1
|
Li X, Shen Y, Lang B, Zhao J, Wang H, Zhang Y. Influence of octylphenol on gene expression of gonadotropins and their receptors, testicular structure and mating behavior of male Rana chensinensis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103694. [PMID: 34153509 DOI: 10.1016/j.etap.2021.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
In the present study, responses of the Chinese brown frog (Rana chensinensis) to exposure to different doses and duration of Octyphenol (OP) which degraded from alkylphenol ethoxylates (APEs) were characterized during the adult periods. The effects of OP on growth, development and reproduction and the expression of genes in gonad were investigated. The expression levels of fshβ, lhβ, fshr and lhr had significant differences as the exposure time increased. The pathological and morphological changes were also observed in the OP treatments. Furthermore, the number of TUNEL positive cells and the TUNEL index was elevated after exposed to OP. Besides that, OP treatment could influence its mating behavior and reduce the fertilization rates. Taken together, these results indicated that OP disrupt sex steroid signaling, normal development of spermatogenesis, courtship behavior of male frogs and decline fertilization rate in R. chensinensis.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Baiyan Lang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingjing Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
2
|
Zhang G, Li N, Zhang Y, Pan J, Gong D. Binding mechanism of 4-octylphenol with human serum albumin: Spectroscopic investigations, molecular docking and dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119662. [PMID: 33780895 DOI: 10.1016/j.saa.2021.119662] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
4-Octylphenol (OP) is an environmental estrogen that can enter organisms through the food chain and cause various toxic effects. Here, the interaction between OP and human serum albumin (HSA) was explored through multipectral, molecular docking and dynamics simulation. The results showed that OP and HSA formed a ground state complex through a static quenching mechanism, and the interaction was spontaneously driven by hydrogen bonds and hydrophobic interaction forces. The binding constant at different temperatures was measured to be on the order of 105 L mol-1. Site competition experiments suggested that OP interacted with amino acid residues Lys195, Cy245 and Cys246 located at the Sudlow site I of HSA, resulting in a more stretched protein peptide. The presence of OP increased the surface hydrophobicity of HSA, and reduced the content of α-helix in HSA by 3.4%. FT-IR spectra showed that OP interacted with the C=O and C-H groups of the polypeptide backbone. Molecular docking demonstrated that OP mainly bound to Site I of HSA and hydrogen bonds participated in the interaction. In addition, molecular dynamics simulations further explored the stability and dynamic behavior of the OP-HSA complex through RMSD, RMSF, SASA and Rg.
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Na Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ying Zhang
- Division of Accounting, Nanchang University, Nanchang 330047, China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Xu Y, Jang JH, Gye MC. 4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116560. [PMID: 33524650 DOI: 10.1016/j.envpol.2021.116560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Developmental toxicity of 4-octylphenol (OP), an estrogenic endocrine disruptor was verified using frog embryo teratogenesis assay Xenopus. LC50, EC50Malformtion and EC50Melanocyte-dysgenesis of OP were 9.9, 10.5, and 2.4 μM, respectively. In tadpoles, despite the low teratogenic index, 2 μM OP significantly inhibited head cartilage development and tail malformation. The total length of tadpole was significantly increased at 5 μM and decreased at 10 μM OP. In OP-treated tadpoles, head cartilages were frequently missed and col2a1 mRNA was decreased at 2 μM, indicating a chondrogenic defect in developing head. In the head skin of 1 μM OP-treated tadpoles, number of melanocytes and melanogenic pathway genes expression were significantly decreased. In the head-neck junction of stage 22 embryos, OP increased foxd3 and sox10 mRNA and SOX10(+) neural crest cells (NCCs) in somite mesoderm and endoderm, indicating the inhibition of chondrogenic differentiation, ectopic migration to endoderm, and undifferentiation of NCCs by OP. Together, OP-induced head dysplasia and inhibition of melanogenesis may be attributable to deregulation of neural crest cells in embryos. In tadpoles, OP at 1 μM significantly increased lipid hydroperoxide and induced spliced xbp1 mRNA, an IRE1 pathway endoplasmic reticulum stress (ERS) marker and p-eIF2α protein, a PERK pathway ERS marker. OP at 10 μM induced CHOP mRNA, pro-apoptotic genes expression, DNA fragmentation, and cleaved caspase-3, suggesting that OP differentially induced ERS and apoptosis according to the concentration in embryos. In 5-10 μM OP-treated stage 22 embryos and stage 45 tadpole heads, Ki67 was significantly increased, suggesting the apoptosis-induced proliferation of embryonic cells in the OP-treated embryos. Together, OP should be managed as a developmental toxicant altering the behavior of NCCs in vertebrates.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ji Hyun Jang
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Zhang S, Zhang L, Ru X, Ding K, Feng Q. Transcriptome analysis of gender-biased CYP genes in gonads of the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100790. [PMID: 33486324 DOI: 10.1016/j.cbd.2021.100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Gender differences in physiological characteristics are widespread in animals. Herein, differentially expressed genes (DEGs) in gonads of the sea cucumber Apostichopus japonicus were analysed by transcriptomics, and the results showed that 19,973 genes were commonly expressed in the males and females, 4186 were female-biased, and 2540 were male-biased, 4695 genes were up-regulated in the females and 3436 genes were up-regulated in the males. These DEGs were mainly associated with metabolism, including lipid metabolism, amino acid metabolism, nucleotide metabolism, energy metabolism, and cofactor and vitamin metabolism. 29 Cytochrome P450 (CYP) superfamily genes with gender differential expression were selected, and performed gene identification, phylogenetic, and functional analyses. The results indicated significant roles in multiple metabolic pathways, such as steroid hormone biosynthesis, ovarian steroidogenesis, cortisol synthesis and secretion, arachidonic acid metabolism, linoleic acid metabolism, and retinol metabolism. The findings provide insight into the molecular characteristics of physiological gender differences in sea cucumbers, and will help lay the foundation for the establishment of effective sea cucumber breeding technologies.
Collapse
Affiliation(s)
- Shuangyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoshang Ru
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qiming Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Czuchlej SC, Volonteri MC, Scaia MF, Ceballos NR. Characterization of StAR protein of Rhinella arenarum (Amphibia, Anura). Gen Comp Endocrinol 2020; 295:113535. [PMID: 32535173 DOI: 10.1016/j.ygcen.2020.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/13/2020] [Accepted: 06/06/2020] [Indexed: 10/24/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein performs the delivery of cholesterol from the outer to inner mitochondrial membrane. This is considered the rate-limiting step of acute steroid production, widely studied in mammals. However, there are only few reports regarding the characterization and expression of StAR protein in non-mammalian vertebrates. In this study, StAR protein sequence of Rhinella arenarum has been characterized and deduced from interrenal and testis cDNA sequences. StAR encodes a 285 amino acid protein with a conserved domain containing putative lipid binding sites. In vitro incubations showed that expression of StAR mRNA in testis, determined by qPCR, and testosterone synthesis determined by radioimmunoassay were stimulated after treatment with hCG and 8Br-cAMP. However, StAR mRNA expression results obtained with hCG show a higher stimulation than those obtained with 8Br-cAMP, even though steroidogenic production is the same with both treatments.
Collapse
Affiliation(s)
- Silvia Cristina Czuchlej
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina.
| | - María Clara Volonteri
- Instituto de Diversidad y Evolución Austral (IDEAus CENPAT-CONICET). Puerto Madryn, Chubut, Argentina.
| | - María Florencia Scaia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Nora Raquel Ceballos
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Liu R, Zhang Y, Gao J, Li X. Effects of octylphenol exposure on the lipid metabolism and microbiome of the intestinal tract of Rana chensinensis tadpole by RNAseq and 16s amplicon sequencing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110650. [PMID: 32315788 DOI: 10.1016/j.ecoenv.2020.110650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Octylphenol (OP) is a widely distributed endocrine disrupting chemical (EDC), and can be commonly found in various and diverse environmental media. Previous studies have reported that OP exposure could cause many adverse effects on aquatic animals. However, knowledge concerning the impact of OP on lipid metabolism in amphibians was still limited. In our study, Rana chensinensis tadpoles were exposed to different OP concentrations (0, 10-8, 10-7 and 10-6 mol/L) from the Gosner stage (Gs) 25-38. The RNA-seq analysis of tadpole intestines was explored by RNA-seq, and six differentially expressed genes (DEGs) related to the fat digestion and absorption were validated by RT-qPCR. Moreover, we used 16s amplicon sequencing to evaluate effects of OP on intestinal microbiome in tadpoles, further determining the variations of lipid metabolism. Our results revealed that OP exposure influenced gene expression levels related to fat digestion and absorption and led to alteration of structure and composition of intestinal microbiome. At the phylum level, the Firmicutes/Bacteroidetes ratio was gradually decreased in OP exposure groups, which disrupted lipid metabolism. According to the results of intestinal microbial functional prediction, OP exposure interfered with metabolic function and increased risk of disease. These data provide us with powerful resources to assess the effects of OP on lipid metabolism by integrating RNAseq and 16s amplicon sequencing analysis of intestinal tract and intestinal microbiome.
Collapse
Affiliation(s)
- Rong Liu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinshu Gao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
7
|
|
8
|
Peek CE, Cohen RE. Seasonal regulation of steroidogenic enzyme expression within the green anole lizard (Anolis carolinensis) brain and gonad. Gen Comp Endocrinol 2018; 268:88-95. [PMID: 30077794 DOI: 10.1016/j.ygcen.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Steroid hormones, such as testosterone and estradiol, are necessary for reproductive behavior. Seasonally breeding animals have increased sex steroid hormone levels during the breeding compared to non-breeding season, with increased reproductive behaviors and altered brain morphology in breeding individuals. Similar to other seasonally breeding animals, green anole lizards (Anolis carolinensis) have high sex steroid hormone levels and increased reproductive behaviors in the breeding season. Relatively less is known regarding the regulation of steroidogenesis in reptiles and this experiment examined whether enzymes involved in sex steroid hormone synthesis vary seasonally within the brain and gonads in wild-caught anole lizards. Specifically, we examined mRNA expression of steroidogenic acute regulatory protein (StAR), P450 17α-hydroxylase/C17-20lyase (Cyp17α1), 17 beta-hydroxysteroid dehydrogenase type 3 (17βHSD 3), and aromatase (Cyp19α1). We found that the mRNA for each of these genes was expressed in the lizard brain. Interestingly, Cyp19α1 mRNA expression in the brain was increased during the non-breeding season, potentially revealing a role for aromatase expression in the non-breeding brain. In the anole gonads, StAR mRNA expression levels were increased in both males and females during the breeding season, while the mRNA expression levels of CYP17α1 and 17βHSD 3 are increased when StAR mRNA expression was decreased, suggesting that the enzymes in the steroidogenic pathway are potentially regulated independently of StAR. This work reveals the seasonal regulation of steroidogenesis in the reptilian brain and gonad, although more work is necessary to determine the regulatory mechanisms that control these expression patterns.
Collapse
Affiliation(s)
- Christine E Peek
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|