1
|
Fransen LFH, Leonard MO. Mononuclear phagocyte sub-types in vitro display diverse transcriptional responses to dust mite exposure. Sci Rep 2024; 14:14187. [PMID: 38902328 PMCID: PMC11189906 DOI: 10.1038/s41598-024-64783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
Mononuclear phagocytes (MNP), including macrophages and dendritic cells form an essential component of primary responses to environmental hazards and toxic exposures. This is particularly important in disease conditions such as asthma and allergic airway disease, where many different cell types are present. In this study, we differentiated CD34+ haematopoietic stem cells towards different populations of MNP in an effort to understand how different cell subtypes present in inflammatory disease microenvironments respond to the common allergen house dust mite (HDM). Using single cell mRNA sequencing, we demonstrate that macrophage subtypes MCSPP1+ and MLCMARCO+ display different patterns of gene expression after HDM challenge, noted especially for the chemokines CXCL5, CXCL8, CCL5 and CCL15. MLCCD206Hi alternatively activated macrophages displayed the greatest changes in expression, while neutrophil and monocyte populations did not respond. Further work investigated how pollutant diesel exhaust particles could modify these transcriptional responses and revealed that CXC but not CC type chemokines were further upregulated. Through the use of diesel particles with adsorbed material removed, we suggest that soluble pollutants on these particles are the active constituents responsible for the modifying effects on HDM. This study highlights that environmental exposures may influence tissue responses dependent on which MNP cell type is present, and that these should be considerations when modelling such events in vitro. Understanding the nuanced responsiveness of different immune cell types to allergen and pollutant exposure also contributes to a better understanding of how these exposures influence the development and exacerbation of human disease.
Collapse
Affiliation(s)
- Leonie F H Fransen
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Science and Innovation Campus, Harwell, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Science and Innovation Campus, Harwell, OX11 0RQ, UK.
| |
Collapse
|
2
|
Deng R, Zhu Y, Wu X, Wang M. Toxicity and Mechanisms of Engineered Nanoparticles in Animals with Established Allergic Asthma. Int J Nanomedicine 2023; 18:3489-3508. [PMID: 37404851 PMCID: PMC10317527 DOI: 10.2147/ijn.s411804] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Asthma is a chronic respiratory disease that is highly sensitive to environmental pollutants, including engineered nanoparticles (NPs). Exposure to NPs has become a growing concern for human health, especially for susceptible populations. Toxicological studies have demonstrated strong associations between ubiquitous NPs and allergic asthma. In this review, we analyze articles that focus on adverse health effects induced by NPs in animal models of allergic asthma to highlight their critical role in asthma. We also integrate potential mechanisms that could stimulate and aggravate asthma by NPs. The toxic effects of NPs are influenced by their physicochemical properties, exposure dose, duration, route, as well as the exposure order between NPs and allergens. The toxic mechanisms involve oxidative stress, various inflammasomes, antigen presenting cells, immune cells, and signaling pathways. We suggest that future research should concentrate on establishing standardized models, exploring mechanistic insights at the molecular level, assessing the combined effects of binary exposures, and determining safe exposure levels of NPs. This work provides concrete evidence of the hazards posed by NPs in animals with compromised respiratory health and supports the modifying role of NPs exposure in allergic asthma.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| | - Ya Zhu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| |
Collapse
|
3
|
Fransen LFH, Leonard MO. Induced pluripotent and CD34+ stem cell derived myeloid cells display differential responses to particle and dust mite exposure. Sci Rep 2023; 13:9375. [PMID: 37296179 PMCID: PMC10256772 DOI: 10.1038/s41598-023-36508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Myeloid cells form an essential component of initial responses to environmental hazards and toxic exposures. The ability to model these responses in vitro is central to efforts tasked with identifying hazardous materials and understanding mechanisms of injury and disease. Induced pluripotent stem cell (iPSC) derived cells have been suggested as alternatives to more established primary cell testing systems for these purposes. iPSC derived macrophage and dendritic like cells were compared to CD34+ haematopoietic stem cell derived populations using transcriptomic analysis. Using single cell sequencing-based characterisation of iPSC derived myeloid cells, we identified transitional, mature and M2 like macrophages as well as dendritic like antigen presenting cells and fibrocytes. Direct transcriptomic comparisons between iPSC and CD34+ cell derived populations revealed higher expression of myeloid differentiation genes such as MNDA, CSF1R and CSF2RB in CD34+ cells, while iPSC populations had higher fibroblastic and proliferative markers. Exposure of differentiated macrophage populations to nanoparticle alone or in combination with dust mite, resulted in differential gene expression on combination only, with responses markedly absent in iPSC compared to CD34+ derived cells. The lack of responsiveness in iPSC derived cells may be attributable to lower levels of dust mite component receptors CD14, TLR4, CLEC7A and CD36. In summary, iPSC derived myeloid cells display typical characteristics of immune cells but may lack a fully mature phenotype to adequately respond to environmental exposures.
Collapse
Affiliation(s)
- Leonie F H Fransen
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Chilton, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Chilton, Harwell Campus, Didcot, OX11 0RQ, UK.
| |
Collapse
|
4
|
Ogbunuzor C, Fransen LFH, Talibi M, Khan Z, Dalzell A, Laycock A, Southern D, Eveleigh A, Ladommatos N, Hellier P, Leonard MO. Biodiesel exhaust particle airway toxicity and the role of polycyclic aromatic hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115013. [PMID: 37182301 DOI: 10.1016/j.ecoenv.2023.115013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Renewable alternatives to fossil diesel (FD) including fatty acid methyl ester (FAME) biodiesel have become more prevalent. However, toxicity of exhaust material from their combustion, relative to the fuels they are displacing has not been fully characterised. This study was carried out to examine particle toxicity within the lung epithelium and the role for polycyclic aromatic hydrocarbons (PAHs). Exhaust particles from a 20% (v/v) blend of FAME biodiesel had little impact on primary airway epithelial toxicity compared to FD derived particles but did result in an altered profile of PAHs, including an increase in particle bound carcinogenic B[a]P. Higher blends of biodiesel had significantly increased levels of more carcinogenic PAHs, which was associated with a higher level of stress response gene expression including CYP1A1, NQO1 and IL1B. Removal of semi-volatile material from particulates abolished effects on airway cells. Particle size difference and toxic metals were discounted as causative for biological effects. Finally, combustion of a single component fuel (Methyl decanoate) containing the methyl ester molecular structure found in FAME mixtures, also produced more carcinogenic PAHs at the higher fuel blend levels. These results indicate the use of FAME biodiesel at higher blends may be associated with an increased particle associated carcinogenic and toxicity risk.
Collapse
Affiliation(s)
- Christopher Ogbunuzor
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | | | - Midhat Talibi
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Zuhaib Khan
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Abigail Dalzell
- Toxicology Department, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Adam Laycock
- Toxicology Department, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Daniel Southern
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Aaron Eveleigh
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Nicos Ladommatos
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Paul Hellier
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | | |
Collapse
|
5
|
Sreedharan S, Zouganelis G, Drake SJ, Tripathi G, Kermanizadeh A. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:1-27. [PMID: 36474307 DOI: 10.1080/10937404.2022.2153456] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The integration of nanomaterials (NMs) into an ever-expanding number of daily used products has proven to be highly desirable in numerous industries and applications. Unfortunately, the same "nano" specific physicochemical properties, which make these materials attractive, may also contribute to hazards for individuals exposed to these materials. In 2021, it was estimated that 7 out of 10 deaths globally were accredited to chronic diseases, such as chronic liver disease, asthma, and cardiovascular-related illnesses. Crucially, it is also understood that a significant proportion of global populace numbering in the billions are currently living with a range of chronic undiagnosed health conditions. Due to the significant number of individuals affected, it is important that people suffering from chronic disease also be considered and incorporated in NM hazard assessment strategies. This review examined and analyzed the literature that focused on NM-induced adverse health effects in models which are representative of individuals exhibiting pre-existing medical conditions with focus on the pulmonary, cardiovascular, hepatic, gastrointestinal, and central nervous systems. The overall objective of this review was to outline available data, highlighting the important role of pre-existing disease in NM-induced toxicity with the aim of establishing a weight of evidence approach to inform the public on the potential hazards posed by NMs in both healthy and compromised persons in general population.
Collapse
|
6
|
Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022; 188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
With the increasing understanding of various biological functions mediated by reactive oxygen species (ROS) in the immune system, a number of studies have been designed to develop ROS-generating/eliminating strategies to selectively modulate immunogenicity for disease treatment. These strategies potentially exploit ROS-modulating inorganic biomaterials to harness host immunity to maximize the therapeutic potency by eliciting a favorable immune response. Inorganic biomaterial-guided in vivo ROS scavenging can exhibit several effects to: i) reduce the secretion of pro-inflammatory factors, ii) induce the phenotypic transition of macrophages from inflammatory M1 to immunosuppressive M2 phase, iii) minimize the recruitment and infiltration of immune cells. and/or iv) suppress the activation of nuclear factor kappa-B (NF-κB) pathway. Inversely, ROS-generating inorganic biomaterials have been found to be capable of: i) inducing immunogenic cell death (ICD), ii) reprograming tumor-associated macrophages from M2 to M1 phenotypes, iii) activating inflammasomes to stimulate tumor immunogenicity, and/or iv) recruiting phagocytes for antimicrobial therapy. This review provides a systematic and up-to-date overview on the progress related to ROS-nanotechnology mediated immunomodulation. We highlight how the ROS-generating/eliminating inorganic biomaterials can converge with immunomodulation and ultimately elicit an effective immune response against inflammation, autoimmune diseases, and/or cancers. We expect that contents presented in this review will be beneficial for the future advancements of ROS-based nanotechnology and its potential applications in this evolving field.
Collapse
Affiliation(s)
- Caiyan Zhao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
7
|
Zhou X, Zeng W, Rong S, Lv H, Chen Y, Mao Y, Tan W, Li H. Alendronate-Modified Nanoceria with Multiantioxidant Enzyme-Mimetic Activity for Reactive Oxygen Species/Reactive Nitrogen Species Scavenging from Cigarette Smoke. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47394-47406. [PMID: 34605626 DOI: 10.1021/acsami.1c15358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly toxic radicals including reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cigarette smoke play an important role in oxidative damage of the lungs, which cannot be efficiently scavenged by current filter techniques. Herein, a novel alendronate-coated nanoceria (CeAL) nanozyme is explored for cigarette filter modification for ROS/RNS scavenging. The CeAL nanozyme with an adjustable oxidation state and high thermal stability exhibits an excellent superoxide dismutase (SOD)-like activity, hydroxyl radical elimination capacity, catalase-mimicking activity, and nitric oxide radical scavenging ability. These synergistic antioxidant abilities make the CeAL nanozyme a lucrative additive for cigarette filters. The filter incorporated with the CeAL nanozyme can efficiently scavenge ROS/RNS in the hot smoke generated by burned commercial cigarettes, resulting in reduction of oxidative stress-induced pulmonary injury and acute inflammation of mice. The developed CeAL nanozyme opens up new opportunities for cigarette filter modification to decrease the toxicity of cigarette smoke and expands the application fields of nanoceria.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Stomatology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Weinan Zeng
- Orthopedic Research institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Rong
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Heng Lv
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Yonghong Chen
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Yinghua Mao
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Weilong Tan
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Hong Li
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| |
Collapse
|
8
|
Yokel RA, Wohlleben W, Keller JG, Hancock ML, Unrine JM, Butterfield DA, Grulke EA. The preparation temperature influences the physicochemical nature and activity of nanoceria. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:525-540. [PMID: 34136328 PMCID: PMC8182686 DOI: 10.3762/bjnano.12.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Cerium oxide nanoparticles, so-called nanoceria, are engineered nanomaterials prepared by many methods that result in products with varying physicochemical properties and applications. Those used industrially are often calcined, an example is NM-212. Other nanoceria have beneficial pharmaceutical properties and are often prepared by solvothermal synthesis. Solvothermally synthesized nanoceria dissolve in acidic environments, accelerated by carboxylic acids. NM-212 dissolution has been reported to be minimal. To gain insight into the role of high-temperature exposure on nanoceria dissolution, product susceptibility to carboxylic acid-accelerated dissolution, and its effect on biological and catalytic properties of nanoceria, the dissolution of NM-212, a solvothermally synthesized nanoceria material, and a calcined form of the solvothermally synthesized nanoceria material (ca. 40, 4, and 40 nm diameter, respectively) was investigated. Two dissolution methods were employed. Dissolution of NM-212 and the calcined nanoceria was much slower than that of the non-calcined form. The decreased solubility was attributed to an increased amount of surface Ce4+ species induced by the high temperature. Carboxylic acids doubled the very low dissolution rate of NM-212. Nanoceria dissolution releases Ce3+ ions, which, with phosphate, form insoluble cerium phosphate in vivo. The addition of immobilized phosphates did not accelerate nanoceria dissolution, suggesting that the Ce3+ ion release during nanoceria dissolution was phosphate-independent. Smaller particles resulting from partial nanoceria dissolution led to less cellular protein carbonyl formation, attributed to an increased amount of surface Ce3+ species. Surface reactivity was greater for the solvothermally synthesized nanoceria, which had more Ce3+ species at the surface. The results show that temperature treatment of nanoceria can produce significant differences in solubility and surface cerium valence, which affect the biological and catalytic properties of nanoceria.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | | | | | - Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506-0046, USA
| | - Jason M Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | | | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506-0046, USA
| |
Collapse
|
9
|
Qian Q, Zhang Y, Chen Y, Ye C, Feng Q, Tu J, Lu Z, Xu Y, Ran N, Xing G, Yu Z. Assessment of pulmonary toxicity of potential antioxidant drug PEGylated nanoceria after intratracheal instillation in rats. J Appl Toxicol 2020; 41:941-952. [PMID: 33094530 DOI: 10.1002/jat.4079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Cerium oxide (CeO2 ) nanoparticles have unique redox properties and exert excellent antioxidant effects in the biological environment. In recent years, many researchers have focused on the CeO2 nanoparticles as an effective antioxidant drug in the prevention and treatment of various diseases. However, the toxicity of CeO2 nanoparticles in vivo remains controversial and still needs intensive research. Therefore, the objective of this study is to investigate the pulmonary and systemic toxicity in rats after 14 days of exposure to the PEGylated CeO2 nanoparticles (abbreviated as CNPs; exposure dose of 2, 10, or 20 mg/kg) through a single intratracheal instillation (IT). We assessed the indicators of lung injury and the pathological damage degree of lung tissue. The bronchoalveolar lavage fluid (BALF) analysis and lung histopathology revealed the occurrence of slight pulmonary inflammation in the 20-mg/kg experimental group rats. However, the inflammation factors in the lung tissue of every group rats did not significantly increase, and the levels of superoxide dismutase (SOD) and glutathione (GSH) in lung tissue homogenate rose considerably in the experimental groups. Collectively, these results indicated that pulmonary exposure by the high dose of CNPs could induce mild pulmonary inflammation but did not cause severe systemic toxicity. Moreover, we speculate that the mechanism of pulmonary toxicity of CNPs in rats was due to the autophagic death of healthy lung epithelial cells mediated by endoplasmic reticulum stress. Our results implicate that CNPs can be safely used as an antioxidant drug for the oxidative stress pulmonary diseases.
Collapse
Affiliation(s)
- Qinqing Qian
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yun Zhang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuan Chen
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Chenqiao Ye
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Qiang Feng
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Jinqing Tu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Zhenbo Lu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yilan Xu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Na Ran
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Guiying Xing
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Zhangsen Yu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
10
|
Anti-Inflammatory Effects of Cerium Dioxide Nanoparticles on Peritonitis in Rats Induced by Staphylococcus epidermidis Infection. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/3591508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effects of cerium dioxide (CeO2) nanoparticles on the inflammatory response of peritonitis rats induced by Staphylococcus epidermidis infection. Methods. Green tea polyphenol CeO2 nanoparticles were synthesized and characterized by transmission microscopy, ultraviolet-visible spectroscopy, FT-IR, and powder diffractometer. 40 male adult SD rats were randomly divided into 4 groups (n = 10 each): a control group, a model group, a CeO2 group, and a CeO2 + model group. Staphylococcus epidermidis solution was injected intraperitoneally with 107 CFU/ml of bacterial solution in the model group, while the control group was injected intraperitoneally with the same amount of normal saline, and the CeO2 and CeO2 + model groups were injected with 0.5 mg/kg CeO2 nanoparticles through the tail vein for 2 h and then injected with saline or bacterial solution for 2 h, respectively. After 0 h, 3 h, 12 h, 24 h, and 48 h of model construction, rats were sacrificed, and serum and peritoneal lavage fluid were collected. The total number of leukocytes and the percentage of each type of leukocytes in the peritoneal lavage fluid were determined. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of inflammatory factor TNF-α in serum and peritoneal lavage fluid, and myeloperoxidase (MPO) activity in peritoneal tissue was also measured. In addition, real-time fluorescence quantitative PCR (RT-PCR) was used to measure the expression of TLR2 and TLR4 in peritoneal tissue, and western blotting was used to detect the expression of TLR2, TLR4, and the activation of NF-κB signaling pathways as well. Results. The CeO2 has an average size of 37 ± 3 nm with binding activity to proteins, phenolic compounds, and alkaloids. After counting the white blood cells in the peritoneal lavage fluid, it was found that the total number of white blood cells and the percentage of neutrophils in the model group were significantly increased (both P<0.05), and CeO2 treatment significantly reversed the above changes (both P<0.05). The ELISA results showed that compared with the control group, the TNF-α in the peritoneal lavage fluid and serum of the model group increased in a time-dependent manner (all P<0.05); however, there was no significant change in the CeO2 group (P>0.05); at the same time in the CeO2 + model group, the TNF-α content was significantly reduced (all P<0.05). Detection of MPO activity in peritoneal tissue revealed that MPO activity was significantly increased under peritonitis (all P<0.05), and CeO2 treatment could mitigate that increase (all P<0.05). RT-PCR results showed that compared with the control group, the expression of TLR2 and TLR4 mRNA levels in the peritoneum of the model group were increased in a time-dependent manner (all P<0.05), and there was no significant change in the CeO2 group (P>0.05); however, TLR2 and TLR4 mRNA levels were significantly reduced in the CeO2 + model group (all P<0.05). Western blotting test was performed on the peritoneal tissue collected after 48 h of the model establishment. Compared with the control group, the levels of TLR2, TLR4, p–NF–κB, and p-IκBα protein in the model group were significantly increased (all P<0.05), while CeO2 group showed no significant changes (P>0.05) and administration of CeO2 before model construction can significantly reverse the above protein activation (all P<0.05). Conclusion. CeO2 nanoparticles have anti-inflammatory effects in peritonitis caused by Staphylococcus epidermidis infection.
Collapse
|