1
|
Shabani M, Khezri S, Salimi A. Mitotherapy with Fresh Isolated Cardiac Mitochondria Via Injection Into Blood Reduces Aluminum Phosphide-Induced Mortality and Protects Cardiac Tissue Against Oxidative Stress and Mitochondrial Damages. Cardiovasc Toxicol 2024; 24:929-941. [PMID: 39012567 DOI: 10.1007/s12012-024-09896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
The hallmark of aluminum phosphide (AlP) poisoning is heart failure in victims which is associated with reactive oxygen species (ROS), mitochondrial dysfunction, oxidative stress, alteration in antioxidant defense system and depletion of ATP in cardiomyocytes. In the present study, we hypothesized that the injection of isolated mitochondria into blood or mitochondrial transplantation can likely create a primary target for phosphine released from AlP and inhibit AlP-induced mortality and cardiotoxicity in rat. Male, Wistar, healthy and adult rats were randomly divided into 5 groups as control, AlP (12.5 mg/kg, orally), AlP + mitochondria (125 µg/kg), AlP + mitochondria (250 µg/kg) and mitochondria (250 µg/kg) alone. Functional and intact mitochondria isolated from rat heart and transplantation was carried out via tail vein, 30 min after exposure to AlP. Survival rate, histopathological alterations, cardiac biochemical markers, oxidative stress and mitochondrial toxicity parameters were monitored and analyzed during 30 days. We found that injection of healthy mitochondria into blood at concentrations of 125 and 250 125 µg/ml significantly increased the survival of rats up to 40% and 56.25% respectively, during 30 days. Moreover, we observed that mitochondria injection into blood decreased histopathological damages, cardiac biochemical markers, oxidative stress and mitochondrial toxicity parameters. To our knowledge, the current study is the first report in the literature that demonstrated good therapeutic effects of mitochondrial transplantation in AlP-induced mortality and cardiotoxicity. The findings of the present study suggests that injection of exogenous mitochondria into blood could be an effective therapeutic strategy in treating AlP poisoning.
Collapse
Affiliation(s)
- Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Arthropod-Borne Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Aghebat-Bekheir S, Abdollahi M. Discovering the most impactful treatments for aluminum phosphide cardiotoxicity gleaned from systematic review of animal studies. Hum Exp Toxicol 2024; 43:9603271241290922. [PMID: 39378909 DOI: 10.1177/09603271241290922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Aluminum phosphide (AlP) is a chemical compound that can cause death in some countries. AlP inhibits the functioning of cytochrome C oxidase in the mitochondria of cardiomyocytes, leading to toxicity. Oxidative stress and ROS production, as well as inflammatory signaling, mediate the mechanisms of AlP-related toxicity in the poisoned patient. Unfortunately, there are no approved medicines available to treat AlP poisoning yet. To address this issue, researchers have explored various interventions to reduce the toxicity associated with AlP tablets. METHODS We systematically searched relevant databases for English articles published between 2013 and 2024. RESULTS The evaluated treatments included correcting oxidative stress parameters, enhancing exogenous antioxidant capacity, modifying electrocardiographic abnormalities, and improving heart contraction strength. Our evaluation indicated that compounds like Triiodothyronine, Vasopressin and milrinone, Iron sucrose, Acetyl-l-carnitine, Melatonin, Fresh red blood cell transfusion, Minocycline, Moringa oleifera extract, Dihydroxyacetone, Selegiline, Nanocurcumin, Levosimendan, Exenatide, Taurine, Cannabidiol and Edaravone are effective in lessening AlP-induced cardiotoxicity. CONCLUSION Based on the present study's findings and the evaluation of clinical studies, dihydroxyacetone, fresh red blood cell infusion, Oil-based disinfection, and gastric lavage have the most potential to save patients' lives and treat acute aluminum phosphide. However, there is a need for more research in this regard.
Collapse
Affiliation(s)
- Saeed Aghebat-Bekheir
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Rahimi Kakavandi N, Asadi T, Hooshangi Shayesteh MR, Baeeri M, Rahimifard M, Baghaei A, Noruzi M, Sharifzadeh M, Abdollahi M. The electrocardiographic, hemodynamic, echocardiographic, and biochemical evaluation of treatment with edaravone on acute cardiac toxicity of aluminum phosphide. Front Pharmacol 2022; 13:1032941. [PMID: 36278198 PMCID: PMC9581139 DOI: 10.3389/fphar.2022.1032941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aluminum phosphide (AlP) poisoning can be highly fatal due to its severe toxicity to the heart. Based on the evidence, edaravone (EDA) has protective effects on various pathological conditions of the heart. This research aimed to examine the potential protective effects of EDA on AlP-induced cardiotoxicity in rats. The rats were divided into six groups, including almond oil (control), normal saline, AlP (LD50), and AlP + EDA (20, 30, and 45 mg/kg). Thirty minutes following AlP poisoning, the electrocardiographic (ECG), blood pressure (BP), and heart rate (HR) parameters were examined for 180 min. The EDA was injected 60 min following the AlP poisoning intraperitoneally. Also, 24 h after poisoning, echocardiography was carried out to evaluate the ejection fraction (EF), stroke volume (SV), and cardiac output (CO). The biochemical and molecular parameters, such as the activities of the mitochondrial complexes, reactive oxygen species (ROS), apoptosis and necrosis, and troponin I and lactate levels, were also examined after 12 and 24 h in the heart tissue. According to the results, AlP-induced ECG abnormalities, decrease in blood pressure, heart rate, SV, EF%, and CO were significantly improved with EDA at doses of 30 and 45 mg/kg. Likewise, EDA significantly improved complex I and IV activity, apoptosis and necrosis, ROS, troponin I, and lactate levels following AlP-poisoning (p < 0.05). Also, the mean survival time was increased following EDA treatment, which can be attributed to the EDA’s protective effects against diverse underlying mechanisms of phosphine-induced cardiac toxicity. These findings suggest that EDA, by ameliorating heart function and modulating mitochondrial activity, might relieve AlP-induced cardiotoxicity. Nonetheless, additional investigations are required to examine any potential clinical advantages of EDA in this toxicity.
Collapse
Affiliation(s)
- Nader Rahimi Kakavandi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tayebeh Asadi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Baghaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzieh Noruzi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- *Correspondence: Mohammad Abdollahi,
| |
Collapse
|
4
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
5
|
Salimi A, Shabani M, Aylar EM. Inhibition of mitochondrial permeability transition pore and antioxidant effect of Delta-9-tetrahydrocannabinol reduces aluminium phosphide-induced cytotoxicity and dysfunction of cardiac mitochondria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105117. [PMID: 35715056 DOI: 10.1016/j.pestbp.2022.105117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have demonstrated that phosphine gas (PH3) released from aluminium phosphide (AlP) can inhibit cytochrome oxidase in cardiac mitochondria and induce generation of free radicals, oxidative stress, alteration in antioxidant defense system and cardiotoxicity. Available evidence suggests that cannabinoids have protective effects in the reduction of oxidative stress, mitochondrial and cardiovascular damages. The objective of this study was to evaluate the effect of trans-Δ-9-tetrahydrocannabinol (THC) on AlP-induced toxicity in isolated cardiomyocytes and cardiac mitochondria. Rat heart isolated cardiomyocytes and mitochondria were cotreated with different concentrations of THC (10, 50 and 100 μM) and IC50 of AlP, then cellular and mitochondrial toxicity parameters were assayed. Treatment with AlP alone increased the cytotoxicity, depletion of cellular glutathione (GSH), mitochondrial reactive oxygen species (ROS) generation, lipid oxidation, mitochondria membrane potential (ΔΨm) collapse and mitochondrial swelling, when compared to control group. However, incubation with THC (10, 50 and 100 μM) attenuated the AlP-induced changes in all these parameters in a THC concentration-dependent manner. Interestingly, the obtained results showed remarkably significant protective effects of THC by attenuation the different parameters of cytotoxicity, mitochondrial toxicity and oxidative stress induced by ALP in isolated cardiomyocytes and cardiac mitochondria. It is the first report showing the protective effects of THC against AlP-induced toxicity, and these effects are related to antioxidant potential and inhibition of mitochondria permeability transition (MPT) pore. Based on these results, it was hypothesized that THC may be used as a potential therapeutic agent for the treatment of AlP-induced mitochondrial dysfunction and cardiotoxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran.
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Mojarad Aylar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Naddafi M, Mehrizi AA, Eghbal MA, Khansari MG, Azarmi Y, Sattari MR, Karaman C, Karimi F, Alizadeh M, Yazdani MN, Hosseinpour P. Reducing the risk of death induced by aluminum phosphide poisoning: The new therapies. CHEMOSPHERE 2022; 294:133800. [PMID: 35101429 DOI: 10.1016/j.chemosphere.2022.133800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Numerous people suffer from accidental or deliberate exposure to different pesticides when poisoning with aluminum phosphate (AlP) is increasing in the eastern countries. Aluminum phosphate is a conventional insecticide that quickly reacts with water or the moistures in the atmosphere and produces fatal phosphine gas, which absorbs quickly by the body. Oral consumption or inhalation of AlP leads to excessive reaction of the body such as fatigue, vomiting, fever, palpitation, vasodilatory shock, increasing blood pressure, cardiac dysfunction, pulmonary congestion, shortness of breath, and death. The garlic smell from the patient's mouth or exhale is one of the methods to recognize the positioning. Due to the lack of individual antidotes, several supportive treatments are required. The present study focused on the available and new therapies that help reduce the effect of AlP poisoning and the mortality rate. The therapies are divided into the antioxidant-related agent and the other agents. The impacts of each agent on the experimental cases are reported.
Collapse
Affiliation(s)
- Mastoureh Naddafi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbasali Abouei Mehrizi
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Mohammad Ali Eghbal
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Ghazi Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yadollah Azarmi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sattari
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Marzieh Alizadeh
- Pharmeceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, PO Box: 71348-14336, Iran
| | - Mohammad Nima Yazdani
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, PO Box: 71348-14336, Iran
| | - Parsa Hosseinpour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
7
|
Zhou L, He M, Li X, Lin E, Wang Y, Wei H, Wei X. Molecular Mechanism of Aluminum-Induced Oxidative Damage and Apoptosis in Rat Cardiomyocytes. Biol Trace Elem Res 2022; 200:308-317. [PMID: 33634365 DOI: 10.1007/s12011-021-02646-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Aluminum exposure can mediate either acute toxicity or chronic toxicity. Aluminum exerts toxic effects on the cardiovascular system, but there are few studies on its related mechanisms. In this study, we investigated the molecular mechanism of aluminum-induced oxidative damage and apoptosis in rat cardiomyocytes. Thirty-two male Wistar rats were randomly divided into four groups, including the control group (GC), low-dose group of aluminum exposure (GL), medium-dose group (GM), and high-dose group (GH), with eight rats in each group. The GL, GM, and GH groups were given 5, 10, and 20 mg/(kg·d) of AlCl3 solution by intraperitoneal injection, and the GC group received intraperitoneal injection of the same volume of normal saline (2 ml/rat/day), 5 times a week for 28 days. At the end of the experiment, the levels of aluminum, malondialdehyde (MDA), plasma lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase isoenzyme (CKMB), and alpha-hydroxybutyrate dehydrogenase (HBDH) were measured. The pathological changes of myocardium were observed by H&E staining. The apoptosis of cardiomyocytes was detected by TUNEL staining, and the expression of apoptosis-related proteins was determined by western blot. The results showed that the levels of CKMB and HBDH in the GM and GH groups were significantly higher than those in the GC group (P < 0.05). The content of aluminum in the myocardium and serum of the aluminum exposure groups was significantly higher than that of the GC group (P < 0.05). The level of MDA in the GM and GH groups was significantly higher than that in the GC group (P < 0.05). The pathological results showed that vacuolated and hypertrophied cardiomyocytes were found in aluminum exposure groups, especially in the GM and GH groups. The TUNEL staining showed that the apoptosis rate of the aluminum exposure groups was considerably higher than that of the GC group (P < 0.05). Western blot showed that the expression of Bcl-2, an anti-apoptotic protein, in cardiomyocytes of aluminum exposure groups was lower than that of the GC group (P < 0.05), while the levels of Bax and caspase-3 in the cardiomyocytes of the GM and GH groups were higher than those of the GC group (P < 0.05). The experimental results showed that aluminum could accumulate in myocardial tissues and cause damage to cardiomyocytes. It could induce oxidative stress damage by increasing the content of MDA in cardiomyocytes and trigger cardiomyocyte apoptosis by activating the pro-apoptotic proteins caspase-3 and Bax and reducing the anti-apoptotic protein Bcl-2.
Collapse
Affiliation(s)
- LiuFang Zhou
- Department of Cardiovascular Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - Mingjie He
- Department of Endocrinology, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - XiaoLan Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - Erbing Lin
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - YingChuan Wang
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - Hua Wei
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - Xi Wei
- Department of Health Supervision Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China.
| |
Collapse
|
8
|
Hooshangi Shayesteh MR, Haghi-Aminjan H, Baeeri M, Rahimifard M, Hassani S, Gholami M, Momtaz S, Salami SA, Armandeh M, Bameri B, Samadi M, Mousavi T, Ostad SN, Abdollahi M. Modification of the hemodynamic and molecular features of phosphine, a potent mitochondrial toxicant in the heart, by cannabidiol. Toxicol Mech Methods 2021; 32:288-301. [PMID: 34711111 DOI: 10.1080/15376516.2021.1998851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aluminum phosphide (AlP) poisoning is common in many countries responsible for high mortality. The heart is the main target organ in AlP poisoning. Several studies have reported the beneficial effects of cannabidiol (CBD) in reducing heart injuries. This study aimed to investigate the possible protective effect of CBD on cardiac toxicity caused by AlP poisoning. Study groups included almond oil, normal saline, sole CBD (100 µg/kg), AlP (11.5 mg/kg), and four groups of AlP + CBD (following AlP gavage, CBD administrated at doses of 5, 25, 50, and 100 μg/kg via intravenous (iv) injection). Thirty minutes after AlP treatment, an electronic cardiovascular device (PowerLab) was used to record electrocardiographic (ECG) changes, heart rate (HR), and blood pressure (BP) for three hours. Cardiac tissue was examined for the activities of mitochondrial complexes, ADP/ATP ratio, the release of cytochrome C, mitochondrial membrane potential (MMP), apoptosis, oxidative stress parameter, and cardiac biomarkers at 12 and 24 hours time points. AlP administration caused abnormal ECG, decreased HR, and BP. AlP also significantly reduced mitochondrial complex I and IV activity and ADP/ATP ratio. The level of cytochrome C release, apoptosis, oxidative stress, and cardiac biomarkers was considerably increased by AlP, which was compensated following CBD administration. CBD was able to improve hemodynamic function to some extent in AlP poisoned rats. CBD restored ATP levels and mitochondrial function and decreased oxidative damage and thus, prevented the heart cells from entering the apoptotic stage. Further clinical trials are needed to explore any possible benefits of CBD in AlP-poisoned patients.
Collapse
Affiliation(s)
| | - Hamed Haghi-Aminjan
- Pharmaceutical Science Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Gholami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | | | - Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahedeh Samadi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Mousavi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
9
|
Bameri B, Armandeh M, Baeeri M, Haghi-Aminjan H, Rahimifard M, Hassani S, Hooshangi Shayesteh MR, Samadi M, Gholami M, Nayebpour M, Ostad SN, Abdollahi M. Electrocardiographic, hemodynamic, and biochemical evidence on the protective effects of exenatide against phosphine-induced cardiotoxicity in rat model. Hum Exp Toxicol 2021; 40:S381-S396. [PMID: 34569344 DOI: 10.1177/09603271211040819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aluminum phosphide (AlP) poisoning can be deadly in most cases targeting the heart. To overcome AlP toxicity, exenatide has been studied in the present study due to its pleiotropic effects on cardiac damages. In this study, the rats were exposed to LD50 of AlP (10 mg/kg) by gavage, and exenatide at doses (0.05, 0.1, and 0.2 mg/kg) injected intraperitoneally 30 min after poisoning. The cardiac parameters including heart rate (HR), blood pressure (BP), QRS, corrected QT (QTc), and ST were monitored for 180 min. Blood glucose level was measured in the study groups 30 min after exenatide injection. Evaluation of biochemical parameters including mitochondrial complexes I, II, and IV activities, adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio, malondialdehyde (MDA), apoptosis, lactate, troponin I, and brain natriuretic peptide (BNP) was done on heart tissues after 12 and 24 h. Additionally, the tissues were analyzed for any pathological damages including necrosis, hemorrhage, or hyperemia 24 h post-treatment. Our results showed that AlP-induced HR, BP, and electrocardiographic changes were improved by exenatide at all doses. The blood glucose levels of poisoned animals reached control levels after exenatide treatment. Besides, treatment with exenatide at all doses improved complexes I and IV activity, ADP/ATP ratio, and apoptosis. Malondialdehyde, lactate, troponin I, and BNP levels were also diminished after exenatide co-treatment in poisoned animals. On the other hand, administration of exenatide doses improved the histopathology of AlP-induced tissues. Based on our findings, exenatide has a protective effect against phosphine-induced cardiotoxicity in an almost dose-dependent way. However, further investigations are needed on the potential clinical use of exenatide in this poisoning.
Collapse
Affiliation(s)
- Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, 48413Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hooshangi Shayesteh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nayebpour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Samadi M, Baeeri M, Haghi-Aminjan H, Rahimifard M, Gholami M, Hassani S, Sattari M, Azarmi Y, Bameri B, Armandeh M, Hooshangi Shayesteh MR, Eghbal MA, Abdollahi M. On the mechanisms of taurine in alleviating electrocardiographic, hemodynamic, and biochemical parameters following aluminum phosphide cardiotoxicity. Food Chem Toxicol 2021; 154:112347. [PMID: 34139304 DOI: 10.1016/j.fct.2021.112347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aluminum phosphide (AlP) causes severe cardiotoxicity. Taurine has been chosen for the present study because of its positive known effects on cardiac injuries. METHOD To evaluate AlP-induced cardiotoxicity, the animals were divided into seven groups, including the control group, the taurine group (500 mg/kg), AlP with LD50 dose, AlP + taurine 20, 50, 100, and 200 mg/kg group. To assess cardiac hemodynamic parameters, Wistar rats received taurine intraperitoneally 60 min after AlP gavage. Cardiac hemodynamic parameters were evaluated for 180 min. To study biochemical parameters, 24 h after AlP treatment, the animals were sacrificed, and heart tissues were collected. RESULT ECG, BP, and HR abnormalities of AlP poisoning were improved by taurine treatment. AlP induced biochemical alterations including complexes I and IV activities, the ADP/ATP ratio, mitochondrial membrane potential, cytochrome C release, and oxidative stress biomarkers ameliorated by taurine. Moreover, taurine improved apoptosis, as well as lessened CK-MB and troponin I levels. Also, there were no significant changes between taurine 500 mg/kg and the control group in tests. CONCLUSION The present findings showed that taurine could be a possible candidate for AlP cardiotoxicity treatment via the effect on mitochondrial electron transfer chain and maintaining intracellular ATP balance.
Collapse
Affiliation(s)
- Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Sattari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Azarmi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Armandeh
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hooshangi Shayesteh
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Eghbal
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Armandeh M, Bameri B, Baeeri M, Haghi-Aminjan H, Rahimifard M, Hassani S, Hooshangi Shayesteh MR, Khalid M, Samadi M, Hosseini R, Masoudi Fard M, Abdollahi M. The role of levosimendan in phosphine-induced cardiotoxicity: evaluation of electrocardiographic, echocardiographic, and biochemical parameters. Toxicol Mech Methods 2021; 31:631-643. [PMID: 34219611 DOI: 10.1080/15376516.2021.1950248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aluminum phosphide (AlP) causes serious poisoning in which severe cardiac suppression is the significant lethal consequence. According to evidence, levosimendan can exert outstanding cardiac support and protection in different pathological conditions. This study aimed to investigate the mechanisms by which levosimendan may alleviate cardiovascular toxicity due to AlP intoxication in the rat model. The groups included control group (normal saline only), sole levosimendan groups (12, 24, 48 μg/kg), AlP group (10 mg/kg), and AlP + levosimendan groups receiving 12, 24, 48 μg/kg levosimendan intraperitoneally 30 min after AlP administration. Electrocardiographic (ECG) parameters (QRS and PR duration and ST height), heart rate, and blood pressure were monitored for 180 minutes. Also, after 24 h of poisoning, echocardiography was applied to assess left ventricle function. Evaluation of the biochemical parameters in heart tissue, including mitochondrial complexes I, II, IV activity, ADP/ATP ratio, the rate of apoptosis, malondialdehyde (MDA), lactate, and troponin I levels, were done after 12 and 24 h. AlP-induced ECG abnormalities (PR duration and ST height), reduction in heart rate, blood pressure, cardiac output, ejection fraction, and stroke volume were improved by levosimendan administration. Besides, levosimendan significantly improved complex IV activity, the ADP/ATP ratio, apoptosis, MDA, lactate, and troponin I level following AlP-poisoning. Our results suggest that levosimendan might alleviate AlP-induced cardiotoxicity by modulating mitochondrial activity and improving cardiac function. However, the potential clinical use of levosimendan in this toxicity needs more investigations.
Collapse
Affiliation(s)
- Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hooshangi Shayesteh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Madiha Khalid
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rohollah Hosseini
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Masoudi Fard
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Yang Y, Wei S, Zhang B, Li W. Recent Progress in Environmental Toxins-Induced Cardiotoxicity and Protective Potential of Natural Products. Front Pharmacol 2021; 12:699193. [PMID: 34305607 PMCID: PMC8296636 DOI: 10.3389/fphar.2021.699193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Humans are unconsciously exposed to environmental toxins including heavy metals as well as various pesticides, which have deleterious effects on human health. Accumulating studies pointed out that exposure to environmental toxins was associated with various cardiopathologic effects. This review summarizes the main mechanisms of cardiotoxicity induced by environmental toxins (cadmium, arsenic and pesticides) and discusses the potential preventive effects of natural products. These findings will provide a theoretical basis and novel agents for the prevention and treatment of environmental toxins-induced cardiotoxicity. Furthermore, the limitations of current studies, future needs and priorities are discussed.
Collapse
Affiliation(s)
- Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
13
|
Wu L, Kang Z, Qiao N, Wang C, Tang Z. Cu-induced mitochondrial dysfunction is mediated by abnormal mitochondrial fission through oxidative stress in primary chicken embryo hepatocytes. J Trace Elem Med Biol 2021; 65:126721. [PMID: 33508548 DOI: 10.1016/j.jtemb.2021.126721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Excess copper (Cu) is an oxidative stress factor which associates with a variety of diseases. The aim of this study was to evaluate the effect of Cu in primary chicken embryo hepatocytes (CEHs). METHODS CEHs were isolated from 13 days old chicken embryos and followed by different concentration Cu (0, 10, 100, 200 μM) and/or ALC treatment (0.3 mg/mL) for 12 or 24 h. The effects of Cu exposure in CEHs were determined by detecting reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP), and ATP levels. The expression of mitochondrial dynamics-related genes and proteins were also detected. RESULTS Results showed that Cu treatment (100 or 200 μM) significantly decreased CEHs viability, MMP and ATP levels, increased ROS and MDA levels in 12 or 24 h. The up-regulated mitochondrial fission genes and protein in 100 and 200 μM Cu groups suggested Cu promoted mitochondrial division but not fusion. However, the co-treatment of ALC and Cu alleviated those changes compared with the 100 or 200 μM Cu groups. CONCLUSION In conclusion, we speculated that Cu increased the oxidative stress and induced mitochondria dysfunction via disturbing mitochondrial dynamic balance in CEHs, and this process was not completely reversible.
Collapse
Affiliation(s)
- Liuyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenlong Kang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Congcong Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Alanazi WA, Al-Harbi NO, Imam F, Ansari MA, Alhoshani A, Alasmari AF, Alasmari F, Alanazi MM, Ali N. Role of carnitine in regulation of blood pressure (MAP/SBP) and gene expression of cardiac hypertrophy markers (α/β-MHC) during insulin-induced hypoglycaemia: Role of oxidative stress. Clin Exp Pharmacol Physiol 2021; 48:478-489. [PMID: 33368625 DOI: 10.1111/1440-1681.13455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease is a leading cause of death in diabetic patients. Hyperglycaemia and iatrogenic hypoglycaemia exacerbate several pathogenic mechanisms underlying hypertension and heart diseases. Carnitine is a potent endogenous antioxidant and cellular fatty acid transporter for antioxidative stress and energy production in the cardiovascular system. The current study aimed to find the role of carnitine in the regulation of hypoglycaemia-induced hypertension and cardiac hypertrophy. Male rats received insulin glargine (InG) to induce hypoglycaemia followed by D-carnitine or acetyl-L-carnitine for carnitine depletion or carnitine supplementation, respectively. The obtained results showed that carnitine deficiency provoked hypoglycaemia-induced hypertension. Mean arterial pressure was elevated from 78.16 ± 11.4 to 100 ± 5.11 mm Hg in InG treated group, and from 78.2 ± 8.5 to 123.4 ± 28.2 mm Hg in InG + D-carnitine treated group. Acetyl-L-carnitine resisted the elevation in blood pressure in all hypoglycaemic animals and kept it within the normal values (68.33 ± 6.7 mm Hg). Acetyl-L-carnitine increased myocardial carnitine content leading to the attenuation of hypoglycaemia-induced oxidative stress, which was evaluated through measurement of the oxidative stress biomarkers such as inducible nitric oxide synthase, NAD(P)H quinone dehydrogenase-1, heme oxygenase-I, and glutathione S-transferase. Moreover, acetyl-L-carnitine prevented induction of gene expression of cardiac hypertrophy markers during hypoglycaemic conditions, which was assessed via the evaluation of mRNA expression of α-myosin heavy chain and β-myosin heavy chain. These findings demonstrate that carnitine might play an essential role in prevention of hypoglycaemia-induced hypertension and cardiac hypertrophy through providing energy and antioxidants to the cardiovascular system.
Collapse
Affiliation(s)
- Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Parhizgar P, Forouzanfar R, Hadeiy SK, Zamani N, Hassanian-Moghaddam H. Sudden Cardiac Arrest in an Asymptomatic Zinc Phosphide-Poisoned Patient: A Case Report. Cardiovasc Toxicol 2021; 20:525-530. [PMID: 32451765 DOI: 10.1007/s12012-020-09578-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zinc phosphide is a gray to black powder mainly used as a rodenticide. In contact with gastric fluid, it releases phosphine which is the main toxic material of this compound. Phosphine interferes with oxidative respiratory cycle of the cells, but is generally expected to manifest its toxicity with prodromal signs and symptoms including abdominal pain, nausea and vomiting, metabolic acidosis, and increased liver function tests. A 64-year-old man was referred to our center with the history of ingestion of three full table spoons of zinc phosphide powder with only a mild GI discomfort. Abdominal X-ray revealed radiopaque material in epigastric and abdominal right upper quadrant. Despite treatment with polyethylene glycol and completely normal vital signs and lab tests, he experienced sudden cardiac arrest 19 h after admission. Autopsy showed clues of focal myopathy and fibrosis with evidences of ischemia and congestion in cardiac tissue, pulmonary edema, shrunken bilateral kidneys, and nutmeg yellow liver. Toxicology panel confirmed the presence of phosphine and zinc phosphide in the gastric fluid. The patient deteriorated suddenly despite being completely symptom-free during the hours preceding cardiovascular arrest. Since the cardiopulmonary injury is the most rampant cause of early death, checking of the cardiac enzymes and cardiac monitoring could be beneficial for early detection and efficient management of these patients.
Collapse
Affiliation(s)
- Parinaz Parhizgar
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Forouzanfar
- Department of Emergency Medicine, Shahed University, Tehran, Iran
| | - Seyed Kaveh Hadeiy
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Zamani
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Toxicology, Loghman Hakim Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, South Karegar Street, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Clinical Toxicology, Loghman Hakim Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, South Karegar Street, Tehran, Iran.
| |
Collapse
|
16
|
Hosseini SF, Forouzesh M, Maleknia M, Valiyari S, Maniati M, Samimi A. The Molecular Mechanism of Aluminum Phosphide poisoning in Cardiovascular Disease: Pathophysiology and Diagnostic Approach. Cardiovasc Toxicol 2021; 20:454-461. [PMID: 32712815 DOI: 10.1007/s12012-020-09592-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nowadays, poisoning with metal phosphides, especially aluminum phosphide (ALP), is one of the main health threats in human societies. Patients suffer from significant complications due to this type of poisoning, and the heart is one of the main organs targeted by ALP. Therefore, in this study, we discussed the effect of phosphine on cardiac function. This study is based on data obtained from PubMed, between 2002 and 2020. The key keywords included "Aluminum phosphide," "Oxidative Stress," "Mitochondria," "Cardiovascular disease," and "Treatment." The results showed that ALP produced reactive oxygen species (ROS) due to mitochondrial dysfunction. ROS production leads to red blood cell hemolysis, decreased ATP production, and induction of apoptosis in cardiomyocytes, which eventually results in cardiovascular disease. Since ALP has the most significant effect on cardiomyocytes, the use of appropriate treatment strategies to restore cell function can increase patients' survival.
Collapse
Affiliation(s)
| | - Mehdi Forouzesh
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mohsen Maleknia
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Valiyari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mahmood Maniati
- Ahwaz Jundishapur University of Medical Sciences, Ahwaz, Iran
| | - Azin Samimi
- Legal Medicine Research Center, Legal Medicine Organization, Ahvaz, Iran. .,Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Vardiyan R, Ezati D, Anvari M, Ghasemi N, Talebi A. Effect of L-carnitine on the expression of the apoptotic genes Bcl-2 and Bax. Clin Exp Reprod Med 2020; 47:155-160. [PMID: 32911587 PMCID: PMC7482949 DOI: 10.5653/cerm.2019.03440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/03/2020] [Accepted: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The genes Bcl-2 and Bax play important roles in apoptosis. Many studies have shown that formalin has a strong deleterious effect on male fertility and can induce apoptosis. L-carnitine has been reported to potentially reverse the negative effects of formalin, leading to improved spermatogenesis. In this study, we examined the levels of expression of Bcl-2 and Bax in mice treated with formalin and L-carnitine. METHODS Thirty adult BALB/c mice were categorized into three groups. The mice in the control group (n=10) were not injected with any substance. The mice in the second group (n=10) received 10 mg/kg of formalin daily via an intraperitoneal injection, while those in the final group (n=10) were intraperitoneally injected daily with a dose of 10 mg/kg of formalin and 100 mg/kg of L-carnitine. All mice were kept in isolated cages for 31 days. RESULTS The expression of Bax was significantly higher in the formalin-treated mice than in the mice of the control group, while the expression of Bcl-2 was significantly lower in the formalin-treated mice than in the control mice. Additionally, relative to control mice, Bcl-2 expression increased and Bax expression decreased in the mice administered both formalin and L-carnitine. CONCLUSION In this study, L-carnitine was shown to augment Bcl-2 expression and to reduce Bax expression, indicating that this compound may inhibit apoptosis. Due to its positive effects, L-carnitine can be used as a prophylactic treatment for people who routinely come into direct contact with formalin as an occupational hazard.
Collapse
Affiliation(s)
- Reyhane Vardiyan
- Department of Biology and Anatomy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Daniyal Ezati
- Department of Biology and Anatomy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Anvari
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Ghasemi
- Department of Biology and Anatomy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Talebi
- Department of Biology and Anatomy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Pathological changes induced by phosphine poisoning: a study on 8 children. Int J Legal Med 2019; 134:217-228. [PMID: 31713064 DOI: 10.1007/s00414-019-02169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
Aluminum phosphide (ALP) has been extensively used as an economical and effective insecticide, rodenticide, and fumigant. The active ingredient of ALP is phosphine (PH3), the use of which can lead to accidental inhalation and mass poisoning with high mortality. Exposure to PH3 will give rise to global damage in the human body. This study reviewed 4 fatal accidents including 8 children with PH3 poisoning and aimed to determine the pathological changes that resulted from exposure to PH3 and, secondly, aimed to determine whether oxidative stress was involved in PH3-induced neurotoxicity using histopathological and immunohistochemistry (IHC) methods. After focusing on the pathological changes on the major organs, we found severe damage induced by PH3 in many systems, especially the neurological system, including neuronal, axonal, and vascular injuries as well as oxidative damage with increased expression of 4-hydroxy-2-trans-nonenal (4HNE), 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and 3-nitrotyrosine (3-NT) in the brain, which indicated that oxidative stress was a crucial mechanism for neuronal death in PH3 toxicity. Moreover, we observed severe myocardial and hepatocellular fatty degeneration in the tissues of the heart and liver. We considered that these characteristic changes are a suggestive sign of PH3 poisoning and partly explained the toxic mechanism of PH3 (inhibition of mitochondrial oxidative phosphorylation). We hope that this research could improve the understanding of the toxicity of PH3 in both forensic and clinical practice.
Collapse
|
19
|
Haghi Aminjan H, Abtahi SR, Hazrati E, Chamanara M, Jalili M, Paknejad B. Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci 2019; 232:116607. [PMID: 31254582 DOI: 10.1016/j.lfs.2019.116607] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
AIMS Poisoning with aluminium phosphide (AlP) commonly has a high rate of mortality and morbidities. Phosphine gas is the main cause of AlP poisoning that has deleterious effect on multi-organs especially heart, kidney, and liver. Furthermore, several studies reported that resveratrol has cytoprotective effects through its pleiotropic property. The purpose of this study was to estimate the dose-dependent role of resveratrol on phosphine induced acute hepatic toxicity in rat model. MAIN METHODS The rats have been exposed to LD50 of AlP (12 mg/kg) by gavage, and resveratrol doses (20, 40, and 80 mg/kg) were injected 30 min after intoxication. After 24 h, the serum and liver tissue were collected for present study. KEY FINDINGS The results indicated that phosphine causes an alteration in oxidative stress markers including elevation of ROS, and GSH level, MPO activity, reduction in SOD, catalase and G6PD activity as well as reduction in SOD1 and catalase expression. Furthermore, phosphine significantly induced phosphorylation of IkappaB, NF-kappaB and up-regulation of TNF-α, IL-1β, IL-6, and ICAM-1 expression. Also, phosphine induces markedly reduced hepatocytes lives cell and elevated apoptosis and necrosis. Co-treatment of resveratrol in a dose-dependent manner reversed aforementioned alterations. All in all, histological analysis indicated a deleterious effect of phosphine on the liver, which is mitigated by resveratrol administration. SIGNIFICANCE The results of the present study suggest targeting ROS/NF-kappaB signalling pathway by resveratrol may have a significant effect on the improvement of hepatic injury induced by phosphine. It also may be a possible candidate for the treatment of phosphine-poisoning.
Collapse
Affiliation(s)
- Hamed Haghi Aminjan
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Abtahi
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ebrahim Hazrati
- Department of Anesthesia and Intensive Care, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Jalili
- Department of Clinical Sciences, School of Veterinary, Shiraz University, Shiraz, Iran
| | - Babak Paknejad
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
The effects of amiodarone prophylaxis on cardiac dysrhythmia in acute aluminium phosphide poisoning. Arh Hig Rada Toksikol 2019; 70:49-53. [PMID: 30956216 DOI: 10.2478/aiht-2019-70-3162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/01/2019] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular toxicity is the most common cause of fatality in the first 24 hours of poisoning with aluminium phosphide (AlP). Most often manifesting itself in cardiac dysrhythmias. The aim of this study was to evaluate the benefits of amiodarone prophylaxis against cardiac dysrhythmia in 46 patients with acute AlP poisoning. They were divided in two groups of 23: one receiving amiodarone and the other not (control). The treatment group received amiodarone prophylaxis in the initial intravenous bolus dose of 150 mg, followed by a drip of 1 mg/min for six hours and then of 0.5 mg/min for eighteen hours. Both groups were Holter-monitored for 24 hours since admission. Save for amiodarone, both groups received the same standard treatment. Amiodarone had a significant beneficial effect in reducing the frequency of ST-segment elevation and ventricular fibrillation plus atrial fibrillation (P=0.02 and P=0.01, respectively), but the groups did not differ significantly in mortality (9 vs 11 patients, respectively). The mean time between ICU admission and death (survival time) was significantly longer in the treatment group (22 vs 10 h, respectively; P=0.03). Regardless its obvious limitations, our study suggests that even though amiodarone alone did not reduce mortality, it may provide enough time for antioxidant therapy to tip the balance in favour of survival and we therefore advocate its prophylactic use within the first 24 h of AlP poisoning.
Collapse
|
21
|
Haghi-Aminjan H, Baeeri M, Rahimifard M, Alizadeh A, Hodjat M, Hassani S, Asghari MH, Abdollahi A, Didari T, Hosseini R, Sharifzadeh M, Abdollahi M. The role of minocycline in alleviating aluminum phosphide-induced cardiac hemodynamic and renal toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:26-40. [PMID: 30290328 DOI: 10.1016/j.etap.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Poisoning with aluminum phosphide (AlP) has been attributed to the high rate of mortality among many Asian countries. It affects several organs, mainly heart and kidney. Numerous literature demonstrated the valuable effect of minocycline in mitigating pathological symptoms of heart and kidney disease. The aim of the present study was to evaluate the probable protective effect of minocycline on cardiac hemodynamic parameters abnormalities and renal toxicity induced by AlP-poisoning in the rat model. AlP was administered by gavage at 12 mg/kg body weight followed by injection of minocycline for two interval times of 12 and 24 h, at 40, 80, 120 mg/kg body weight. Electrocardiographic (ECG) parameters were monitored, 30 min after AlP gavage for 6 h using an electronic cardiovascular monitoring device. Kidney tissue and serum were collected for the study of histology, mitochondrial complexes I, II, IV, lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity, ADP/ATP ratio, mitochondrial cytochrome c release, apoptosis, lactate, BUN, and Cr levels. The results demonstrated that AlP induces ECG abnormalities, and failure of heart rate and blood pressure, which improved significantly by minocycline. Minocycline treatment significantly improved complexes I, IV, MPO and LDH activities, and also reduced the ADP/ATP ratio, lactate level, release of cytochrome c, and apoptosis in the kidney following AlP-poisoning. Also, the histological results showed an improvement of kidney injury in minocycline treated groups. In conclusion, the findings of this study showed that minocycline could improve cardiac hemodynamic abnormalities and kidney injury following AlP-poisoning, suggesting minocycline might be a possible candidate for the treatment of AlP-poisoning.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Alizadeh
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Didari
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Hosseini
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Karimani A, Mohammadpour AH, Zirak MR, Rezaee R, Megarbane B, Tsatsakis A, Karimi G. Antidotes for aluminum phosphide poisoning - An update. Toxicol Rep 2018; 5:1053-1059. [PMID: 30406022 PMCID: PMC6214862 DOI: 10.1016/j.toxrep.2018.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Aluminum phosphide (AlP), an inexpensive solid fumigant, is frequently used for grain conservation despite its alleged high toxicity. Increased utilization of AlP for agricultural and non-agricultural purposes during the last four decades has resulted in increment of AlP-attributed poisoning numbers. Moreover, due to its limitless accessibility in developing countries, AlP has been increasingly used for suicide. Moisture-exposed AlP undergoes a chemical reaction producing phosphine gas, which in turn inhibits cytochrome oxidase and impedes cellular oxygen consumption. Lethality remains elevated reaching rates of >50% and no effective antidote is available. Nevertheless, experimental and clinical studies suggested that magnesium sulfate, melatonin, N-acetylcysteine, glutathione, sodium selenite, vitamin C and E, triiodothyronine, liothyronine, vasopressin, milrinone, Laurus nobilis L., 6-aminonicotinamide, boric acid, acetyl-L-carnitine and coconut oil, may serve as antidotes by reducing the deleterious oxidative properties of AlP. This article reviews the afore-mentioned chemicals suggested to specifically treat AlP poisoning and discusses their protective mechanisms and main outcomes.
Collapse
Affiliation(s)
- Asieh Karimani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bruno Megarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Jafari A, Jafari F, Mohebbi I. Effects of occupational exposure to trace levels of halogenated anesthetics on the liver, kidney, and oxidative stress parameters in operating room personnel. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1498898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Abbas Jafari
- Department of Occupational Health, School of Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Jafari
- Department of Operating Room School of Paramedical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Iraj Mohebbi
- Social Determinants of Health Research Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
24
|
Georgiadis N, Tsarouhas K, Tsitsimpikou C, Vardavas A, Rezaee R, Germanakis I, Tsatsakis A, Stagos D, Kouretas D. Pesticides and cardiotoxicity. Where do we stand? Toxicol Appl Pharmacol 2018; 353:1-14. [PMID: 29885332 DOI: 10.1016/j.taap.2018.06.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases are among the most significant causes of mortality in humans. Pesticides toxicity and risk for human health are controlled at a European level through a well-developed regulatory network, but cardiotoxicity is not described as a separate hazard class. Specific classification criteria should be developed within the frame of Regulation (EC) No 1272/2008 in order to classify chemicals as cardiotoxic, if applicable to avoid long-term cardiovascular complications. The aim of this study was to review the cardiac pathology and function impairment due to exposure to pesticides (i.e. organophosphates, organothiophisphates, organochlorines, carbamates, pyrethroids, dipyridyl herbicides, triazoles, triazines) based on both animal and human data. The majority of human data on cardiotoxicity of pesticides come from poisoning cases and epidemiological data. Several cardiovascular complications have been reported in animal models including electrocardiogram abnormalities, myocardial infarction, impaired systolic and diastolic performance, functional remodeling and histopathological findings, such as haemorrhage, vacuolisation, signs of apoptosis and degeneration.
Collapse
Affiliation(s)
- Nikolaos Georgiadis
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy; Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Konstantinos Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Mezourlo, Larissa 41110, Greece
| | | | - Alexandros Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71003 Crete, Greece
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ioannis Germanakis
- Paediatric Cardiology Unit, Department of Paediatrics, University Hospital Voutes, Heraklion, 71409 Crete, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71003 Crete, Greece
| | - Dimitrios Stagos
- Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece.
| |
Collapse
|
25
|
Asghari MH, Moloudizargari M, Abdollahi M. Reply to Zamani and Hassanian-Moghaddam, 2017: being specific and targeting disease-causing pathology matter in therapeutics. Arch Toxicol 2018; 92:1907-1908. [PMID: 29332132 DOI: 10.1007/s00204-018-2154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Milad Moloudizargari
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Baeeri M, Mohammadi-Nejad S, Rahimifard M, Navaei-Nigjeh M, Moeini-Nodeh S, Khorasani R, Abdollahi M. Molecular and biochemical evidence on the protective role of ellagic acid and silybin against oxidative stress-induced cellular aging. Mol Cell Biochem 2017; 441:21-33. [PMID: 28887692 DOI: 10.1007/s11010-017-3172-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022]
Abstract
Aging is a natural process in living organisms that is defined by some molecular and cellular changes with time. Various causes such as mitochondrial DNA aberrations, aggregation of proteins, telomere shortening, and oxidative stress have an influential role in aging of the cells. Natural antioxidants are compounds that are potent to protect the body from detrimental effects of molecules such as free radicals. The aim of this study was to evaluate the anti-aging properties of ellagic acid (EA) and silybin (SIL), as natural antioxidant compounds on rat embryonic fibroblast (REF) cells. These cells were pre-incubated with EA and SIL, thereafter were exposed to hydrogen peroxide (H2O2). Then, the cell viability, SA-β-GAL activity, distribution of cell cycle, NF-κB, and mitochondrial complex I, II/IV enzyme activity were measured. The results of this study revealed the protective effects of EA and SIL in H2O2-treated REF cells, which confirm the previous achieved data on antioxidant and anti-inflammatory characteristics of EA and SIL against H2O2 in the treated REF cells. However, more new in vivo experiments are required to discover the anti-aging effects and mechanism of action of such compounds.
Collapse
Affiliation(s)
- Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Mohammadi-Nejad
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shermineh Moeini-Nodeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Khorasani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,International Campus, Tehran University of Medical Sciences (TUMS-IC), Tehran, Iran. .,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
In response to the comments on our recently published paper entitled “on the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity”. Arch Toxicol 2017; 91:3457-3458. [DOI: 10.1007/s00204-017-2029-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
28
|
Asghari MH, Moloudizargari M, Baeeri M, Baghaei A, Rahimifard M, Solgi R, Jafari A, Aminjan HH, Hassani S, Moghadamnia AA, Ostad SN, Abdollahi M. On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity. Arch Toxicol 2017; 91:3109-3120. [PMID: 28551710 DOI: 10.1007/s00204-017-1998-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
Aluminum phosphide (AlP), one of the most commonly used pesticides worldwide, has been the leading cause of self-poisoning mortalities among many Asian countries. The heart is the main organ affected in AlP poisoning. Melatonin has been previously shown to be beneficial in reversing toxic changes in the heart. The present study reveals evidence on the probable protective effects of melatonin on AlP-induced cardiotoxicity in rats. The study groups included a control (almond oil only), ethanol 5% (solvent), sole melatonin (50 mg/kg), AlP (16.7 mg/kg), and 4 AlP + melatonin groups which received 20, 30, 40 and 50 mg/kg of melatonin by intraperitoneal injections following AlP treatment. An electronic cardiovascular monitoring device was used to record the electrocardiographic (ECG) parameters. Heart tissues were studied in terms of oxidative stress biomarkers, mitochondrial complexes activities, ADP/ATP ratio and apoptosis. Abnormal ECG records as well as declined heart rate and blood pressure were found to be related to AlP administration. Based on the results, melatonin was highly effective in controlling AlP-induced changes in the study groups. Significant improvements were observed in the activities of mitochondrial complexes, oxidative stress biomarkers, the activities of caspases 3 and 9, and ADP/ATP ratio following treatment with melatonin at doses of 40 and 50 mg/kg. Our results indicate that melatonin can counteract the AlP-induced oxidative damage in the heart. This is mainly done by maintaining the normal balance of intracellular ATP as well as the prevention of oxidative damage. Further research is warranted to evaluate the possibility of using melatonin as an antidote in AlP poisoning.
Collapse
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Milad Moloudizargari
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Amir Baghaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Reza Solgi
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Hamedan, Iran
| | - Abbas Jafari
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Haghi Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
29
|
Zhang MY, Wang JP. A multi-target protein of hTERTR-FAM96A presents significant anticancer potent in the treatment of hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317698341. [PMID: 28443470 DOI: 10.1177/1010428317698341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The abilities to escape apoptosis induced by anticancer drugs are an essential factor of carcinogenesis and a hallmark of resistance to cancer therapy. In this study, we identified hTERTR-FAM96A (human telomerase reverse transcriptase–family with sequence similarity 96 member A) as a new efficient agent for apoptosome-activating and anti-tumor protein and investigated the potential tumor suppressor function in hepatocellular carcinoma. The hTERTR-FAM96A fusion protein was constructed by genetic engineering and its anticancer function of hTERTR-FAM96A was explored in vitro and in vivo by investigating the possible preclinical outcomes. Effects of hTERTR-FAM96A on improvement of apoptotic sensitivity and inhibition of migration and invasion were examined in cancer cells and tumors. Our results showed that the therapeutic effects of hTERTR-FAM96A were highly effective for inhibiting tumor growth and inducing apoptosis of hepatocellular carcinoma cells in H22-bearing nude mice. The hTERTR-FAM96A fusion protein could specifically bind with Apaf-1 and hTERT, which further induced apoptosis of hepatocellular carcinoma cells and improved apoptosis sensitivity. Our results indicated that hTERTR-FAM96A treatment enhanced cytotoxic effects by upregulation of cytotoxic T lymphocyte responses, interferon-γ release, and T lymphocyte infiltration. In addition, hTERTR-FAM96A led to tumor-specific immunologic cytotoxicity through increasing apoptotic body on hepatocellular tumors. Furthermore, hTERTR-FAM96A dramatically inhibited tumor growth, reduced death rate, and prolonged mice survival in hepatocellular carcinoma mice derived from three independent hepatocellular carcinoma mice cohorts compared to control groups. In summary, our data suggest that hTERTR-FAM96A may serve as an efficient anti-tumor agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie-Ping Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
30
|
Diagnosis of aluminum phosphide poisoning using a new analytical approach: forensic application to a lethal intoxication. Int J Legal Med 2017; 131:1001-1007. [DOI: 10.1007/s00414-017-1562-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/18/2017] [Indexed: 11/27/2022]
|
31
|
Goharbari MH, Taghaddosinejad F, Arefi M, Sharifzadeh M, Mojtahedzadeh M, Nikfar S, Baeeri M, Rahimifard M, Abdollahi M. Therapeutic effects of oral liothyronine on aluminum phosphide poisoning as an adjuvant therapy. Hum Exp Toxicol 2017; 37:107-117. [DOI: 10.1177/0960327117694074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In aluminum phosphide (AlP) poisoning, death is mainly due to cardiovascular failure and refractory acute heart failure. There is a lot of evidence showing thyroid hormones have cardioprotective effects. Objective: The purpose of this study was to evaluate the effect of oral liothyronine in the treatment of AlP poisoning. Methods: Twenty-four patients from intensive care unit of Baharloo Hospital, Tehran, Iran, were included based on the inclusion and exclusion criteria. They were randomly divided into two parallel groups of 12 cases and 12 controls. Intervention in the case group was administration of 50 µg liothyronine via nasogastric tube after gastric lavage, in the first 6 h of poisoning. In both groups, the routine treatment of AlP poisoning was performed. Blood samples were prepared at the beginning of the study and after 12 h. Patients were followed up till discharge from the hospital or death. Results: The findings demonstrated that oral liothyronine was able to significantly improve systolic blood pressure, arterial blood pH, and total thiol molecules and also could decrease lipid peroxidation, increase catalase activity, and prevent further decline in total antioxidant capacity. Conclusion: Liothyronine administration is effective in controlling AlP poisoning and can improve patients’ outcome.
Collapse
Affiliation(s)
- MH Goharbari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - F Taghaddosinejad
- Department of Forensic Medicine and Toxicology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Arefi
- Department of Clinical Toxicology, School of Medicine, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - M Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Mojtahedzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - S Nikfar
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Asghari MH, Moloudizargari M, Bahadar H, Abdollahi M. A review of the protective effect of melatonin in pesticide-induced toxicity. Expert Opin Drug Metab Toxicol 2016; 13:545-554. [DOI: 10.1080/17425255.2016.1214712] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Moloudizargari
- Young Researchers and Elite Club, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Haji Bahadar
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|