1
|
Liu W, Li H, Gao Y, Zhang X, Wei Z, Yang D, Jin M, Qiu Z, Shen Z, Chen Z, Qiao Y, Pu L, Yan C, Zhang S, Wang X, Li J. Mitochondrial dysfunction of peripheral blood mononuclear cells is associated with lung carcinogenesis. Int Immunopharmacol 2024; 133:111958. [PMID: 38608441 DOI: 10.1016/j.intimp.2024.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The composition, quantity, and function of peripheral blood mononuclear cells (PBMCs) are closely correlated with tumorigenesis. However, the mechanisms of PBMCs in lung cancer are not clear. Mitochondria are energy factories of cells, and almost all cellular functions rely on their energy metabolism level. The present study aimed to test whether the mitochondrial function of PBMCs directly determines their tumor immune monitoring function. We recruited 211 subjects, including 105 healthy controls and 106 patients with recently diagnosed with lung cancer. The model of lung carcinogenesis induced by BaP was used in animal experiment, and the Bap carcinogenic metabolite, Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), was used in cell experiment. We found that mitochondrial function of PBMCs decreased significantly in patients with new lung cancer, regardless of age. In vivo, BaP caused PBMC mitochondrial dysfunction in mice before the appearance of visible malignant tissue. Moreover, mitochondrial function decreased significantly in mice with lung cancers induced by BaP compared to those without lung cancer after BaP intervention. In vitro, BPDE also induced mitochondrial dysfunction and reduced the aggressiveness of PBMCs toward cancer cells. Furthermore, the changes in mitochondrial energy metabolism gene expression caused by BPDE are involved in this process. Thus, the mitochondrial function of PBMCs is a potential prognostic biomarker or therapeutic target to improve clinical outcomes in patients with lung cancer.
Collapse
Affiliation(s)
- Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Hua Li
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuan Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Maternity&Child Care Center of Dezhou, Shandong, China
| | - Xuelian Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zilin Wei
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yamei Qiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lingling Pu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Changqing Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuang Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
2
|
Lagunas-Rangel FA, Liu W, Schiöth HB. Can Exposure to Environmental Pollutants Be Associated with Less Effective Chemotherapy in Cancer Patients? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042064. [PMID: 35206262 PMCID: PMC8871977 DOI: 10.3390/ijerph19042064] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
Since environmental pollutants are ubiquitous and many of them are resistant to degradation, we are exposed to many of them on a daily basis. Notably, these pollutants can have harmful effects on our health and be linked to the development of disease. Epidemiological evidence together with a better understanding of the mechanisms that link toxic substances with the development of diseases, suggest that exposure to some environmental pollutants can lead to an increased risk of developing cancer. Furthermore, several studies have raised the role of low-dose exposure to environmental pollutants in cancer progression. However, little is known about how these compounds influence the treatments given to cancer patients. In this work, we present a series of evidences suggesting that environmental pollutants such as bisphenol A (BPA), benzo[a]pyrene (BaP), persistent organic pollutants (POPs), aluminum chloride (AlCl3), and airborne particulate matter may reduce the efficacy of some common chemotherapeutic drugs used in different types of cancer. We discuss the potential underlying molecular mechanisms that lead to the generation of this chemoresistance, such as apoptosis evasion, DNA damage repair, activation of pro-cancer signaling pathways, drug efflux and action of antioxidant enzymes, among others.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Correspondence: (F.A.L.-R.); (H.B.S.)
| | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str. Moscow, 119991 Moscow, Russia
- Correspondence: (F.A.L.-R.); (H.B.S.)
| |
Collapse
|
3
|
Brown JM, Wasson MCD, Marcato P. The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs. Cells 2020; 9:E763. [PMID: 32244924 PMCID: PMC7140662 DOI: 10.3390/cells9030763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment decisions for breast cancer are based on staging and hormone receptor expression and include chemotherapies and endocrine therapy. While effective in many cases, some breast cancers are resistant to therapy, metastasize and recur, leading to eventual death. Higher percentages of tumor-initiating cancer stem cells (CSCs) may contribute to the increased aggressiveness, chemoresistance, and worse outcomes among breast cancer. This may be particularly true in triple-negative breast cancers (TNBCs) which have higher percentages of CSCs and are associated with worse outcomes. In recent years, increasing numbers of long non-coding RNAs (lncRNAs) have been identified as playing an important role in breast cancer progression and some of these have been specifically associated within the CSC populations of breast cancers. LncRNAs are non-protein-coding transcripts greater than 200 nucleotides which can have critical functions in gene expression regulation. The preclinical evidence regarding lncRNA antagonists for the treatment of cancer is promising and therefore, presents a potential novel approach for treating breast cancer and targeting therapy-resistant CSCs within these tumors. Herein, we summarize the lncRNAs that have been identified as functionally relevant in breast CSCs. Furthermore, our review of the literature and analysis of patient datasets has revealed that many of these breast CSC-associated lncRNAs are also enriched in TNBC. Together, this suggests that these lncRNAs may be playing a particularly important role in TNBC. Thus, certain breast cancer-promoting/CSC-associated lncRNAs could be targeted in the treatment of TNBCs and the CSCs within these tumors should be susceptible to anti-lncRNA therapy.
Collapse
Affiliation(s)
- Justin M Brown
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Marie-Claire D Wasson
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Paola Marcato
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
- Departments of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
4
|
Zhang QL, Guo J, Deng XY, Wang F, Chen JY, Lin LB. Comparative transcriptomic analysis provides insights into the response to the benzo(a)pyrene stress in aquatic firefly (Luciola leii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:226-234. [PMID: 30677670 DOI: 10.1016/j.scitotenv.2019.01.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Many studies have reported that behavior and bioluminescence of fireflies could be affected by changes in environment conditions. However, little is known about how the deterioration of the aquatic environment affects aquatic fireflies, particularly with respect to molecular responses following exposure to water pollutants, such as benzo(a)pyrene (BaP), which is a key indicator in environmental risk assessment because of the hazards it poses. Here, whole transcriptome sequencing and gene expression analysis were performed on freshwater fireflies (Luciola leii) exposed to BaP (concentration of 0.01 mg/L). Four transcriptomic libraries were constructed for the control and treatment groups, including two biological replicates. From the mixed pools (each pool contains 60 individuals from three time points), a total of 54,282 unigenes were assembled. Furthermore, 329,337 of Single-nucleotide Polymorphisms (SNPs) and 1324 of Simple Sequence Repeats (SSRs) were predicted using bioinformatics, which is useful for the future development of molecular markers. Subsequently, 2414 differently expressed genes (DEGs) were identified in response to BaP stress in comparison to the control, including 1350 up-regulated and 1064 down-regulated DEGs. Functional enrichment showed that these DEGs are primarily related to innate immunity; xenobiotic biodegradation and response, biomacromolecule metabolism, biosynthesis, and absorption. Eight key BaP-responsive DEGs were screened to survey the dynamic changes of expression in response to BaP stress at different time points, and to validate the RNA sequencing data using quantitative real-time PCR. The results indicate that the expression of genes encoding UGT, CYP3A, CYP9, CYP6AS5 and ADHP were induced, while those encoding UGT2B10L, PTGDS, and ALDH were reduced, to participate in response to the BaP exposure and potentially help counteract the adverse effects of BaP. This investigation provides insight into the toxicological response of fireflies to the occurrence of water deterioration.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
5
|
Kang N, Choi SY, Kim BN, Yeo CD, Park CK, Kim YK, Kim TJ, Lee SB, Lee SH, Park JY, Park MS, Yim HW, Kim SJ. Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation. BMC Cancer 2019; 19:148. [PMID: 30760238 PMCID: PMC6375212 DOI: 10.1186/s12885-019-5360-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 02/07/2019] [Indexed: 01/17/2023] Open
Abstract
Background A hypoxic microenvironment leads to an increase in the invasiveness and the metastatic potential of cancer cells within tumors via the epithelial-mesenchymal transition (EMT) and cancer stemness acquisition. However, hypoxia-induced changes in the expression and function of candidate stem cell markers and their possible molecular mechanism is still not understood. Methods Lung cell lines were analyzed in normoxic or hypoxic conditions. For screening among the stem cell markers, a transcriptome analysis using next-generation sequencing was performed. For validation, the EMT and stem cell characteristics were analyzed. To determine whether an epigenetic mechanism was involved, the cell lines were treated with a DNA methyltransferase inhibitor (AZA), and methylation-specific PCR and bisulfite sequencing were performed. Results Next-generation sequencing revealed that the CXCR4 expression was significantly higher after the hypoxic condition, which functionally resulted in the EMT and cancer stemness acquisition. The acquisition of the EMT and stemness properties was inhibited by treatment with CXCR4 siRNA. The CXCR4 was activated by either the hypoxic condition or treatment with AZA. The methylation-specific PCR and bisulfite sequencing displayed a decreased CXCR4 promoter methylation in the hypoxic condition. Conclusions These results suggest that hypoxia-induced acquisition of cancer stem cell characteristics was associated with CXCR4 activation by its aberrant promoter demethylation.
Collapse
Affiliation(s)
- Nahyeon Kang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Su Yeon Choi
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Bit Na Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Young Kyoon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong-Beom Lee
- Department of Pathology, Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mi Sun Park
- Department of Biostatistics, Clinical Research Coordinating Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Woo Yim
- Department of Biostatistics, Clinical Research Coordinating Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
6
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Cui Y, Li G, Zhang X, Dai F, Zhang R. Increased MALAT1 expression contributes to cisplatin resistance in non-small cell lung cancer. Oncol Lett 2018; 16:4821-4828. [PMID: 30250547 PMCID: PMC6144744 DOI: 10.3892/ol.2018.9293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Abstract
Cisplatin-based chemotherapy is commonly used for the clinical treatment of patients with non-small cell lung cancer (NSCLC). However, the anti-tumor efficacy of cisplatin is limited by poor clinical response and the development of chemoresistance. At present, the underlying mechanism for cisplatin resistance remains unclear. In the present study, it was identified that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA that has been demonstrated to function as an oncogene, was increased in tumor tissues from patients with cisplatin-resistant NSCLC. In addition, the MALAT1 level was increased in A549rCDDP cells compared with the parental A549 cells. Silencing of MALAT1 sensitized A549rCDDP cells to cisplatin treatment, while overexpression of MALAT1 in A549 cells decreased their sensitivity towards cisplatin. Through analysis of the gene expression in patient samples, a decrease in miR-145 and an increase in Kruppel-like factor 4 (KLF4) in tumor tissues compared with adjacent normal tissues was observed. A negative association between MALAT1 and miR-145 was also identified in A549 cells and A549rCDDP cells. Furthermore, reverse transcription quantitative polymerase chain reaction and western blotting identified that KLF4 was positively and negatively regulated by MALAT1 and miR-145, respectively. The direct regulatory association between MALAT1 and miR-145 and the target gene KLF4 was additionally confirmed using a luciferase reporter assay. Knockdown of MALAT1 reversed cisplatin resistance in A549rCDDP cells. Taken together, these data indicated that MALAT1 decreased the sensitivity of NSCLC to cisplatin via the regulation of miR-145 and KLF4.
Collapse
Affiliation(s)
- Yong Cui
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Guanlong Li
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Xin Zhang
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Fangfang Dai
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Rongxiang Zhang
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| |
Collapse
|
8
|
Jiang X, Wu X, Chen F, He W, Chen X, Liu L, Tang H. The profiles and networks of miRNA, lncRNA, mRNA, and circRNA in benzo(a)pyrene-transformed bronchial epithelial cells. J Toxicol Sci 2018; 43:281-289. [DOI: 10.2131/jts.43.281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Heery R, Finn SP, Cuffe S, Gray SG. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9040038. [PMID: 28430163 PMCID: PMC5406713 DOI: 10.3390/cancers9040038] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard Heery
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- Masters in Translational Oncology Program, Department of Surgery, Trinity College Dublin, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
| | - Stephen P Finn
- Department of Histopathology & Morbid Anatomy, Trinity College Dublin, Dublin D08 RX0X, Ireland.
| | - Sinead Cuffe
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin D02 R590, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin D08 K0Y5, Ireland.
| |
Collapse
|