the purified PON1 activity with IC50 values in the range of 115.50-231.00 μM and Ki values in the range of 41.66 ± 4.27 μM-276.36 ± 35.28 μM. Both risperidone and escitalopram inhibited PON1 activity competitively, while both aripiprazole and mirtazapine inhibited PON1 activity non-competitively. Chlorpromazine did not affect PON1 activity. Usage of drugs with significant biological activity may be hazardous in some cases.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey; Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey.
| | - Neslihan Balcı
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Mahmut Gürbüz
- Gaziantep Islahiye State Hospital, 27800 Gaziantep, Turkey
| |
Collapse
|
39
|
Işık M, Demir Y, Durgun M, Türkeş C, Necip A, Beydemir Ş. Molecular docking and investigation of 4-(benzylideneamino)- and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00988-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
In Vitro and In Silico Studies on the Toxic Effects of Antibacterial Drugs as Human Serum Paraoxonase 1 Inhibitor. ChemistrySelect 2019. [DOI: 10.1002/slct.201902424] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Çağlayan C, Taslimi P, Demir Y, Küçükler S, Kandemir FM, Gulçin İ. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J Biochem Mol Toxicol 2019; 33:e22381. [PMID: 31454121 DOI: 10.1002/jbt.22381] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
Abstract
In this study, it was demonstrated the ameliorative effect of zingerone (ZO) (25 and 50 mg/kg body weight) against vancomycin (VCM) (200 mg/kg body weight) administered to rats on some metabolic enzymes' activities in the lung, liver, kidney, and testis tissues of rats. Forty-two rats were divided into six groups as follows: control, ZO-25, ZO-50, VCM, VCM + ZO-25, and VCM + ZO-50. α-Glycosidase, butyrylcholinesterase, aldose reductase, acetylcholinesterase, paraoxonase-1, and carbonic anhydrase enzyme activities were significantly (P < .05) decreased in VCM group when compared with the control group. ZO, supplied with VCM, significantly activated some of these enzyme in all tissues. The results of this study showed that ZO regulates abnormal increases and decreases in VCM-induced metabolic enzyme activities in all tissues.
Collapse
Affiliation(s)
- Cüneyt Çağlayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
42
|
Türkeş C. Investigation of Potential Paraoxonase-I Inhibitors by Kinetic and Molecular Docking Studies: Chemotherapeutic Drugs. Protein Pept Lett 2019; 26:392-402. [PMID: 30819074 DOI: 10.2174/0929866526666190226162225] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolic processes in living organisms are closely related to the catalytic activity of enzymes. Changes in enzyme activity cause various diseases e.g., neurological, cancer, metabolic and cardiovascular. Most of the current therapeutic drugs available in clinical utilization function as enzyme inhibitors. OBJECTIVE The main goal of the current study to contribute to this growing drug design area (such as medication discovery and development) by investigating protein-drug interactions. METHODS The paraoxonase-I (PON1) enzyme was purified from human serum by using different and simple chromatographic techniques. Additionally, it was investigated inhibition effects of some chemotherapeutic drugs on the PON1. RESULTS The purification results for PON1 depicted a 3880.83 EU/mg proteins specific activity and the molecular weight was calculated as 43 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These drugs found to strongly inhibit PON1, with IC50 values ranging from 0.222±0.002 to 688.300±0.897 µM. Ki constants for vincristine sulfate, epirubicin hydrochloride, and doxorubicin hydrochloride were determined to be 0.235±0.032 µM, 221.400±29.270 µM, and 913.300±201.000 µM, respectively. CONCLUSION These drugs showed in competitive inhibition. Also, the molecular docking poses of these agents inside the catalytic sites of 1V04 and 3SRE were analysis.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| |
Collapse
|
43
|
Demir Y, Durmaz L, Taslimi P, Gulçin İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnol Appl Biochem 2019; 66:781-786. [PMID: 31135076 DOI: 10.1002/bab.1781] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/26/2019] [Indexed: 11/05/2022]
Abstract
Aldose reductase (AR), α-amylase, and α-glycosidase are vital enzymes to prevent diabetic complications. Here, AR was purified from sheep kidney using elementary methods with 111.11-purification fold and with 0.85% purification yield. The interactions between some phenolic compounds and the AR, α-glycosidase, and α-amylase enzyme were determined. It was found that phenolic compounds exhibit potential inhibitor properties for these enzymes. For α-amylase, studied phenolic compounds showed IC50 values in the range of 601.56-2,067.78 nM. For α-glycosidase, Ki values were found in the range of 169.25 ± 27.22-572.88 ± 106.76 nM. For AR, Ki values in the range of 8.48 ± 0.56-43.26 ± 7.63 µM. However, genistein showed the best inhibition effect toward AR and α-glycosidase, but delphinidin chloride exhibited the best inhibition effect against α-amylase enzyme. We determined that all compounds showed noncompetitive inhibition effect against AR and α-glycosidase. Also, studied phenolic compounds may be useful in the prevention or treatment of diabetic complications.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
44
|
Türkeş C. A potential risk factor for paraoxonase 1: in silico and in-vitro analysis of the biological activity of proton-pump inhibitors†. J Pharm Pharmacol 2019; 71:1553-1564. [DOI: 10.1111/jphp.13141] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/29/2019] [Indexed: 01/06/2023]
Abstract
Abstract
Objectives
Proton-pump inhibitors (PPIs) are drugs commonly utilized by about 7% of adults in the world. Recent researches have shown that there are countless and severe side effects of these drugs. This situation has raised concern among clinicians and patients alike. The purpose of this study is to contribute the novel drug discovery and development technology and toxicology field by researching interactions of PPIs on paraoxonase 1.
Methods
In this study, the paraoxonase 1 enzyme was purified from human serum by using rapid and straightforward chromatographic techniques. Subsequently, the inhibition effects of pantoprazole, omeprazole, and esomeprazole, PPIs, were investigated on paraoxonase 1. Besides, molecular docking studies were performed to unravel the binding mechanism between the enzyme and drugs.
Key findings
All drugs showed potent inhibitory activities. IC50 of the drugs values were 54.780 ± 0.524, 86.470 ± 0.818 and 93.390 ± 0.885 mm and Ki constants were found as 39.895 ± 0.005 mm, 70.112 ± 0.010 mm and 78.868 ± 0.008 mm, respectively. The binding scores observed in silico studies were found to agree with the obtained from in-vitro experimental results.
Conclusions
We observed that the drugs decreased PON1 activity at low concentrations. The results show that adjusting the dosages of these medications is a crucial case for each patient. The physicians should more carefully interpret whether there is an essential indication before prescribing PPIs and, if there is, to approve the proper dosing for the situation.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
45
|
Demir Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. J Pharm Pharmacol 2019; 71:1576-1583. [DOI: 10.1111/jphp.13144] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/30/2019] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
Paraoxonase-1 (PON1) enzyme is related to high-density lipoprotein (HDL), which is calcium dependent. It has essential roles such as protecting LDL against oxidation and detoxification of highly toxic substances. It is a significant risk to reduce the levels of this enzyme in patients with diabetes mellitus, cardiovascular diseases, hyperthyroidism and chronic renal failure.
Methods
Here, it was reported that the purification of human serum PON1 using straightforward methods and determination of the interactions between some antihypertension drugs and the enzyme.
Key finding
It was found that these drugs exhibit potential inhibitor properties for human serum PON1 with IC50 values in the range of 131.40–369.40 μm and Ki values in the range of 56.24 ± 6.75–286.74 ± 28.28 μm. These drugs showed different inhibition mechanisms. It was determined that midodrine and nadolol were exhibited competitive inhibition, but atenolol and pindolol were exhibited non-competitive inhibition.
Conclusion
Usage of these drugs would be hazardous in some cases.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
46
|
Türkeş C, Beydemir Ş. Inhibition of Human Serum Paraoxonase-I with Antimycotic Drugs: In Vitro and In Silico Studies. Appl Biochem Biotechnol 2019; 190:252-269. [DOI: 10.1007/s12010-019-03073-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|
47
|
Türkeş C. Investigation of Potential Paraoxonase-I Inhibitors by Kinetic and Molecular Docking Studies: Chemotherapeutic Drugs. Protein Pept Lett 2019. [DOI: 10.2174/0929866526666190226162225 pmid: 30819074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Metabolic processes in living organisms are closely related to the catalytic
activity of enzymes. Changes in enzyme activity cause various diseases e.g., neurological, cancer,
metabolic and cardiovascular. Most of the current therapeutic drugs available in clinical utilization
function as enzyme inhibitors.
Objective:
The main goal of the current study to contribute to this growing drug design area (such
as medication discovery and development) by investigating protein-drug interactions.
Methods:
The paraoxonase-I (PON1) enzyme was purified from human serum by using different
and simple chromatographic techniques. Additionally, it was investigated inhibition effects of some
chemotherapeutic drugs on the PON1.
Results:
The purification results for PON1 depicted a 3880.83 EU/mg proteins specific activity and
the molecular weight was calculated as 43 kDa by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis. These drugs found to strongly inhibit PON1, with IC50 values ranging from
0.222±0.002 to 688.300±0.897 µM. Ki constants for vincristine sulfate, epirubicin hydrochloride,
and doxorubicin hydrochloride were determined to be 0.235±0.032 µM, 221.400±29.270 µM, and
913.300±201.000 µM, respectively.
Conclusion:
These drugs showed in competitive inhibition. Also, the molecular docking poses of
these agents inside the catalytic sites of 1V04 and 3SRE were analysis.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| |
Collapse
|
48
|
Beydemir Ş, Türkeş C, Yalçın A. Gadolinium-based contrast agents: in vitro paraoxonase 1 inhibition, in silico studies. Drug Chem Toxicol 2019; 44:508-517. [PMID: 31179770 DOI: 10.1080/01480545.2019.1620266] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Medications show their biological effects by interaction with enzymes, which have been known to play an essential role in the pathogenesis of many diseases. Inhibition or induction of drug metabolizing enzymes has an essential place in the drug design for many kinds of diseases including cardiovascular, neurological, metabolic, and cancer. The main goal of the current study is to contribute to this growing drug design field by observing PON1-drug interactions. In recent years, the safety of gadolinium-based contrast agents (GBCAs) used in magnetic resonance imaging (MRI) has discussed. In the present study, paraoxonase 1 (PON1) enzyme was purified from human serum by simple chromatographic methods with 4095.24 EU mg-1 protein specific activity. The inhibitory activities of gadoteric acid, gadopentetic acid, gadoxetate disodium, and gadodiamide were investigated on PON1 activity of the enzyme. IC50 values were found in the range of 51.28 ± 0.14 to 285.80 ± 0.96 mM. Ki constants were found as 67.95 ± 0.60 mM, 104.97 ± 0.96 mM, 202.33 ± 1.75 mM, and 299.43 ± 2.64 mM for gadoteric acid, gadopentetic acid, gadoxetate disodium, and gadodiamide, respectively. While the inhibition types are determined as competitive of gadoxetate disodium and gadodiamide by the Lineweaver-Burk curves, it was noncompetitive for other compounds. In addition, the molecular docking analyses of gadoxetate disodium and gadodiamide were carried out to understand the binding interactions on the active site of the PON1 enzyme. The structure-activity relationship (SAR) of the drugs was established on the basis of different substituents and their positions in the compounds.
Collapse
Affiliation(s)
- Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Ahmet Yalçın
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
49
|
The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1). Pharmacol Rep 2019; 71:545-549. [DOI: 10.1016/j.pharep.2019.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023]
|
50
|
Türkeş C. Inhibition Effects of Phenolic Compounds on Human Serum Paraoxonase-1 Enzyme. ACTA ACUST UNITED AC 2019. [DOI: 10.21597/jist.491054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|